Packing polymorphism of dapivirine and its impact on the performance of a dapivirine-releasing silicone elastomer vaginal ring

Published in:
Journal of Pharmaceutical Sciences

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Packing polymorphism of dapivirine and its impact on the performance of a dapivirine-releasing silicone elastomer vaginal ring

Clare F. McCoy¹, Diarmaid J. Murphy¹, Peter Boyd¹, Tiffany Derrick², Patrick Spence², Brid Devlin², R. Karl Malcolm¹*

¹School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; ²International Partnership for Microbicides, Silver Spring, MD 20910, USA

*Corresponding author. Tel: +44 (0)28 9097 2319; E-mail: k.malcolm@qub.ac.uk

Short title: Impact of polymorphism on performance of dapivirine vaginal ring

Keywords: HIV microbicide; Silicone elastomer vaginal ring; Dapivirine; Formulation development; Polymorphism

N.B. Red text in this document highlights changes made to the manuscript since the original submission.
Abstract

A silicone elastomer vaginal ring device providing sustained release over 28 days of the antiretroviral microbicide dapivirine has recently completed Phase III clinical testing and showed moderate protection against HIV acquisition. Here, for the first time, and in support of the product licensure program, we report the impact of dapivirine packing polymorphism on the in vitro performance of the 25 mg dapivirine ring product. Thermal, particle size, powder x-ray diffraction and thermodynamic solubility analyses of dapivirine polymorphic forms I and IV, both of which are persistent at room temperature and with form I being the thermodynamically stable form, were conducted for micronized and non-micronized materials. Matrix-type silicone elastomer vaginal rings were manufactured and the impact of dapivirine polymorphism on key in vitro parameters (compression and tensile behaviour; content assay; in vitro release; residual content assay) was investigated. The data demonstrate that dapivirine packing polymorphism has no significant impact on in vitro performance of the 25 mg dapivirine vaginal ring.
1. Introduction

Many solid drug substances exist in different crystalline forms – known as packing polymorphs – that differ in their physical properties.¹ In some cases, these different crystalline forms of the drug substance can significantly affect the pharmacological performance of the drug product. One of the most widely reported examples is the influence of polymorphism on the oral bioavailability of the antiretroviral drug ritonavir.² ³ Ritonavir exists in two major crystalline forms – forms I and II. In 1998, the unexpected appearance of the more stable (and therefore less soluble) form II during routine testing of the drug led to compromised oral bioavailability of the drug and ultimately removal of the oral capsule formulation from the market. Since this incident, the U.S. Food and Drug Administration (FDA) has focused increased attention on the potential impact of drug polymorphism on the performance of drug products and the measures taken to ensure that physical properties to not change during shelf life. It is therefore imperative that polymorphism is investigated during the drug product development process. Both the FDA and the International Council for Harmonisation (ICH) have published regulatory documents addressing pharmaceutical polymorphism.⁴⁻⁶

Dapivirine (DPV) is an experimental non-nucleoside reverse transcriptase inhibitor (NNRTI) that is currently being developed as a vaginal microbicide for prevention of sexual transmission of human immunodeficiency virus type 1 (HIV-1).⁷⁻¹² A wide range of formulation strategies have been reported for vaginal administration of DPV,¹³⁻¹⁸ the most advanced and the most promising of which are silicone elastomer vaginal rings.¹⁹⁻³³ Two Phase III efficacy studies – The Ring Study (IPM027) and APSIRE (MTN-020) –
involving more than 4,500 women volunteers across southern and eastern Africa have recently been completed, designed to support licensure of a monthly matrix-type silicone elastomer vaginal ring containing 25 mg micronized DPV intended for 28-day continuous use (DPV Ring-004). The studies showed approximately 30% reduced incidence of HIV infection in women compared to a placebo, the first time two studies have confirmed statistically significant efficacy for a HIV microbicide. The lower than anticipated protection rates were attributed to poor user adherence, an ongoing problem that has adversely affected clinical testing of HIV microbicides. Post-hoc analyses of the DPV ring clinical data in The Ring Study and ASPIRE have revealed that rates of protection are very significantly increased (>60%) in sub-groups demonstrating increased adherence.

Three crystalline polymorphic forms of DPV have been identified – forms I, II and IV (Figure 1). A dichloromethane hemi-solvate stable up to 130 °C was originally identified as polymorphic form III. However, dichloromethane is no longer used in the DPV manufacturing process. Therefore, further work with this form was no longer relevant and was not pursued. The current method for chemical synthesis of DPV reproducibly produces the drug in packing polymorphic form I, which is the most stable form at room temperature. To date, form I has been confirmed for all manufactured batches of micronized DPV used in clinical development.

DPV form I undergoes a solid-solid transition to form II at ~100 °C (Figure 2; can range from 96.9 to 110.3 °C), as evidenced by a small endothermic transition in the differential scanning calorimetry (DSC) trace. The variation in solid-solid transition temperature
between form I and form II has been observed for different lots of form I; however, it could not be attributed to a single phenomenon. Upon further heating, DPV form II undergoes crystalline melting at ~220 °C (ranges from 217.9 to 226.9 °C), and then, upon cooling below 100 °C, form II instantaneously reverts to form I. Form I and form II are therefore related enantiotropically with a transition temperature close to 100 °C. The same polymorphic interconversion and crystalline melt transitions are also observed when DPV is incorporated into the silicone elastomer matrix of the Dapivirine Ring-004, indicating that there are no significant drug-polymer interactions.

During development, DPV has also been observed in crystalline polymorphic form IV, which is stable at room temperature and forms when dapivirine is recrystallized from methanol at higher temperatures (Figure 1). Upon heating, it exhibits two endothermic transitions at 212 and 221 °C corresponding to transformation of form IV to form II and crystalline melting of form II, respectively (Figure 1).

In order to meet the requirements of the regulatory agencies, it is important to assess how polymorphism affects drug product performance. Surprisingly, this issue seems not to have been reported – at least in the scientific literature – for other vaginal ring products, despite an explicit understanding that different polymorphic forms of a drug can exhibit significantly different solubilities in the polymeric matrix and potentially result in different drug permeation rates. Since forms I and IV are the only DPV polymorphs stable at room temperature (which is the desired storage temperature of the vaginal ring product), this
study was conducted to evaluate the thermal properties and \textit{in vitro} performance of vaginal rings containing 25mg DPV as either the form I or the form IV polymorph.

2. Materials and methods

2.1. Materials

Non-micronized DPV form I and form IV and micronized form I were supplied by S.A. Ajinomoto OmniChem n.v. (Wetteren, Belgium). DPV form IV was micronized by JetPharma (Balerna, Switzerland). MED-4870 addition-cure silicone elastomer (Parts A and B) and MED-360 silicone oil were purchased from NuSil Technology (Carpinteria, CA, USA). Potassium dihydrogen orthophosphate, potassium hydroxide and urea (AnalaR, analytical reagent grade) were purchased from VWR International Ltd. (Dublin, Ireland). Norethindrone was purchased from LGM Pharma, (Nashville, TN, USA). HPLC-grade 2-propanol (IPA) and acetonitrile, phosphoric acid (85% w/w in water), Tween 80, sodium chloride, calcium hydroxide, bovine serum albumin, lactic acid, acetic acid and glucose were all purchased from Sigma-Aldrich (Gillingham, UK). A Millipore Direct-Q 3 UV Ultrapure Water System (Watford, UK) was used to obtain HPLC-grade water. Simulated vaginal fluid + 0.2% (w/v) Tween 80 (SVF+Tween) release media was prepared according to a previously described method followed by addition of the Tween 80 component.43

2.2 Thermal analysis

The thermal stability of DPV forms I and IV were analysed by thermogravimetric analysis (TGA) using a TA Instruments Q50TM Thermogravimetric Analyser and a TA Instruments Differential Scanning Calorimeter Q20TM (TA Instruments, UK). For these experiments,
5–10 mg of sample was heated from 25 to 300 °C at 10 °C/min in an open aluminium pan under a nitrogen atmosphere. For differential scanning calorimetry (DSC) experiments, 5–7 mg of sample (either pure polymorph or 10% w/w DPV-loaded silicone elastomer) underwent heat-cool-heat cycles between 20 and 235 °C using a heating rate of 10 °C per min. The temperature range was selected to encompass the molding temperatures commonly used to fabricate DPV matrix-type rings via injection molding processes (160–180 °C). For each sample, onset temperature (°C), peak temperature (°C) and enthalpy (ΔH, J/g) values were recorded for each thermal transition observed.

2.3. Particle size analysis

The particle size distributions (PSDs) of micronized and non-micronized forms of both polymorphs were characterised using a Mastersizer 3000 (Malvern, UK) instrument fitted with an AERO S accessory. Approximately 1 g of material was weighed and added to the Venturi. Using an air pressure of 2 Bar(g), the hopper gap was sequentially raised in 0.5 mm steps from 0.5 mm and the feed rate increased to between 30 and 60% to provide a reasonable flow of powder into the instrument. The target obscuration range was 1–4%. A minimum of six measurements of each sample were performed to give an estimate of the variability about the measurement.

2.4. Powder X-ray diffraction

Powder X-ray diffraction (PXRD) patterns of non-micronized and micronized DPV form I and IV powders were obtained using a X’PERT Pro MPR X-ray diffractometer (PANalytical Ltd., UK). Samples were pressed onto a zero background holder so that a
smooth, flat surface was achieved and mounted in a rotating sample holder. Samples were exposed to CuKα radiation (40 kV, 40 mA), scanned in continuous mode across the 2θ angular range of 3.0–90.0° with a step size of 0.016°.

2.5. Microscopy analysis

Digital microscopy was performed using a Keyence VHX-700F series Digital Microscope (Keyence Limited, UK) fitted with an RZ 20–200x wide-range zoom lens. A small sample was dusted onto a section of adhesive tape to provide a thin layer of powder for particle morphology (shape and size) evaluation.

2.6. Ring manufacture

Matrix-type vaginal rings containing 25 mg micronized and non-micronized DPV form I or form IV dispersed in MED-4870 silicone elastomer were manufactured using a Babyplast™ 6/10P injection molding machine (Chronoplast, Spain). DPV MED-4870 Part A premixes (100 g) were prepared by accurately weighing appropriate quantities of MED-4870 (97.5% w/w), MED-360 silicone oil (2.1875% w/w) and DPV (0.3125% w/w) into a sealed polypropylene container before mixing at 3000 rpm for 3 min in a DAC-150 FVZ-K Speedmixer™ (Hauschild, Germany). Part B premixes were manufactured using the same protocol. Four 100 g portions of premix A and premix B were prepared (800 g in total) for each DPV polymorph formulation. Premixes were stored at 4 °C until use. Immediately prior to injection molding, ~100 g portions each of Part A premix and Part B premix were sequentially added to a large plastic Speedmixer™ container until ~400 g in total had been transferred. The material was handmixed for 30 s, speedmixed at 2350 rpm
for 30 s and further speedmixed for 60 s at 1800 rpm. The silicone elastomer mix was transferred to a Babyplast™ cartridge which was then fitted into the Babyplast™ injection molding machine. Rings were manufactured at 185 °C for 60 s.

2.7. Ring appearance and weight

Ring weight, colour, external diameter (ExD) and cross-sectional diameter (CSD) were recorded in order to assess the consistency of ring physical parameters. Ten rings from each DPV polymorph formulation were randomly selected and evaluated. CSD and ExD were measured using digital callipers (RS Components, UK). Care was taken not to compress the ring during measurement.

2.8. Mechanical testing

In the absence of a ratified international standard on the mechanical testing of vaginal rings, the Food and Drug Administration's (FDA) Center for Drug Evaluation and Research (CDER) have published nonbinding recommendations to industry in respect of tests for vaginal microbicide drug product specification, which include the mechanical testing of ring devices. Here, as part of ongoing efforts to establish practical test methods, we have applied mechanical test methods to vaginal rings based on the minimum requirements and test methods used for reusable silicone rubber contraceptive diaphragms, as described in ISO-8009:2014.

Shore A Hardness testing, also known as durometer testing, was performed on five rings randomly selected from each DPV polymorph production run. Measurement was carried
out using a Sauter HBA 100-0 graduated dial durometer (Sauter, Switzerland) calibrated for Shore A hardness (arbitrary units). During testing the rings were placed on an unyielding, flat surface. With the durometer held in a vertical position, the instrument’s indentor was pressed on the uppermost surface of the ring in a constant movement without shocks until the presser foot was parallel to the ring surface. The maximum deflection on the dial (0–100), representing the Shore Hardness was recorded. Four individual measurements per ring were recorded.

Compression testing was performed using a TA.XTplus Texture Analyser (Stable Microsystems, UK). Rings previously selected for non-destructive durometer testing were placed in the appropriate holder and analysed in compression mode using a test speed of 2 mm/s and a target distance of 5.0 mm. Six compression cycles were performed, and the last five values for the maximum compressive force exerted by the texture analyser recorded. The first value is not recorded to allow the ring to stabilize in the holder during the first compression cycle.

Tensile strength testing was also performed using the TA.XTplus Texture Analyser. Rings were placed around upper and lower tensile grips and analysed in tension mode with a test speed of 10 mm/s and a target force of 5 kg. The pass/fail criterion for tensile strength testing was set at 5 kg i.e. if the ring withstood a force equivalent to 5 kg without rupture then it was deemed acceptable.

2.9. In vitro release testing
Twenty-four samples of each ring formulation were selected for *in vitro* release testing over a 30-day period – twelve rings for release into a 1:1 mixture of IPA+H₂O and twelve for release into SVF+Tween. Both media have been used routinely for *in vitro* release testing of silicone elastomer vaginal rings, and other vaginal formulations, containing highly lipophilic poorly water-soluble antiretroviral microbicides, including DPV.¹⁷,¹⁹,²⁰,²³,²⁵,²⁶,³¹,⁴⁵–⁴⁷. IPA/water is commonly used as a performance test to predict and monitor the consistency in manufacturing. SVF is intended to mimic the chemical composition of vaginal fluid, including pH and osmolarity matched to normal vaginal fluid.⁴³ However, solubility of DPV in SVF is impractically low (< 1 µg/mL),²²,⁴⁶ and, as a result, *in vitro* release from vaginal rings into this medium does not correlate with *in vivo* release (as measured by residual drug content following clinical use). By comparison, use of SVF + 0.2% w/v Tween 80 closely mimics *in vivo* release,²⁷,⁴⁸ and its use has been supported by regulatory authorities.

On Day 0, each ring was placed into a 250 mL glass, screw-top bottle containing 200 mL of either IPA+H₂O or SVF+Tween release medium and stored in a temperature-controlled orbital shaking incubator (37°C, 60 rpm, 25 mm orbital throw). The release medium was sampled and completely replaced (100 mL) daily, with the exception of weekends where 200 mL was added. Drug release was quantified by reverse-phase HPLC with UV detection (Section 2.11).

2.10. Content assay and residual content testing
Both the total DPV content of manufactured rings and the residual content of rings after *in vitro* release testing were assessed (n=6 per formulation per test). Rings were weighed and then cut in half along the length of the ring. The ring halves were immediately transferred into individually labelled 250 mL glass flasks containing 100 mL acetone. Flasks were sealed and placed in a temperature-controlled orbital shaking incubator (37 °C, 60 rpm, 25 mm orbital throw). After 24 h, the flasks were removed and allowed to cool to room temperature. A 1.00 mL aliquot of the acetone extraction solution was transferred to a 100 mL volumetric flask using a positive displacement pipette and diluted to volume with methanol. Samples were allowed to stand at ambient temperature for 1 h before final dilution to volume with methanol. Samples were transferred to HPLC vials and analysed against standard solutions of known DPV concentration.
2.11. Solubility determination

Thermodynamic solubility of DPV (form 1 and form IV, micronised and non-micronised) was measured using the shake-flask method at 37 °C in both SVF+0.2% w/w Tween and 1:1 v/v IPA/water mixture. For SVF/Tween measurement, ~5 mg DPV was added to a glass vial followed by 5.00 mL SVF/Tween; for IPA/water measurement, ~40 mg DPV was added to a glass vial followed by 5.00 mL IPA/water. The sealed vials were placed in an orbital shaking incubator for 72 hr. While still in the incubator but with shaking stopped, 1.00 mL and 100 µL volumes of the saturated SVF/Tween and IPA/water solutions, respectively, were sampled from the vials using suitable micropipettes and placed in new glass vials, taking care not to sample the settled excess solid drug layer at the bottom of each vial. SVF/Tween samples were subsequently diluted twofold for HPLC analysis, while IPA/water samples were diluted by a factor of 100. Drug concentrations were subsequently quantified by HPLC. In a similar fashion, the solubilities of both DPV form 1 and form IV (micronized only) were measured in aqueous media at different pH values – 0.1M HCl, 0.01M HCl, pH2 (KCl/HCl), pH4 (acetate buffer), pH6 (phosphate buffer), pH8 (phosphate buffer). For each solubility measurement, the residual solids were analyzed by PXRD to determine the extent of form conversion during the solubility analysis and to ensure the results reflect the true solubility of each form.

2.12. HPLC Analysis
Samples for DPV content analysis in rings were analysed on a Waters HPLC system (Waters Corporation, Dublin, Ireland) consisting of a 1525 Binary HPLC pump with an in-line degasser AF unit, 1500 column heater, 717 Plus Autosampler and a 2487 dual wavelength absorbance detector. 10 µL of each content sample was injected onto a Kromasil C18 HPLC column (150 mm x 4.6 mm, 5 µm particle size). Column temperature was maintained at 25 °C and isocratic elution was performed using a mobile phase of 75% HPLC-grade methanol and 25% water with a flow rate of 0.75 mL/min and a run time of 15 min. DPV was detected at 257 nm after approximately 10.8 min.

In vitro release samples (25 µL) were injected onto a Thermo Scientific BDS Hypersil™ C18 HPLC column (150 mm x 4.6 mm, 3 µm particle size) fitted with a guard column. The column was held at 45 °C and isocratic elution was performed using a mobile phase of 45% HPLC-grade acetonitrile and 55% phosphate buffer (pH 3.0; 7.7 mM) with a run time of 8 min. DPV was detected at 240 nm after 6.1 min.
2.12. Statistical analyses

Where appropriate, data sets were analysed using a one-way ANOVA followed by post-hoc analysis using the Tukey-Kramer multiple comparisons test. Analysis was conducted using GraphPad Prism software and significance was noted for a P value of less than 0.05:

* = significant (0.01 < P < 0.05), ** = very significant (0.001 < P < 0.01), *** = extremely significant (P < 0.001), ns = not significant (P > 0.05).

The similarity factor (f_2) – a logarithmic reciprocal square root transformation of one plus the mean squared (the average sum of squares) differences of drug percent dissolved between the test and the reference products – was calculated for ring dissolution data using Equation 1.49,50 The similarity factor fits the result between 0 and 100. It is 100 when the test and reference profiles are identical and tends to 0 as the dissimilarity increases. FDA and EMEA recommend that two dissolution profiles are similar when f_2 has a value between 50 and 100 following testing of at least 12 individual dosage units.

$$f_2 = 50 \times \log \left(1 + \frac{1}{n} \sum_{j=1}^{n} \left| R_j - T_j \right|^2 \right)^{-0.5} \times 100$$

Equation 1.
3. Results and Discussion

3.1. Thermal analysis

DPV form I and form IV polymorphs were initially tested using TGA to establish their thermal stability over the range of temperatures encountered during ring manufacture via injection molding. Both polymorphs were stable up to temperatures around 240 °C, with total percent weight loss less than 0.5% at 240 °C for both polymorphic forms (data not shown). The polymorphs were then examined by DSC using a heat-cool-heat cycle between 20 and 235 °C. Representative thermograms for the non-micronized forms of DPV form I and form IV are presented in Figure 2A and 2B, respectively. Table 1 displays the mean onset peak temperature (°C), the peak maximum temperature (°C) and the enthalpy (J/g) for each transition recorded in the thermograms.

Non-micronized DPV form I, the most stable polymorphic form of the compound at room temperature and the form produced in the synthesis of DPV, displayed characteristic melting endotherms at 101 °C and 220 °C during the first heat cycle (Figure 2A), attributed to the solid-solid I→II polymorphic transformation and the form II crystalline melt, respectively. Upon cooling of this melt, an endothermic step-like shift associated with formation of amorphous DPV was observed around 80 °C. The second heat cycle then showed a glass transition (T_g) with amorphous relaxation close to 80 °C, followed by an exothermic recrystallization transition at 163 °C and the form II melt endotherm at 220 °C. Similar thermal behaviour was observed for micronized DPV form I (DSC trace not shown, but data presented in Table 1).
By comparison, the non-micronized DPV form IV showed two sharp melting endotherm transitions, one at 206 °C attributed to the solid-solid IV→II transition and the other at 220 °C due to crystalline melting of form II (Figure 2B). Micronized DPV form IV displayed a broader and smaller IV→II endothermic transition at ~190 °C compared to that observed for the non-micronized form IV material (DSC trace not shown, but data presented in Table 1), attributed to the smaller particle size of the micronized material and/or changes in crystallinity induced during the micronization process.

3.2. Particle size distribution

The PSDs of DPV form I and form II polymorphs are presented in Figure 3 for both non-micronized (nm) and micronized (m) material. The distributions were unimodal (modal particle diameters for forms I_{(nm)}, IV_{(nm)}, I_{(m)} and IV_{(m)} were 163, 76, 5.9 and 5.2 µm, respectively), except for an additional second smaller peak at 67 µm for the form I_{(m)} material. A summary of the d_{90}, d_{50} and d_{10} values are presented in Table 2 alongside values quoted in supplied certificates of analysis (where available). The data in Table 2 indicates that the experimentally determined PSD values for non-micronized DPV form I were slightly larger than the values stated in the certificate of analysis, which may be due to slight differences in the method of analysis or powder sampling protocols. In particular, for larger particle size materials, sampling protocols can have a greater influence on the measured value. After micronization, the particle size distributions for both polymorphs were similar, with an overall tendency towards slightly smaller particles observed for the form IV sample, as evidenced both by the overlap of the distributions (Figure 3B) and the similarity of the values for d_{90}, d_{50} and d_{10} (Table 2). The other experimentally determined
particle size distribution values were in good agreement with those specified on the certificates of analysis.

3.3. Powder X-ray diffraction

The X-ray diffraction traces for non-micronized and micronized DPV form I and form IV materials are presented in Figure 4. Both DPV polymorphs are characterised by sharp diffraction peaks confirming the highly crystalline nature of the materials. No significant amorphous content was observed as indicated by the absence of broad peaks and halos. Comparison of traces obtained for the non-micronized and micronized forms of the same polymorph demonstrate a high degree of similarity with regard to peak positions, indicating that the micronization process does not significantly alter the crystal form of either polymorph. However, minor differences in peak intensities were observed, and may be due to a combination of factors including the particle (crystallite) size, orientation of the crystals (preferred or random), amount of powder applied to the background sample holder, or differences in powder packing within the sample holder. Both the non-micronized (Figure 4A) and micronized (Figure 4B) DPV form I diffraction patterns showed significant differences in diffraction peak positions when compared to the form IV materials. In particular, DPV form I traces exhibited distinct diffraction peaks at $2\theta = 5.2^\circ$ and 10.3° not present in the form IV diffraction patterns.
3.4. Microscopy

Representative micrographs of micronized and non-micronized crystals of DPV form I and IV are presented in Figure 5. The non-micronized materials showed large and highly crystalline primary particles in the range of 50–350 µm (Figures 5A and 5B). DPV form IV has a higher proportion of smaller crystals in the <100 µm range compared to DPV form I, as confirmed by particle size distribution analysis (Figure 3). The micrographs of the micronized DPV materials displayed particles significantly smaller in size (mostly <10 µm). Although the majority of the micronized material was present as small primary particles, some larger agglomerations of particles were also visible.

3.5. Ring appearance and weight

All manufactured rings were free from visible foreign matter and had an off-white opaque appearance consistent with uniform distribution of the white DPV powder throughout the otherwise transparent silicone elastomer matrix. Mean ring weight, ExD and CSD for each form I and form IV ring manufacturing batch (n=5 per batch) are recorded in Table 3. All rings had weights ~8.0 g, CSDs ~7.6 mm and ExDs ~56.4 mm.

3.6. Mechanical Testing

Shore A Hardness measurements, recorded for sample rings from each manufacturing batch and presented in Table 4, are close to 65. The product profile for MED-4870 states a Shore A Hardness value of 70 for samples cured at 165°C (ASTM D2240). The differences observed here are attributed to differences in the cure time temperature profile and the other ingredients included in the formulation, which can have an effect on the mechanical
performance of the silicone elastomer. Although Shore A hardness measurement is
commonly used in the rubber industry as a standard indicator of mechanical performance,
it is regarded as a basic test and can provide only limited information regarding changes to
the mechanical properties of the rings. Since the ring surface is curved, the test performed
does not conform to ASTM D2240 or ISO 868:2003 testing standards for shore hardness,
which require test specimens to have a flat surface and be at least 6 mm (1/4 in) thick.

Compression testing to measure the maximum force required to compress a ring a distance
of 5 mm vertically was also performed for each ring formulation batch (n=5). The results,
presented in Figure 6, show that the mean maximum force required for compression of the
DPV form I and form IV rings was similar for all manufacturing batches. No significant
batch-to-batch variability between rings of the same formulation was observed. Statistical
analysis confirmed that all ring batches tested had statistically similar mechanical
properties.

Tensile strength analysis was performed to assess the integrity of the rings on application
of a force equivalent to 5 kg. Ten rings of each formulation were analysed. All rings were
able to withstand a force equivalent to 5 kg without rupture (data not shown). This arbitrary
5 kg value has been used in the testing of other vaginal ring products (unpublished data).
In clinical use, however, vaginal ring devices are not likely to undergo extensive tensile
def ormation. Therefore, the test is primarily used as a quality performance measure for
comparison of different ring formulations and manufacturing processes.
3.7. *In vitro release*

Mean daily and cumulative release versus time plots for both DPV forms I and IV from matrix-type vaginal rings into IPA+H₂O and SVF+Tween media are presented in Figure 7. The declining daily release values with time (Figures 7A and 7B) are indicative of $t^{1/2}$ kinetics and typical of permeation-controlled drug delivery systems comprising non-biodegradable polymers containing excess solid drug within the matrix.²⁰,²³,⁵¹,⁵² Daily DPV release values were greater for release into IPA+H₂O compared with SVF+Tween across all time points and for both form I and form IV rings, reflecting the higher solubility of DPV in the solvent/water system. Mean day 1 release values for DPV into IPA+H₂O were 2459 and 2564 µg for form I and IV rings, respectively, decreasing to 191 and 183 µg, respectively, on day 30. Thus, the d1/d30 release ratios for this release medium were 12.9 and 14.0 for form I and IV rings, respectively. Use of SVF+Tween as the release medium produced significantly different (p-value < .00001) day 1 mean release values for the form I and IV rings (349 and 578 µg, respectively), while mean day 30 release values were more similar (116 and 106 µg, respectively; p-value .000019) (Figure 7B); the corresponding d1/d30 release ratios were 3.0 and 5.5, respectively. It is therefore apparent that the SVF+Tween release medium blunts the day 1 *in vitro* release value relative to the day 30 value, compared with the IPA+H₂O release medium. In general, greater variability is observed with the SVF+Tween daily release values compared to those measured using IPA+H₂O, reflecting differences in solvating power between the release media.

Release rates (µg/day$^{0.5}$) and coefficients of correlation (r^2) obtained from linear regression analysis of the cumulative DPV release vs. root time plots are presented in Table 5.
Comparing the release between polymorphs reveals that the profiles are similar, with almost identical release into both release media. The only difference of note is increased DPV release over the first three days into SVF+Tween for the form IV polymorph (Figure 7B). Since there is no significant difference in SVF+Tween solubility between the polymorphs (Table 6), possible explanations include differences in silicone elastomer solubility between the two forms of DPV, or differences in drug distribution at the surface of the ring devices. Given that much greater variability in drug concentrations are observed in vaginal ring pharmacokinetic studies, it is highly unlikely that these relatively small differences in in vitro release over early timepoints would be clinically significant.

Comparing the line equation gradients of the cumulative release lines highlights the small differences observed in terms of the release between different polymorphs. This was confirmed by calculating the similarity factor (f_2) which has been recommended by the FDA for dissolution profile comparison. As the mean cumulative DPV release did not exceed 55% in either case, all of the available release values were included in the calculations. Based on these results, calculated f_2 values were 98.5 for release into IPA+H$_2$O and 94.9 for release into SVF+Tween, both well above the value of 50 often used to indicate similarity. Interestingly, the in vitro cumulative release levels obtained with SVF+Tween over a 30-day period for both the form I and form IV rings were similar to 28-day in vivo release levels observed with IPM’s 25 mg DPV matrix ring 004 (~4 mg). This indicates that the SVF+Tween release media more closely mimics the amount of drug released in vivo than either SVF alone or the IPA+H$_2$O medium.
3.8. Content and residual content

Initial dapivirine content in the rings post-manufacture was 24.87 ± 0.16 and 25.82 ± 0.28 mg for rings containing form I and form IV dapivirine, respectively (equivalent to 99.5 and 103.3% of the nominal content value), as measured by a solvent extraction method, and highlighting the consistency of the manufacturing process. Following completion of *in vitro* release testing, all rings were tested for residual dapivirine content. The residual content values were then combined with the cumulative release values and compared to initial ring content values to assess mass balance. The data presented in Table 6 demonstrate almost identical cumulative release between the two polymorphs of 13.1 mg and 4.5 mg into IPA+H₂O and SVF+Tween over 30 days. The amounts of DPV recovered after *in vitro* release testing are also consistent with the slightly higher initial loading in the rings containing form IV DPV compared to those containing form I. Thus, the calculated initial loadings for each polymorph are higher for form IV at approximately 25.8 mg, compared to form I at approximately 25.0 mg. These values fit very well with the initially calculated content values of 25.8 mg and 24.9 mg for form IV and form I respectively.

3.9. DPV solubility

DPV, with an experimental pKa value of 5.54, exhibits the typical weak base behaviour of increased solubility as pH is lowered (Figure 8). Moreover, the solubility vs. pH profiles are very similar for polymorphic forms I and IV, within the limits of experimental error. The lower solubility values at pH 1 are due to the common ion effect (i.e. chloride ions) associated with increased concentration of hydrochloric acid. Based on these *in vitro* solubility data, DPV solubility at vaginal pH values typical of women of reproductive age...
(typically between 3.5 and 7; the higher values are common with certain vaginal infections
and in the presence of semen43,57) would lie within the range 0–15 µg/mL, which goes some
way to explaining the wide variation in DPV pharmacokinetics measured in women during
ring use.14,28,53–55

Experimentally determined values of thermodynamic solubility for DPV forms I and IV –
imicronised and non-micronised materials, and measured in both 1:1 v/v IPA/water and
SVF+0.2% w/v Tween 80 – are presented in Table 8. As expected, DPV solubility in
IPA/water (~1200 µg/mL) is significantly greater (by a factor of ~75) compared with
solubility measured in SVF/Tween (~16 µg/mL). That in vitro DPV release from vaginal
rings into these two release media does not differ by a similar factor is a consequence of
the permeation-controlled release kinetics that apply to silicone elastomer vaginal rings,
wherein molecular diffusion of drug through the silicone matrix is rate controlling.51 The
data also clearly illustrate that neither DPV particle size nor the polymorphic form of DPV
influence the thermodynamic solubility value, irrespective of the release medium tested.
PXRD analysis of the residual DPV material after preparation of saturated solutions
confirmed the no form conversion was observed during the solubility analysis and
indicating that the results reflect the true solubility of each form (Table 8).

4. Conclusions

This is the first report of the impact of drug polymorphism on the performance
characteristics of a vaginal ring device. DPV form I and form IV polymorphs were
distinguished using DSC, PXRD and solubility analyses. TGA demonstrated that both
polymorphs were thermally stable over the range of processing temperatures likely to be encountered during manufacture. Particle size analysis revealed a similar size distribution for micronized versions of both polymorphs whereas the non-micronized form I average particle size was slightly larger than form IV. Manufacture of silicone elastomer rings nominally containing 25 mg DPV produced rings with a mean content with 5% of the nominal value for both polymorphs. In vitro release testing of rings showed a very similar release profile for both polymorphs with similarity factor f_2 values greater than 90. An increase in the day 1 to day 3 release for the form IV polymorph compared to the form I polymorph was observed. Possible explanations for this difference include variations in dissolution rates between the two polymorphs and or different surface distributions from manufacture. DPV mass balance was achieved from residual content values plus the cumulative release values recorded into each media. Release of DPV into SVF+Tween over 30 days more closely matches the amount of DPV released in vivo over a similar time period than either IPA+H_2O or SVF only. Finally, no significant differences in thermodynamic solubility were observed for the various particle size and polymorphic forms of DPV.
Acknowledgements

The work was supported by a grant to Queen's University Belfast from the International Partnership for Microbicides, through the generous support from the Ministry of Foreign Affairs of the Netherlands and the American people through the United States Agency for International Development (USAID) through the President's Emergency Plan for AIDS Relief (PEPFAR).

Declaration of interests

All authors declare no any actual or potential conflicts of interest.

Author contribution to manuscript

All authors contributed to the design of the study and drafting of the manuscript for submission. CFM, DJM, PB and KM performed the experimental work. All authors approved submission of the manuscript.
References

Figure 1. Summary of the relationships between the crystalline and amorphous polymorphic forms of dapivirine. DCM = dichloromethane. Forms I and IV were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarized light microscopy, hot stage microscopy, x-ray powder diffraction (XRPD), variable temperature XRPD (VT-XRPD) and single crystal x-ray diffraction. Both forms were also tested by gravimetric vapour sorption (GVS) to assess hygroscopicity, as well as solubility in common aqueous and organic solvents. [Unpublished data; IPM].
Figure 2. Representative DSC traces of non-micronized DPV (A) form I and (B) form IV. For clarity, heat flow values between -0.4 and 0.4 are displayed, such that some peaks are truncated. Values of the enthalpies associated with each endotherm and exotherm are presented in Table 1. The second heat cycle for form IV has been offset by -0.1 W/g to aid visualisation.
Figure 3. Measured particle size distribution of DPV form I and form IV. (A) non-micronized powders; (B) micronized powders.
Figure 4. Powder XRD traces for (A) non-micronized DPV form I, (B) micronized DPV form I, (C) non-micronized DPV form IV, and (D) micronized DPV form IV. Data is presented in the 2θ angular range of 3 to 50°. Two peaks in A, at 2θ = 5.2 and 10.3 degrees, have been truncated to allow better comparison of the traces.
Figure 5. Representative micrographs recorded at 200x magnification of non-micronized DPV form I (A), form IV (B), and micronized DPV form I (C) and form IV (D).
Figure 6. Mean maximum force required to compress each ring formulation (n=5 per batch).
Figure 7. Mean daily release versus time profiles for release into (A) IPA+H₂O and (B) SVF+Tween, and cumulative release versus root time profiles for release into (C) IPA+H₂O and (D) SVF+Tween, of DPV from MED-4870 matrix-type vaginal rings containing DPV (either form I or form IV, 25 mg per ring) over 30 days. Error bars in graphs A and B represent standard deviation of twelve replicates; error bars were often smaller than the plot symbol. A small deviation from the otherwise very consistent drug release profile is present on day 22 of the release into SVF+Tween (B and D). This was due to an extended weekend release period without replacement of release medium.
Figure 8. pH versus solubility profiles for DPV forms I and IV. Plot symbols represent the mean of four replicates; error bars representing ± standard deviation are smaller than the plot symbols.
Table 1. Mean peak onset temperature (°C), peak temperature (°C) and enthalpy (ΔH, J/g) values for each thermal transition associated with micronized and non-micronized DPV forms I and IV. Endothermic transitions 1 & 2 are observed during the 1st heat cycle, endothermic transitions 3 & 5 and exothermic transition 4 are observed during the 2nd heat cycle.

<table>
<thead>
<tr>
<th>DPV material *</th>
<th>Transition No.</th>
<th>Onset (°C)</th>
<th>Peak Maximum (°C)</th>
<th>Enthalpy (ΔH, J/g)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>form I (m) 1</td>
<td>101.1</td>
<td>104.1</td>
<td>8.0</td>
<td>I→II</td>
<td></td>
</tr>
<tr>
<td>form I (nm) 1</td>
<td>97.8</td>
<td>99.3</td>
<td>10.4</td>
<td>I→II</td>
<td></td>
</tr>
<tr>
<td>form IV (nm) 1</td>
<td>205.8</td>
<td>209.3</td>
<td>10.9</td>
<td>IV→II</td>
<td></td>
</tr>
<tr>
<td>form IV (m) 1</td>
<td>189.4</td>
<td>199.0</td>
<td>8.0</td>
<td>IV→II</td>
<td></td>
</tr>
<tr>
<td>form I (m) 2</td>
<td>219.9</td>
<td>221.9</td>
<td>114.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form I (nm) 2</td>
<td>219.9</td>
<td>221.9</td>
<td>119.2</td>
<td>II melting</td>
<td></td>
</tr>
<tr>
<td>form IV (nm) 2</td>
<td>220.0</td>
<td>221.8</td>
<td>121.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form IV (m) 2</td>
<td>220.1</td>
<td>221.8</td>
<td>104.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form I (m) 3</td>
<td>80.9</td>
<td>85.6</td>
<td>1.6</td>
<td>T_g with amorphous relaxation</td>
<td></td>
</tr>
<tr>
<td>form I (nm) 3</td>
<td>80.9</td>
<td>85.5</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form IV (nm) 3</td>
<td>81.2</td>
<td>85.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form IV (m) 3</td>
<td>81.2</td>
<td>85.7</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form I (m) 4</td>
<td>163.0</td>
<td>167.9</td>
<td>-82.9</td>
<td>Recrystallization to form II</td>
<td></td>
</tr>
<tr>
<td>form I (nm) 4</td>
<td>159.8</td>
<td>167.4</td>
<td>-87.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form IV (nm) 4</td>
<td>154.4</td>
<td>163.0</td>
<td>-87.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form IV (m) 4</td>
<td>153.8</td>
<td>164.8</td>
<td>-68.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form I (m) 5</td>
<td>219.6</td>
<td>221.9</td>
<td>112.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form I (nm) 5</td>
<td>219.5</td>
<td>221.7</td>
<td>117.0</td>
<td>II melting</td>
<td></td>
</tr>
<tr>
<td>form IV (nm) 5</td>
<td>219.7</td>
<td>221.9</td>
<td>118.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form IV (m) 5</td>
<td>219.8</td>
<td>221.9</td>
<td>100.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* nm – non-micronized, m – micronized
Table 2. Experimentally determined d_{90}, d_{50} and d_{10} values for both non-micronized and micronized DPV form I and form IV materials with comparative certificate of analysis values where available.

<table>
<thead>
<tr>
<th>DPV Batch *</th>
<th>Experimentally Determined Particle Size (µm)</th>
<th>CoA⁴ Specified Particle Size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d_{90}</td>
<td>d_{50}</td>
</tr>
<tr>
<td>form I (nm)</td>
<td>324</td>
<td>111</td>
</tr>
<tr>
<td>form I (m)</td>
<td>14.7</td>
<td>6.00</td>
</tr>
<tr>
<td>form IV (nm)</td>
<td>250</td>
<td>74.4</td>
</tr>
<tr>
<td>form IV (m)</td>
<td>14.5</td>
<td>5.00</td>
</tr>
</tbody>
</table>

* nm – non-micronized, m – micronized; ⁴ CoA – certificate of analysis
Table 3. Mean ring weight, external diameter and cross-sectional diameter for five rings assessed from each micronized DPV manufacturing batch.

<table>
<thead>
<tr>
<th>DPV polymorph (Batch No.)</th>
<th>Ring Weight (Mean ± SD; g)</th>
<th>C.S.D. (Mean ± SD; mm)</th>
<th>Mean Ex.D. ± SD (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>form I (B1)</td>
<td>7.93 ± 0.24</td>
<td>7.58 ± 0.10</td>
<td>56.41 ± 0.04</td>
</tr>
<tr>
<td>form I (B2)</td>
<td>7.99 ± 0.01</td>
<td>7.62 ± 0.01</td>
<td>56.41 ± 0.03</td>
</tr>
<tr>
<td>form IV (B1)</td>
<td>7.99 ± 0.06</td>
<td>7.62 ± 0.01</td>
<td>56.39 ± 0.02</td>
</tr>
<tr>
<td>form IV (B2)</td>
<td>8.05 ± 0.01</td>
<td>7.62 ± 0.02</td>
<td>56.39 ± 0.02</td>
</tr>
</tbody>
</table>

B1 – batch 1, B2 – batch 2; acceptable limits for weight (7.2 – 8.8 g), external diameter (Ex.D.; 54.9 – 57.1 mm) and cross sectional diameter (C.S.D.; 7.3 – 8.1 mm).
Table 4. Mean Shore A hardness measurement for five rings assessed from each micronized DPV manufacturing batch.

<table>
<thead>
<tr>
<th>Batch Details</th>
<th>Shore A Hardness ± SD (arbitrary units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPV form I (B1)</td>
<td>64.9 ± 1.0</td>
</tr>
<tr>
<td>DPV form I (B2)</td>
<td>65.1 ± 0.5</td>
</tr>
<tr>
<td>DPV form IV (B1)</td>
<td>65.1 ± 0.3</td>
</tr>
<tr>
<td>DPV form IV (B2)</td>
<td>65.7 ± 0.2</td>
</tr>
</tbody>
</table>

B1 – batch 1, B2 – batch 2
Table 5. Release rates and coefficients of correlation (r^2) obtained from linear regression analysis of the cumulative DPV release vs. root time plots for matrix-type vaginal rings containing different forms of micronized DPV released into IPA+H$_2$O or SVF+Tween.

<table>
<thead>
<tr>
<th>DPV type</th>
<th>Release medium</th>
<th>Release rate (µg/day $^{0.5}$)</th>
<th>r^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>form I</td>
<td>IPA+H$_2$O</td>
<td>2330</td>
<td>0.9983</td>
</tr>
<tr>
<td>form IV</td>
<td>IPA+H$_2$O</td>
<td>2323</td>
<td>0.9980</td>
</tr>
<tr>
<td>form I</td>
<td>SVF+Tween</td>
<td>959.9</td>
<td>0.9823</td>
</tr>
<tr>
<td>form IV</td>
<td>SVF+Tween</td>
<td>887.8</td>
<td>0.9880</td>
</tr>
<tr>
<td>form I</td>
<td>SVF+Tween (day 8-30)</td>
<td>1146.4</td>
<td>0.9993</td>
</tr>
<tr>
<td>form IV</td>
<td>SVF+Tween (day 8-30)</td>
<td>1027.5</td>
<td>0.9995</td>
</tr>
</tbody>
</table>
Table 6. Thermodynamic solubility values for DPV forms I and IV, micronized and non-micronized, into SVF + 0.2% Tween 80 and 1:1 v/v IPA/water. Both release media have been used routinely throughout the development process for the DPV-releasing vaginal ring. Solubility values are reported as mean ± SD of n=4 replicates.

<table>
<thead>
<tr>
<th>DPV polymorph</th>
<th>Solvent system</th>
<th>DPV solubility at 37 °C (Mean ± SD; μg/mL)</th>
<th>PXRD analysis of residual solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>form I (nm)</td>
<td>SVF + 0.2% (w/v) Tween 80</td>
<td>16.78 ± 0.66</td>
<td>form I</td>
</tr>
<tr>
<td>form I (m)</td>
<td>SVF + 0.2% (w/v) Tween 80</td>
<td>16.12 ± 0.29</td>
<td>form I</td>
</tr>
<tr>
<td>form I (nm)</td>
<td>IPA/water (1:1 v/v)</td>
<td>1171 ± 53</td>
<td>form I</td>
</tr>
<tr>
<td>form I (m)</td>
<td>IPA/water (1:1 v/v)</td>
<td>1249 ± 46</td>
<td>form I</td>
</tr>
<tr>
<td>form IV (nm)</td>
<td>SVF + 0.2% (w/v) Tween 80</td>
<td>14.74 ± 0.99</td>
<td>form IV</td>
</tr>
<tr>
<td>form IV (m)</td>
<td>SVF + 0.2% (w/v) Tween 80</td>
<td>15.83 ± 0.14</td>
<td>form IV</td>
</tr>
<tr>
<td>form IV (nm)</td>
<td>IPA/water (1:1 v/v)</td>
<td>1193 ± 36</td>
<td>form IV</td>
</tr>
<tr>
<td>form IV (m)</td>
<td>IPA/water (1:1 v/v)</td>
<td>1214 ± 34</td>
<td>form IV</td>
</tr>
</tbody>
</table>
Table 7. Amount of DPV released, residual DPV content and calculated initial content values for 25 mg (nominally) DPV polymorph rings.

<table>
<thead>
<tr>
<th>DPV polymorph</th>
<th>Release medium</th>
<th>DPV released (mg)</th>
<th>Residual DPV (mg)</th>
<th>Calculated initial DPV content (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>form I</td>
<td>IPA+H<sub>2</sub>O</td>
<td>13.1 ± 0.2</td>
<td>12.0 ± 0.3</td>
<td>25.1 ± 0.4</td>
</tr>
<tr>
<td>form IV</td>
<td>IPA+H<sub>2</sub>O</td>
<td>13.1 ± 0.5</td>
<td>12.6 ± 0.3</td>
<td>25.7 ± 0.3</td>
</tr>
<tr>
<td>form I</td>
<td>SVF+Tween</td>
<td>4.6 ± 0.1</td>
<td>20.3 ± 0.4</td>
<td>24.9 ± 0.3</td>
</tr>
<tr>
<td>form IV</td>
<td>SVF+Tween</td>
<td>4.5 ± 0.4</td>
<td>21.3 ± 0.4</td>
<td>25.9 ± 0.5</td>
</tr>
</tbody>
</table>