Review Article

Haemolytic Uraemic Syndrome (HUS): Clinical Medicine Versus Clinical Anatomy

Muhammad SN*, Abdel Meguid E* and Robert Novo's

*Specialist Biomedical Scientist, Co-Founder and Chief in Research, Renal Patient Support Group (RPSG), UK
Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
Hospital Practitioner, Paediatric Nephrologic Unit, University Hospital, Lille, France
*Corresponding author: Muhammad SN, Specialist Biomedical Scientist, Co-Founder and Chief in Research, Renal Patient Support Group (RPSG), England, UK

Received: January 16, 2017; Accepted: February 13, 2017; Published: February 16, 2017

Abstract

Haemolytic Uraemic Syndrome (HUS) is an acquired disorder affecting mainly infants and children. The triad of this clinical syndrome is defined by: 1) Thrombotic or Microangiopathic Haemolytic Anaemia with schistocytes 2) Thrombocytopenia and 3) Acute Renal Failure (ARF) which can develop into Chronic Kidney Disease (CKD). The aim of this article is to provide an editorial/commentary on the Clinical Medicine versus Clinical Anatomy of HUS.

HUS is the most common cause of Acute Renal Failure (ARF) in children with an equal sex incidence [1]. The annual incidence of VTEC infection varies geographically; it can range from 1 to 30 cases per 100,000 in industrialized countries. It is a rare syndrome post-puberty but it is also closely related to Thrombotic Thrombocytopenia (TTP) which is common in adults. The annual incidence of the Verocytotoxin-producing Escherichia Coli (VTEC) infection varies geographically from year to year, ranging from 1-30 cases per 100,000 in industrialized countries and is associated with HUS. HUS occurs in sporadic cases; between 1st January [2] and 31st December [2] in England, a total of 3717 cases were reported with evidence of Shiga Toxin-Producing E. Coli (STEC) infection; sometimes following outbreaks. In Hamburg [3], there was an outbreak with more than 900 cases. The disease has seasonal variation, being more common in the warmer months in children.

Renal histopathology is characterized by abnormal morphology applicable to afferent arterioles and glomeruli. The glomeruli show evidence of global sclerosis and glomerular thrombotic microangiopathy endothelial cell swelling; capillary wall thickening and glomerular basement membranes also evident. Interstitial fibro edematous change and tubular atrophy are marked. Arterial, arteriolar and capillary lumina are narrow with obstruction and intimal thickening. The nature of vascular involvement in the kidneys supports the hypothesis that HUS is mediated by systemic toxemia and endothelial cells are the primary target cells owing to action of Verocytotoxin. Histopathological findings provide clues not only to the diagnosis but also in the support of prognosis. Diffuse interstitial fibrosis and global sclerosis indicate the degree of blood flow obstruction and prognosis. Renal blood flow obstruction caused by diffused arterial and arteriolar luminal stenosis may lead to irreversible changes in renal pathology.

Keywords: Haemolytic Uraemic Syndrome (HUS); Clinical medicine; Clinical anatomy; Chronic kidney disease; Acute renal failure; Haematology

Introduction

Haemolytic Uraemic Syndrome (HUS) occurs due to Shiga-like toxin activity via aberrant complement activation. HUS is typically classified into two primary types: 1) HUS due to infections, often associated with diarrhoea (D+HUS, Shiga toxin-producing Escherichia Coli-HUS), with the rare exception of HUS due to a severe disseminated infection caused by Streptococcus; 2) HUS related to complement, such HUS is also known as "atypical HUS" and is not diarrhoea associated (D-HUS, aHUS) [4]. Clinical features include proteinuria, renal impairment and history of E. coli diarrhoea (hallmark of typical HUS). Encephalopathy is rare but can cause death. HUS is seen increasingly following outbreaks of infection with Verotoxins (VT)-producing organisms. It represents a growing public health problem and data suggest that more awareness of specific micro-organisms causing diarrhoea, (and those thus leading to HUS and/or HUS related symptoms) may become more important in future health consultations [3].

E.coli 0157:H7 is the most commonly notified VT-producing organism in the UK and France. Clinical manifestations may vary from an asymptomatic infection to bloody diarrhoea, haemorrhagic colitis and HUS. Verotoxin Enterococcal (VTEC)-associated HUS was seen in up to 20% of patients in recent outbreaks, mainly affecting children [5]. Table 1 summarizes the defining classification of HUS and (Table 2) summarizes features of HUS, respectively.

HUS epidemiology

HUS is the most common cause of Acute Renal Failure (ARF) in children with an equal sex incidence [1]. The annual incidence of
HUS - Signs

- Patients present with anaemia
- Petechiae, purpura, and fever are common
- GI bleeding is often found and a bloody diarrhoea
- GI disease may be severe with haemorrhagic colitis, toxic megacolon, rectal prolapse, and bowel necrosis
- Neurological symptoms
- Cardiac involvement may lead to Congestive Heart Failure (CHF) and arrhythmias
- Microinfarcts in the pancreas (pancreatitis) or, rarely, Insulin Dependent Diabetes Mellitus (IDDM)

Table 3: HUS signs.

HUS - Symptoms

- The kidneys are swollen and pale
- Many flea-bite hemorrhages are on the surface
- GI involvement may lead to symptoms of an acute abdomen, with occasional perforation
- Hypertension
- Anuria – Oliguria, depending on overall GFR/ renal function

Table 4: HUS symptoms.

HUS - Classification

- Typical
 - Infection related
 - Shiga toxin producing E. coli/ Shigella
 - Pneumococcal infection
 - HIV
 - Other viral or bacterial infections
- Atypical
 - Complement factor abnormality
 - Factor H deficiency and Factor I deficiency
 - Miscellaneous

Cumulative Trauma Disorder (CTD), drugs, malignancy

Table 2: Defining features of HUS.

HUS - Classification

- Typical
- Atypical

Table 1: Classification of HUS.

HUS - Definitions

- Renal involvement
- Evidence of coagulopathy – intravascular coagulation in the kidney
- Antipathy – marked fragmentation of red cells
- The disorder is associated with activation of neutrophils
- Typical HUS is secondary to GI infection with Verocytotoxin-producing E-coli O157:H7 (VTEC), less often Shigella
- Complement activation used to attack foreign bodies
- Complement system highly regulated to prevent it from damaging healthy tissues/ organs
- Platelet activation, damage to endothelial cells (cells that line the blood vessels), white blood cell activation causing haemolysis
- Thrombotic Microangiopathy (TMA) – formation of blood clots in small vessels throughout the body and over time, causing multiple organ damage

Table 5: HUS – Haematology.

- Full Blood Count (FBC) highlights an anaemic picture on presentation
- Coagulation highlights APTT and PT are both normal - suggests sepsis rather than HUS/TTP
- Platelet and fibrin micro-thrombi is evident within the renal microvasculature
- Thrombocytopenia is universal at some point in the illness
- Haematinics highlight there is variability in Iron titles
- Direct Coombs Test is Negative
- Plasma Haiglobulin levels is decreased owing to Red Blood Cell (RBC) breakdown/ degradation
- Raised Fraction Degradation Products (FDPs)
- There is a slightly elevated D-Dimer
- There may be microcytosis
- Red cell enzymes and osmotic fragility are normal
- Reticulocyte count is elevated

Table 4: HUS symptoms.

VTEC infection varies geographically; it can range from 1 to 30 cases per 100,000 in industrialized countries. There is seasonal variation, thus being more common in warmer months. It is more common in those under 5-years.

Between 1st January [6] and 31st December [6] in England, a total of 3717 cases were reported with evidence of Shiga Toxin-producing E. Coli (STEC) infection, and the crude incidence of STEC infection was 1.80/100,000 person-years. Incidence was highest in children aged 1-4 years (7.63/100,000 person-years) [2].

HUS diarrhoea association

Most common cause of HUS and intrinsic ARF in paediatrics in the UK, France and USA industrialized countries is diarrhoea. There are no specific therapies to treat the diarrhoea. Mortality is as high as 8.5 % and up to 30 % of survivors may develop further Glomerular Filtration Rate (GFR) impairment or albuminuria [6].

Use of anti-motility drugs may increase the risk of developing HUS and it is a rare syndrome post-puberty [1]. Atypical HUS (aHUS) can be inherited or acquired and does not appear to vary by race, gender or geographic area. Data on the prevalence of aHUS is limited [7,8] (Table 3).

HUS and laboratory tests/ investigations

Haemolysis and red cell fragmentation are usually evident at presentation, although this rarely develops later in the disease even after platelet count improvement (Table 4). Coagulation studies are usually normal with mildly raised D-dimer titres in contrast to Disseminated Intravascular Coagulation (DIC) [9]. The Von-Willerbrand Factor (VWF) levels are usually markedly raised during acute illness while analysis may/ may not show ultra-large multimers [10]. Poor prognostic features at presentation include a high neutrophil count [11]. Severe thrombocytopenia is uncommon but prolonged thrombocytopenia for more than 10 days is associated with long-term renal picture. Factor VIII levels do not correlate with Disseminated Intravascular Coagulation (DIC) [9]. The Von-Willerbrand Factor (VWF) levels are usually markedly raised during acute illness while analysis may/ may not show ultra-large multimers [10]. Poor prognostic features at presentation include a high neutrophil count [11]. Severe thrombocytopenia is uncommon but prolonged thrombocytopenia for more than 10 days is associated with long-term renal picture. Factor VIII levels do not correlate with Disseminated Intravascular Coagulation (DIC) [9]. The Von-Willerbrand Factor (VWF) levels are usually markedly raised during acute illness while analysis may/ may not show ultra-large multimers [10]. Poor prognostic features at presentation include a high neutrophil count [11]. Severe thrombocytopenia is uncommon but prolonged thrombocytopenia for more than 10 days is associated with long-term renal picture. Factor VIII levels do not correlate with

Prognosis and treatment

Treatment is by supportive measure, and the main treatments are either Haemodialysis (HD) or Peritoneal Dialysis (PD) because of the ARF. The prognosis is dependent upon the aetiology and renal function; there is a poor prognosis if patient requires HD or PD more than 7 days, but good prognosis is conceivable with total recovery of renal function with no arterial hypertension, and no proteinuria. Children with intra-cerebral involvement may be treated with plasma

Table 2: Defining features of HUS.
exchange, but efficacy and long-term use is not advisable [13-15].

Major neurological dysfunction occurs in a third of patients in atypical HUS and less than 10% in typical HUS; is associated with a poor prognosis [7]. There should be supportive information made available for the patient and parent or career/guardian. Eculizumab is a monoclonal antibody that binds to C5 to prevent the formation of C5a and the membrane attack complex [7,8]. This treatment has become popular and can be helpful for patients who may have extra renal involvement such as that seen in typical HUS. Its efficacy and safety in the treatment of aHUS has been highlighted recently [7,8].

Management

Either HD or PD treatments is essential when renal function is altered. It is crucial to control hypertension, thus preventing any longer term complications (Figures 2 and 3). RBC transfusion in children is common owing to anaemia [13-15]. Fraction Frozen Plasma (FFP) has been administered in adults [8].

Research perspectives

Haemoglobin (Hb) is the most direct indicator of clinical severity in haemolytic diseases. Its level may be close to normal values in mild forms (Hb >10 g/dL) or reduced in moderate (Hb 8–10 g/dL), severe (Hb 6–8 g/dL), and very severe (Hb 6 g/dL) forms (WHO 1989). In a differential diagnosis, an acute onset is more frequently observed in RBC enzymopathies involving the Pentose Phosphate (PP) shunt
Table 8: HUS key anatomical/histopathological features.

<table>
<thead>
<tr>
<th>HUS – Key Histopathological Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afferent arterioles and glomeruli inflammation</td>
</tr>
<tr>
<td>Ischaemic necrosis in renal cortex may occur from intravascular coagulation</td>
</tr>
<tr>
<td>Glomerular thrombosis and sclerosis</td>
</tr>
<tr>
<td>Hypercellularity</td>
</tr>
<tr>
<td>Sclerotic tuft</td>
</tr>
<tr>
<td>Fibrosive necrosis in places and some tubule-interstitial compartments show atrophic changes with infiltration of the inflammatory cells</td>
</tr>
<tr>
<td>Endocapillary swelling with diffuse arteriolar and arterial luminal stenosis due to the thickness and sclerotic changes of the media and intima</td>
</tr>
<tr>
<td>Renal Scarring</td>
</tr>
</tbody>
</table>

Table adapted from (Taylor et al., 1999; Taylor 2001a; Taylor 2001b; Taylor et al., 2004; Okuda et al., 2016)

This article is dedicated in loving memory to a dear friend Emma Marquick (1975 to 2003) who went through the whole HUS triad – Fourteen years on a Haemodialysis protocol and three transplants is what took her life.

Acknowledgement

This article is dedicated in loving memory to a dear friend Emma Marquick (1975 to 2003) who went through the whole HUS triad – Fourteen years on a Haemodialysis protocol and three transplants is what took her life.

References

