Small animal image-guided radiotherapy


Published in:
British Journal of Radiology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 The Authors. Published by the British Institute of Radiology. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Small Animal Image-Guided Radiotherapy

Kevin M. Prise and Frank Verhaegen

In this special issue of the BJR, we focus on the developments in small animal image-guided radiotherapy (IGRT). Translation of laboratory based in vivo radiation research into the clinic has recently gone through rapid evolution with the development of sophisticated small animal irradiation platforms. These allow the replication of key aspects of advanced radiotherapy plans, where dose is modulated in space and time, and to target, with unprecedented accuracy, tumour and normal tissue models in vivo. These technologies and their application is a step change from conventional approaches involving the delivery of uniform beams with crude shielding approaches alongside the availability of realistic tumour models which more precisely mimic the tumour environment. This special issue brings together a series of reviews, papers and commentaries from selected presenters at the recent 3rd Symposium on Small Animal Precision Image-guided Radiotherapy which took place from the 21-23rd March 2016 in Ghent, Belgium organized by Christian Vanhove and Frank Verhaegen. This Symposium brought together leading specialists and vendors in the fields of radiobiology, radiotherapy, translational research, radiation physics, precision engineering, imaging, and dose calculation. It included sessions on tumour/normal tissue models, research technology, precision radiotherapy, imaging & novel methods, dosimetry & technology and translational studies.

In an introductory review [DOI: http://dx.doi.org/10.1259/bjr.20160474 Hill] the keynote speaker, Dr Dick Hill, describes the changing paradigm of tumour response to irradiation is outlined including the role of cancer stem cells, radiation damage to the vasculature and the potential for radiation to enhance immune activity against tumour cells. This evolving understanding of tumour response needs to be validated with new models and approaches such as small animal IGRT. It is also important to be aware of the differences between human and mouse models and develop possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation [DOI: http://dx.doi.org/10.1259/bjr.20160441 Koontz et al.,]. There is also an important interface between the use of small animal irradiation platforms and clinical systems utilized to deliver advanced radiotherapies to canine models for veterinary purposes [DOI: http://dx.doi.org/10.1259/bjr.20160617 ].

The challenge of improving accuracy of targeting by including motion management in small animal IGRT studies is covered in a commentary with a focus on respiratory-gated imaging and beam delivery approaches[DOI: http://dx.doi.org/10.1259/bjr.20160482 Hill and Vojnovic]. In another study the use of a 4D mathematical MOBY phantom aimed to perform a quantitative analysis of the impact of respiratory motion on a mouse lung tumor irradiation with small fields is described [DOI not online yet; van der Heyden et al.,]. Dynamic phantoms can also be utilized for both respiratory monitoring and μPET/CT scans. [Under re-review Frelin-Labalme and Beaudouin]

Alongside accuracy, dosimetry is challenging in this new field. Amongst existing point dosimeters, very few are dedicated to both medium-energy X-rays and millimeter beams but scintillating fibre dosimeters are potentially promising tools for real-time dose measurements in the small animal exposure fields. [DOI: http://dx.doi.org/10.1259/bjr.20160454 Derof et al.,]

In the clinic dual energy CT (DECT) is being utilized for patient imaging and the first study that investigates quantitative DECT imaging for small animal irradiators with an integrated CBCT system is reported [DOI not online yet; Schyns et al], showing clear benefits for tissue identification. Alongside CT approaches, MRI-based RT planning of murine tumours is feasible using small animal IGRT [DOI: http://dx.doi.org/10.1259/bjr.20160427 Corroyer-Dulmont et al.,].
Small animal IGRT is increasingly being used for hypothesis testing around non-uniform exposures, such as spatially fractionated radiotherapy (GRID) exposures some of which are being predicted to be more effective than uniform delivery of the same physical dose [DOI: http://dx.doi.org/10.1259/bjr.20160485 Butterworth et al.]. For application of advanced delivery some groups are also working on dose calculation algorithms for kV beams as alternatives to full Monte Carlo dose-calculation. [DOA: http://dx.doi.org/10.1259/bjr.20160426]

The future for the application of small animal image-guided radiotherapy holds significant potential and we hope this selection of articles will give BJR readers a taste of the challenges and opportunities for small animal image-guided radiotherapy to revolutionise pre-clinical translational radiation research.