Biomimetic conducting polymer-based tissue scaffolds

Published in:
Current opinion in biotechnology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2013 The Author
This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Biomimetic conducting polymer-based tissue scaffolds

- John G Hardy¹, ⁴
- Jae Y Lee², ⁴
- Christine E Schmidt¹, ³

Highlights

• Electrical stimulation is used in a number of FDA approved devices.

• There are no FDA approved CP-based tissue scaffolds.

• CP-based tissue scaffolds with biomimetic properties perform better in vitro.

• CP-based biomaterials exhibit relatively low levels of immunogenicity in vivo.

Conducting polymer-based materials are promising for application as tissue scaffolds for the replacement or restoration of damaged or malfunctioning tissues, because a variety of tissues respond to electrical stimulation. This review focuses on conducting polymer-based materials with biomimetic chemical, mechanical and topological properties, and recent progress toward the fabrication of clinically relevant tissue scaffolds is highlighted.

Graphical abstract
Current Opinion in Biotechnology 2013, 24:847–854

This review comes from a themed issue on Tissue, cell and engineering

Edited by Kyongbum Lee and Jeffrey A Hubbell

For a complete overview see the Issue and the Editorial

Available online 8th April 2013

0958-1669/$ – see front matter, Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.copbio.2013.03.011

Introduction

Electromagnetic fields affect a variety of tissues (e.g. cardiac, muscle, nerve and skin) and play important roles in a multitude of biological processes (e.g. angiogenesis, cell division, cell signaling, nerve sprouting, prenatal development, and wound healing), mediated by a variety of subcellular level changes, including protein distribution, gene expression, metal ion content, and action potential [1••]. This basic science has inspired further research into the development of electrically conducting devices for biomedical applications including bioactuators, biosensors, drug delivery devices, cardiac/neural electrodes, and tissue scaffolds [2•, 3•, 4• and 5•]. It is particularly noteworthy that there are already a number of FDA approved devices capable of electrical stimulation of the body, including: pacemakers (bladder, cardiac, diaphragmatic and gastric), electrodes for deep-brain stimulation (for the treatment of dystonia, essential tremor and Parkinson's disease), spinal cord stimulators for pain management, vagal nerve stimulators for seizure/hiccup management, devices to improve surgical outcomes for cervical fusion surgery for patients at a high risk of non-fusion, and non-invasive devices to stimulate bone growth.

Polymer-based materials are ubiquitous in everyday life, and conducting polymers (CPs) are currently being investigated for a wide variety of biomedical applications [2•, 3•, 4• and 5•] and the most commonly employed CPs are shown in Figure 1. CPs are attractive for the preparation of biomaterials due to their simple synthesis and modification, which facilitates the tuning of their bulk and surface chemistry that governs their physicochemical properties [3• and 4•]. However, the preparation of clinically relevant CP-based tissue scaffolds with
biomimetic chemical, mechanical and topological properties (as illustrated in Figure 2) is still challenging, and we will discuss recent progress in this direction in the following sections.

![Figure 1](image)

The structures of common conducting polymers. (a) Polyaniline. (b) Polypyrrole. (c) Polythiophene. (d) Poly(3,4-ethylenedioxythiophene).
Synthesis of conducting polymers

CPs are most commonly synthesized either via electrochemical polymerization of the constituent monomers at the surface of an electrode [6] or in the solution/solid state in the presence of a catalyst (e.g. an oxidant such as FeCl₃) [7]. To conduct electricity, conjugated polymers need to be oxidized or reduced; the processes of oxidation or reduction result in the backbone of the polymer being ionized, which necessitates the presence of counter ions that are commonly known as dopant ions (in analogy to the ‘doping’ of inorganic semiconductors). The dopant ions can be introduced during or after the synthesis of the CPs, either via simple mixing or chemical immobilization of the dopant on the backbone of the polymer. In cases where the polymer and dopant interact purely through non-covalent interactions it is possible for low molecular weight dopants to leach out of the CP matrix into the biological milieu [8], concomitant with a reduction in the conductivity of the material. This phenomenon is used for CP-based drug delivery devices which function by proactively expelling the biologically active dopant from the material upon electrical stimulation [9]. By contrast, in cases where the dopant is covalently attached to the polymer, the polymer is referred to as ‘self-doped’ [6].
CP-based tissue scaffolds with biomimetic chemical properties

The natural extracellular matrix (ECM) is a mixture of proteins and polysaccharides that display biochemical cues that influence cell behavior, and determine how efficiently cells adhere to them via interactions with glycoproteins displayed on the cell surface. Integrins are an important class of cell adhesive glycoproteins that recognize specific peptide sequences in ECM proteins such as collagen, fibronectin, laminin and vitronectin, and biomimetic biomaterials intended for use as tissue scaffolds commonly display cell adhesive proteins and peptides [10 and 11].

CP-based materials with ECM-mimetic chemical properties can be produced in a variety of ways. It is possible to non-covalently incorporate both high and low molecular weight components/derivatives of the ECM as dopants during electropolymerization reactions, for example, the adhesion of PC12 cells to poly(3,4-ethylenedioxythiophene) (PEDOT) films was improved by doping with collagen [12], or low molecular weight peptides derived from laminin [13]. Electropolymerization also offers the potential to covalently incorporate ECM-derived dopants by polymerizing monomer functionalized ECM derivatives (e.g. collagen [14] or hyaluronic acid [15]). Although electropolymerization is typically used to produce thin 2D films of CPs, it is also applicable to 3D substrates such as interpenetrating networks of PEDOT and ECM protein-based foams (derived from decellularized tissues) [16], and excitingly, the preparation of PEDOT hydrogels in vivo [17].

ECM-mimetic properties can also be imparted to materials by covalently modifying their surfaces with ECM derivatives, commonly employing carbodiimide chemistry [18, 19 and 20], although a variety of other methodologies exist, some of which are capable of generating surfaces that can spatially control cellular interactions through ECM derivative functionalization (i.e. printing patterned surfaces) [21]. It is moreover possible to modify surfaces using non-covalent interactions, typically relying on protein adsorption through non-specific interactions, however, phage display can be used to identify peptides that interact selectively with CP substrates (e.g. THRTSTLDYFVI with polypyrrole), and these peptides can be modified to display biologically active peptides such as the laminin derived IKVAV peptide [22 and 23].

The ECM is inherently biodegradable and is subject to extensive remodeling during the natural wound healing process, consequently, degradable CP-based tissue scaffolds are desirable as they facilitate their eventual replacement with natural functional tissue. Materials composed of polymers within the molecular weight threshold appropriate for renal filtration (<50 kDa) [24] that degrade via the solubilization of an initially water insoluble polymer (with or without changes in their chemical structure) are referred to as bioerodible. By contrast, polymer-based materials that degrade due to scission of the backbone of the polymers (e.g. enzymatic or hydrolytic bond cleavage) are referred to as biodegradable [25]. Ideally the degradation process should result in the formation of non-toxic components. Commonly employed CPs (see Figure 1) are neither bioerodible nor biodegradable, and are therefore not well-suited for clinical application as tissue scaffolds; however, it is possible to prepare bioerodible or biodegradable CP-based scaffolds.

The Schmidt group reported fully biodegradable conducting polyester-based scaffolds that are suitable for the attachment and proliferation of human neuroblastoma cells in vitro, and
moreover, non-immunogenic in vivo in rats (albeit in the undoped state) [26••]. It is also possible to prepare biodegradable CP-based scaffolds by grafting water soluble conducting oligomers to the surface of a biodegradable scaffold. Several groups (notably those of Albertsson and Wei) have grafted conducting oligomers of aniline (most commonly an aniline pentamer) to the surfaces of a variety of biodegradable polymers of natural and synthetic origins [27, 28, 29 and 30]. These systems tend to show low levels of cytotoxicity in vitro, although studies have clearly demonstrated that the aniline oligomers released upon biodegradation are toxic [30 and 31]. Interestingly, keratinocyte cells were shown to attach and proliferate on conductive scaffolds composed of oligoaniline-modified polycaprolactone [28], the electrical stimulation of PC12 cells attached to oligoaniline-modified polylactide films enhanced neurite extension in vitro (see Figure 3a1–a3) [31], and the electrical stimulation of preosteoblastic MC3T3-E1 cells attached to oligoaniline-modified poly(ester amide) copolymer films increased levels of intracellular free Ca\(^{2+}\) ions and alkaline phosphatase activity in vitro, which are early markers of osteogenic differentiation [30]. An elegant alternative was recently described by the Langer group, who reported the fabrication of scaffolds composed of naturally derived melanins (a class of electrically conducting biopolymers), and demonstrated that they were suitable for the attachment and proliferation of Schwann cells and PC12 cells in vitro. Interestingly, melanin films implanted in rats were slowly bioresorbable (>2 months) and the authors hypothesized that the fragility of the films led to their fracture after implantation, followed by their uptake by macrophages and giant cells [32].
The first bioerodible CP-based scaffolds were also reported by the Langer group, composed of a sparingly water soluble self-doped CP, poly(pyrrole-4-butryic acid). The scaffolds were shown to erode via slow dissolution of the polymer over a period of weeks at physiological pH values, and to be suitable for the attachment and proliferation of human mesenchymal progenitor cells in vitro [33]. The Wallace group subsequently reported erodible multilayer films composed of a self-doped polyanionic polythiophene and polycationic polyethyleneimine. The films were shown to erode over a period of 3 months and to be suitable for the attachment and proliferation of L929 and C2C12 cells in vitro [34].

CP-based tissue scaffolds with biomimetic mechanical properties
Biological tissues have characteristic mechanical properties, and cellular behavior is known to be influenced by mechanical stimuli through a variety of mechanisms broadly classed as mechanotransduction [35]. Mismatch between the mechanical properties of a tissue scaffold and the tissue in which it is implanted may lead to inflammation of the surrounding tissue, followed by the encapsulation of the implanted scaffold within an avascular network of fibrous tissue [36]. Hence, the fabrication of CP-based materials with biomimetic mechanical properties is of great interest.

Materials composed of CPs alone tend to be relatively inelastic because the polymers have limited conformational freedom in 3D, consequently, films prepared via electropolymerization rip easily. This represents a significant problem as the handling properties of biomedical products are of key importance to their successful translation from the laboratory to the clinic.

Flexible CP-based tissue scaffolds are particularly interesting for muscle (e.g. cardiac) tissue engineering. In previous studies, flexible conductive materials were created by dispersing a sufficient quantity of conductive filler (e.g. CP nanoparticles) within an elastomeric matrix, such as polycaprolactone [37] or polyurethane [38], upon which C2C12 myoblasts were shown to adhere, proliferate and differentiate into myotubes in vitro. Flexible CP-based tissue scaffolds can also be prepared from multiblock copolymers composed of alternating blocks of conducting and elastomeric blocks, such as polypyrrole and polycaprolactone, upon which PC12 cells have been shown to adhere and proliferate, and electrical stimulation was observed to enhance neurite extension in vitro [39].

Electrically conductive hydrogels [5 and 40] are particularly attractive as tissue engineering scaffolds because of their high water content, porosity, and mechanical properties analogous to soft tissues (typically ranging from sub-kPa to hundreds of kPa). Notable examples of electroconductive hydrogels come from the groups of Guiseppi-Elie, Martin, Poole-Warren, Wallace and Yaszemski. Conducting hydrogels composed of polypyrrole and photocrosslinked oligo(polyethylene glycol) fumarate were demonstrated to be suitable for PC12 cells to adhere and extend neurites into the scaffold in vitro [41], and biodegradable conducting hydrogels formed via crosslinking poly(3-thiophene acetic acid) with carbonyldimidazole, were shown to be suitable for the adhesion and proliferation of C2C12 myoblast cells in vitro (see Figure 3b1–b3) [42].

CP-based tissue scaffolds with biomimetic topological properties

Natural tissues are 3-dimensional (3D) composite materials with characteristic topological properties that are essential for their function [43]. Anisotropic features are commonly observed in functional tissues (including cardiac, ligament, musculoskeletal, nervous and vascular tissues), often in the form of anisotropically distributed components of the extracellular matrix, which influences the alignment, morphology and behavior of the resident cells. The development of tissue scaffolds that mimic such intricately structured natural tissues has been the focus of significant interest in recent years, and a number of CP-based tissue scaffolds with biomimetic topological properties (e.g. aligned nanofibers) have been investigated.
Electrospinning is a popular method of preparing nanofibrous tissue scaffolds with a tunable degree of fiber alignment. Electrospinning CP-based composites is a simple way to prepare electrically conductive nanofibrous tissue scaffolds. For example, nanofibers composed of polyaniline and gelatin were shown to support the adhesion and proliferation of cardiomyocytes in vitro [44]. The incorporation of polycaprolactone into analogously spun fibers was observed to moderately improve their mechanical properties, and electrical stimulation of the scaffolds was demonstrated to improve the proliferation and neurite outgrowth from nerve stem cells cultured upon them in vitro [45]. Likewise, nanofibers composed of polyaniline and either poly(l-lactide-co-ε-caprolactone) [46] or polycaprolactone [47] were shown to be suitable for the attachment and proliferation of fibroblasts and myoblasts in vitro.

Chemically modifying the surface of non-conductive fibers with CPs is another simple method to generate electrically conducting nanofibrous tissue scaffolds. For example: it is possible to coat the surface of non-conductive polymer (e.g. poly(lactic acid-co-glycolic acid)) nanofibers deposited on the surface of an electrode with CPs (e.g. PEDOT) via electropolymerization [48]; or via vapor phase polymerization of CPs from fibers containing an initiator (e.g. iron(III) p-toluenesulfonate) when exposed to a suitable monomer (e.g. pyrrole) [49], or indeed, the bulk polymerization of CPs (e.g. polypyrrole) in solution in the presence of nanofibers [50]. Interestingly, electrical stimulation of PC12 cells cultured on such scaffolds was observed to enhance neurite outgrowth from the cells in vitro (see Figure 3c1–c7) [50], and moreover that immobilization of nerve growth factor on the surface of conducting nanofibers further improves neurite outgrowth [51].

It is generally accepted that printing in 2- and 3-dimensions will play an increasingly important role in the future development of CP-based tissue scaffolds with biomimetic topological properties [52]. Excitingly, it has already proven possible to print CP-based composites incorporating biopolymers (e.g. chitosan, hyaluronic acid or collagen) via extrusion or ink-jet printing [2, 52, 53 and 54], and moreover, to apply a submicrometer level pattern to them via a low-energy infrared laser [55]. Interestingly, printed composites of polypyrrole and collagen were shown to be suitable for the attachment and proliferation of PC12 cells, and electrical stimulation of the cells cultured on micrometer-scale lines was observed to enhance neurite outgrowth and their orientation (preferentially along the long axis of the printed lines) in vitro [56].

CP-based tissue scaffolds in vivo

CP-based materials are attractive candidates as scaffolds for bone, muscle and nerve tissues which are responsive to electrical stimuli (Table 1). A factor of key importance for the clinical translation of CP-based tissue scaffolds is their immunogenicity, which is ideally very low. Histological analyses of tissue in the vicinity of polypyrrole-based tissue scaffolds implanted subcutaneously or intramuscularly in rats, reveal immune cell infiltration compared to FDA-approved poly(lactic acid-co-glycolic acid) [57], or FDA-approved poly(d,l-lactide-co-glycolide) [58]. Likewise, there was no significant inflammatory response to polypyrrole-based tissue scaffolds implanted around the coronary artery of rats after 5 weeks [59], or to polypyrrole-based sciatic nerve guidance channels implanted in rats after 8 weeks [39], or indeed, polypyrrole-coated electrodes in rat brains after 3 or 6 weeks [60]. Implantation of poly(3,4-ethylenedioxythiophene) coated electrodes in rats brains elicited a modest global tissue reaction of approximately the same magnitude as for silicon probes, and is therefore potentially ascribable to mechanical mismatch between the hard electrode and the
soft brain tissue [61]; whereas, poly(3,4-ethylenedioxythiophene)-based materials implanted subcutaneously elicited no observable immune response after 1 week [62]. Similarly, histological analyses of tissue in the vicinity of polyaniline-based tissue scaffolds implanted subcutaneously in rats, revealed very low levels of inflammation after 4 [63], or 50 weeks [64]. Although we acknowledge that differences in individual studies (i.e. the composition/structure of the tissue scaffolds, the animal/tissue models, and the methods used to evaluate immune responses) make it difficult to directly compare the results of each study, it appears that CP-based biomaterials exhibit relatively low levels of immunogenicity in comparison with other FDA-approved biomaterials, and are therefore promising candidates for clinical translation in the future.

Table 1.

A selection of promising systems for tissue regeneration

<table>
<thead>
<tr>
<th>Clinical application area</th>
<th>System</th>
<th>Key benefits</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Bone tissue scaffolds | Poly(ester amide) copolymers displaying tetraaniline oligomers | • Fully biodegradable
• Increased levels of Ca\(^{2+}\)
• Upregulation of ALP activity | [30] |
| | Composites incorporating hydroxyapatite and oligoanilines | • Fully biodegradable
• Biomimetic chemical composition | [70] |
| Muscle tissue scaffolds | Poly(thiophene-3-acetic acid)-based hydrogels | • Fully bioerodible
• Biomimetic mechanical properties | [42‡] |
| | Polypyrrole-based actuators | • Mechanical stimulation of cells | [65] |
| Nerve tissue scaffolds | Electrospun composites of polyaniline, polycaprolactone, and gelatin | • Alignment of fibers acts as a topological guidance cue | [45] |
| | Printed composites of polypyrrole and collagen | • Printing well-defined μm scale topological guidance cues | [56] |

Conclusions

In this review we have chosen to focus on CP-based tissue scaffolds with biomimetic chemical, mechanical and topographical properties, highlighting recent progress toward the fabrication of clinically relevant tissue scaffolds. The results of both *in vitro* and *in vivo* studies suggest that CP-based tissue scaffolds are promising candidates for the electrical stimulation of the recovery of bone, muscle and nerve tissues in the clinic.
We believe that there is great potential for the development of more complex CP-based tissue scaffolds, and we expect to see examples of CP-based drug delivery devices [9] integrated in tissue scaffolds, and moreover, muscle tissue scaffolds incorporating CP-based actuators [65]. We also foresee the development of CP-based tissue scaffolds with electrically switchable bioactivity that make it possible to achieve temporal control over cellular behavior [66, 67, 68 and 69].

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

References

1. ••
 R.H. Funk, T. Monsees, N. Ozkucur
 Electromagnetic effects — from cell biology to medicine
 Prog Histochem Cytochem, 43 (2009), pp. 177–264
 An important and comprehensive review detailing the effects of electromagnetic fields on cells.

2. •
 G.G. Wallace, M.J. Higgins, S.E. Moulton, C. Wang
 Nanobionics: the impact of nanotechnology on implantable medical bionic devices
 View Record in Scopus
 An excellent recent review exploring the use of both inorganic and organic electronics in biomedical devices.

3. •
 A.-D. Bendrea, L. Cianga, I. Cianga
 Review paper: progress in the field of conducting polymers for tissue engineering applications
 J Biomater Appl, 26 (2011), pp. 3–84
 Review paper: progress in the field of conducting polymers for tissue engineering applications
A recent comprehensive review describing the use of conducting polymer-based materials as tissue scaffolds.

N.K. Guimard, N. Gomez, C.E. Schmidt
Conducting polymers in biomedical engineering

A highly cited review describing the use of conducting polymer-based materials for a variety of biomedical devices.

A. Guiseppi-Elie
Electroconductive hydrogels: synthesis, characterization and biomedical applications
Biomaterials, 31 (2010), pp. 2701–2716

A review describing the use of conducting hydrogels for a variety of biomedical applications.

J. Heinze, B.A. Frontana-Uribe, S. Ludwigs
Electrochemistry of conducting polymers — persistent models and new concepts

N. Toshima, S. Hara
Direct synthesis of conducting polymers from simple monomers

Biocompatibility implications of polypyrrole synthesis techniques
Biomed Mater, 3 (2008), p. 034124
D. Svirskis, J. Travas-Sejdic, A. Rodgers, S. Garg
Electrochemically controlled drug delivery based on intrinsically conducting polymers
J Control Release, 146 (2010), pp. 6–15
A recent comprehensive review describing the use of conducting polymer-based materials as drug delivery devices.

Z. Ma, Z. Mao, C. Gao
Surface modification and property analysis of biomedical polymers used for tissue engineering

K.G. Sreejalekshmi, P.D. Nair
Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications — altering chemistry for enhanced biological response

Y. Xiao, C.M. Li, S. Wang, J. Shi, C.P. Ooi
Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a biofunctional film with high bio- and electrochemical activity

R.A. Green, N.H. Lovell, L.A. Poole-Warren
Cell attachment functionality of bioactive conducting polymers for neural interfaces
Biomaterials, 30 (2009), pp. 3637–3644

Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films
J Neurosci Methods, 112 (2001), pp. 65–73
15. J.Y. Lee, C.E. Schmidt
 Pyrrole–hyaluronic acid conjugates for decreasing cell binding to metals and conducting polymers
 Acta Biomater, 6 (2010), pp. 4396–4404

16. A. Peramo, M.G. Urbanchek, S.A. Spanninga, L.K. Povlich, P. Cederna, D.C. Martin
 In situ polymerization of a conductive polymer in acellular muscle tissue constructs

17••. S.J. Wilks, A.J. Woolley, L. Ouyang, D.C. Martin, K.J. Otto
 In vivo polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in rodent cerebral cortex
 Important paper demonstrating the generation of hydrogels via electropolymerization in vivo.

 Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion
 Biomacromolecules, 7 (2006), pp. 1692–1695

19. N. Gomez, S. Chen, C.E. Schmidt
 Polarization of hippocampal neurons with competitive surface stimuli: contact guidance cues are preferred over chemical ligands

20. X. Liu, Z. Yue, M.J. Higgins, G.G. Wallace
 Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing
 Biomaterials, 32 (2011), pp. 7309–7317
 Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode
 Acta Biomater, 8 (2012), pp. 2538–2548

22. A.B. Sanghvi, K.P. Miller, A.M. Belcher, C.E. Schmidt
 Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer
 Nat Mater, 4 (2005), pp. 496–502

23. J. Nickels, C.E. Schmidt
 Surface modification of the conducting polymer, polypyrrole, via affinity peptide

24. M.J. Knauf, D.P. Bell, P. Hirtzer, Z.P. Luo, J.D. Young, N.V. Katre
 Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers

 Biomaterials Science: An Introduction to Materials in Medicine

 Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications

26. Important paper describing the first fully biodegradable conducting polymer specifically designed for biomedical applications.
27. B. Guo, A. Finne-Wistrand, A.C. Albertsson
 Facile synthesis of degradable and electrically conductive polysaccharide hydrogels
 Biomacromolecules, 12 (2011), pp. 2601–2609

28. B. Guo, Y. Sun, A. Finne-Wistrand, K. Mustafa, A.C. Albertsson
 Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration
 Acta Biomater, 8 (2012), pp. 144–153

 Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells
 Biomacromolecules, 9 (2008), pp. 2637–2644

 Synthesis of biodegradable and electroactive tetraaniline grafted poly(ester amide) copolymers for bone tissue engineering

31. L. Huang, X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, X. Jing
 Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications
 Biomacromolecules, 9 (2008), pp. 850–858

32. C.J. Bettinger, J.P. Bruggeman, A. Misra, J.T. Borenstein, R. Langer
 Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering
 Biomaterials, 30 (2009), pp. 3050–3057
- Important paper describing biodegradable conducting biopolymer-based materials for nerve tissue engineering.

 - Erodible conducting polymers for potential biomedical applications

- Important paper describing the first fully bioerodible conducting polymer-based materials specifically designed for biomedical applications.

 - An erodible polythiophene-based composite for biomedical applications

- V. Vogel, M. Sheetz
 - Local force and geometry sensing regulate cell functions

 - Conducting polymers for neural interfaces: challenges in developing an effective long-term implant
 - Biomaterials, 29 (2008), pp. 3393–3399

- A review addressing the challenges that need to be addressed by scientists designing conducting polymer-based neural electrodes.

- Y.D. Kim, J.H. Kim
 - Synthesis of polypyrrole–polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions
 A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering

 Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation

40. G. Justin, A. Guiseppi-Elie
 Electroconductive blends of poly(HEMA-co-PEGMA-co-HMMA-co-SPMA) and poly(Py-co-PyBA): in vitro biocompatibility

 Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration
 Biomacromolecules, 11 (2010), pp. 2845–2853

42. D. Mawad, E. Stewart, D.L. Officer, T. Romeo, P. Wagner, K. Wagner, G.G. Wallace
 A single component conducting polymer hydrogel as a scaffold for tissue engineering

42• An elegant paper focused on biodegradable polythiophene-based hydrogels with biomimetic mechanical properties for muscle and nerve tissue engineering.
43. A. Shekaran, A.J. Garcia
 - Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering

44. M. Li, Y. Guo, Y. Wei, A.G. MacDiarmid, P.I. Lelkes
 - Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications
 - Biomaterials, 27 (2006), pp. 2705–2715

45. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, S. Ramakrishna
 - Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering

46. I. Jun, S. Jeong, H. Shin
 - The stimulation of myoblast differentiation by electrically conductive sub-micron fibers
 - Biomaterials, 30 (2009), pp. 2038–2047

47. S.H. Ku, S.H. Lee, C.B. Park
 - Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation
 - Biomaterials, 33 (2012), pp. 6098–6104

 - Conducting-polymer nanotubes for controlled drug release
Y. Liu, X. Liu, J. Chen, K.J. Gilmore, G.G. Wallace
3D bio-nanofibrous PPy/SIBS mats as platforms for cell culturing

J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt
Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications
Biomaterials, 30 (2009), pp. 4325–4335

A paper focused on polypyrrole-coated nanofibers with biomimetic topological properties for neural tissue engineering.

J.Y. Lee, C.A. Bashur, C.A. Milroy, L. Forciniti, A.S. Goldstein, C.E. Schmidt
Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications
IEEE Trans Nanobiosci, 11 (2012), pp. 15–21

Printing conducting polymers
Analyst, 135 (2010), pp. 2779–2789

B. Weng, X. Liu, M.J. Higgins, R. Shepherd, G. Wallace
Fabrication and characterization of cytocompatible polypyrrole films inkjet printed from nanoformulations
Small, 7 (2011), pp. 3434–3438

C.A. Mire, A. Agrawal, G.G. Wallace, P. Calvert, M. In het Panhuis
Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials

An interesting paper focused on printing conducting polymer-based tissue scaffolds for tissue engineering.

60.
 Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics
 Biomaterials, 26 (2005), pp. 3511–3519

- K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, D.R. Kipke
 Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film
 J Neural Eng, 3 (2006), pp. 59–70

 Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility
 Langmuir, 24 (2008), pp. 8071–8077

 Tailoring biomaterial compatibility: in vivo tissue response versus in vitro cell behavior

 In-vivo response to polyaniline
 Synth Met, 102 (1999), pp. 1313–1314

- K. Svennersten, M. Berggren, A. Richter-Dahlfors, E.W. Jager
 Mechanical stimulation of epithelial cells using polypyrrole microactuators
66. I.Y. Wong, M.J. Footer, N.A. Melosh
 Dynamic control of biomolecular activity using electrical interfaces

 Electrochemical control of growth factor presentation to steer neural stem cell differentiation

 Electrochemical modulation of epithelia formation using conducting polymers
 Biomaterials, 30 (2009), pp. 6257–6264

69. M.J. Higgins, P.J. Molino, Z. Yue, G.G. Wallace
 Organic conducting polymer–protein interactions

70. Y. Liu, H. Cui, X. Zhuang, P. Zhang, Y. Cui, X. Wang, Y. Wei, X. Chen
 Nano-hydroxyapatite surfaces grafted with electroactive aniline tetramers for bone-tissue engineering