Draft Genome Sequences of Facultative Methylotrophs, Gemmobacter sp. Strain LW1 and Mesorhizobium sp. Strain 1M-11, Isolated from Movile Cave, Romania


Published in:
Genome Announcements

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2015 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Draft Genome Sequences of Facultative Methylotrophs, *Gemmobacter* sp. Strain LW1 and *Mesorhizobium* sp. Strain 1M-11, Isolated from Movile Cave, Romania

Deepak Kumaresan, a,b,c Daniela Wischer, a Amanda M. Hillebrand-Voiculescu, b J. Colin Murrell a

School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom; Emil Racoviță Institute of Speleology, Bucharest, Romania; School of Earth and Environment, The University of Western Australia, Perth, Australia.

D.K. and D.W. contributed equally to this work.

Facultative methylotrophs belonging to the genera *Gemmobacter* and *Mesorhizobium* were isolated from microbial mat and cave water samples obtained from the Movile Cave ecosystem. Both bacteria can utilize methylated amines as their sole carbon and nitrogen source. Here, we report the draft genome sequences of *Gemmobacter* sp. strain LW1 and *Mesorhizobium* sp. strain 1M1.

Movile Cave (Mangalia, Romania) is a hypogenic cave ecosystem that has been isolated from the surface for 5.5 million years and is devoid of any input of organic carbon from above (1). Invertebrates present in the cave are adapted to life in the dark and are supported by chemolithoautotrophic primary producers that derive energy from the oxidation of inorganic compounds (hydrogen sulfide, hydrogen, and methane) (2, 3). Degradation of the microbial mats floating on the surface of the cave water probably produces large amounts of methylated amines (MA), as indicated by the apparent abundance and activity of MA degraders (4, 5). Here, we report the draft genome sequences of two facultative methylotrophs, *Gemmobacter* sp. strain LW1 and *Mesorhizobium* sp. strain 1M-11, isolated from Movile Cave, Romania. Genome Announc 3(6):e01266-15. doi:10.1128/genomeA.01266-15.

This work was supported by Natural Environment Research Council grant NE/G017956 to J.C.M., the University of Warwick (to D.W.) and the Natural Environment Research Council (NERC) and European Integrated Project on Biodiversity and Climate Change (BiDACC).
the University of East Anglia—Earth and Life Systems Alliance (to D.W. and D.K.).

We thank Vlad Voiculescu and the custodians of Movie Cave [the Group for Underwater and Speleological Exploration (GESS)], for help in sampling and providing logistic support on sampling trips. We thank Rich Boden for useful discussions on Movie Cave microbiology.

REFERENCES


