Hydraulic structures with defective sheet pile walls

Ashraf A. Ahmed MSc, PhD, FHEA
Lecturer, School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, UK

Harold T. Johnston PhD, CEng, MICE, FHEA
Senior Lecturer, School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, UK

Lukumon Oyedele MSc, PhD
Professor, University of Lincoln, UK

A sheet pile wall driven to form a barrier wall below the floor of a hydraulic structure is frequently assumed to be watertight. Although the leakage through the interlocks of the sheet piles is usually small, damage and other factors can result in significant leakage. Consequently, this assumption is rarely, if ever, satisfied in reality. The present study used a finite-element model to investigate the effect of leaks through sheet piles driven under the floor of a hydraulic structure on seepage losses, on the uplift force and on the exit hydraulic gradient. Flow through the channel banks was considered to obtain accurate and robust calculations. The study indicated that when the leak existed in a sheet pile wall, driven centrally below the floor of the hydraulic structure, it has a small impact on seepage losses, the exit hydraulic gradient and the uplift force. However, when the leak existed at a sheet pile wall driven at the downstream end of the floor, its impact was significant, particularly on the exit hydraulic gradient with consequent risk to the stability against piping and undercutting of the structure. A combination of both cut-off walls did not provide a significant benefit, should leakage occur.

Notation

- \(d \) depth of sheet pile
- \(E_Q \) flow efficiency
- \(g \) gravitational acceleration
- \(H \) differential water head applied on the structure
- \(h \) matric potential or pressure head
- \([K_s] \) overall hydraulic conductivity matrix
- \(k \) hydraulic conductivity of porous medium
- \([K_u] \) unsaturated hydraulic conductivity matrix
- \(n \) van Genuchten curve fitting parameter
- \(P \) fluid pressure
- \(\{ q \} \) vector of nodal fluid heads
- \(Q \) flow with cut-off in place
- \(\{ Q \} \) residual flow vector
- \(Q_0 \) flow with no cut-off
- \(\{ r \} \) overall nodal fluid head vector
- \(\{ R \} \) overall residual flow vector
- \(Z \) elevation head
- \(\alpha \) van Genuchten curve fitting parameter
- \(\gamma \) unit weight of fluid
- \(\theta_s \) residual water content
- \(\theta_s \) saturated water content
- \(\phi \) total head of fluid

1. Introduction

Hydraulic structures, such as weirs, barrages and dams, are frequently founded on permeable soils. Flow through this permeable material below the structure needs to be controlled to prevent piping and consequent undermining (Leliavsky, 1965; Swamee et al., 1997). The rate of such flow can be determined using Darcy’s equation and is directly related to the local hydraulic gradient. In addition, flow beneath the structure can increase the uplift forces on its floor. To minimise groundwater flow, cut-off barrier walls are usually provided using sheet pile, concrete, soil–bentonite or cement–bentonite walls. Bentonite-based walls are more frequently used when containment is required. Rapid installation and the local availability of necessary equipment mean that driven sheet pile walls are favoured as cut-off walls in small hydraulic structures. Although there is likely to be some leakage through the joints of a well-constructed sheet pile wall, they and other barrier walls are often assumed to be impervious for design purposes. This assumption is rarely, if ever, correct in reality. In spite of the advances made in the field of geotechnical engineering, in most circumstances it is not possible to guarantee completely water-tight structures (Panthulu et al., 2001). In extreme cases, the interlocking of driven sheet piles can fail as a consequence of twisting, allowing leakage to occur.

There have been only a few attempts to investigate the effects of leakage through sheet piles driven to form barrier walls beneath hydraulic structures. One of the early studies was by Karadi et al. (1980) who investigated a leaking barrier wall as a two-dimensional problem using the finite-difference technique.
A limitation in their study was that they assumed the leakage to be uniformly distributed over the entire barrier wall. Obviously, such an assumption does not reflect what happens in practice. Krizek and Karadi (1969) also carried out an experimental study to test the effectiveness of leaking sheet piles.

More recently, Ahmed et al. (2007) investigated the effect of leakage through sheet piles driven under hydraulic structures on exit hydraulic gradients, seepage losses and uplift force. Although their study used a three-dimensional model, it suffered from a limitation by not including the flow through the surrounding banks in their calculations. Ignoring the seepage through the banks was found to produce erroneous results (Ahmed and Bazaraa, 2009).

The main purpose of the current research was to study the effect of leakage through a sheet pile wall beneath a hydraulic structure on its effectiveness by considering seepage losses, uplift forces and exit hydraulic gradients. Seepage through the surrounding banks of the channel has been included in the calculations to obtain more accurate and reliable results (Ahmed and Bazaraa, 2009). Unsataturated flow above the free surface has been taken into consideration. Knowing the increase in the uplift force and exit hydraulic gradient resulting from sheet pile leakage is important in assessing the stability of hydraulic structures.

2. Mathematical background

A computer model developed by Ahmed (2008) was used. The model calculates the seepage in both confined and unconfined aquifers, considering the unsaturated flow above the free surface. The residual flow procedure presented herein, which is used to locate the free surface, follows closely Desai and Baseghi (1988).

The partial differential equation governing steady incompressible fluid flow through a porous medium can be written as

\[\text{div}(k \ \text{grad} \phi) = 0.0 \]

where \(k \) represents hydraulic conductivity of the medium, \(g \) is gravitational acceleration, \(\phi = p / \rho g + Z \) total fluid potential or head, \(p/\rho g \) is the pressure head, \(Z \) is the elevation head and \(\gamma \) is unit weight of fluid. The pseudo-functional, \(U \) for the steady-state flow can be expressed as

\[U = \frac{1}{2} \int \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right] \text{d}x \text{d}y \text{d}z \]

Applying the residual flow procedure (Desai and Baseghi, 1988) yields the element equations

3. \[[k_s]^e \{ q \} = \{ Q_1 \}^e \]

where \([k_s]^e\) is the element hydraulic conductivity matrix at saturation, \(\{ q \} \) is the vector of nodal fluid heads of element and \(\{ Q_1 \}^e \) is the element residual flow vector composed as

4. \(\{ Q_1 \}^e = [k_{us}]^e \{ q \} \)

where \([k_{us}]^e\) is the unsaturated hydraulic conductivity matrix.

The assembly over the elements on the entire domain yields

5. \([K_s]\{ r \} = \{ R_e \} \)

where \([K_s]\) is the overall hydraulic conductivity matrix at saturation, \(\{ r \} \) is the overall nodal fluid head vector and \(\{ R_e \} \) is the overall residual flow vector. Equation 5 is a system of nonlinear equations.

The model of van Genuchten (1980) was adopted to consider the unsaturated flow

6. \[\theta = \theta_i + \frac{(\theta_s - \theta_i)}{1 + (zh)^m} \]

7. \[k_{us}(S_e) = k_s S_e^{1/2} \left[1 - (1 - S_e^{1/m})^2 \right] \]

where \(S_e = (\theta - \theta_0)/(\theta_s - \theta_0) \), \(h \) is the pressure head in cm, \(\theta_i \) and \(\theta_s \) are the residual and saturated water contents respectively, \(\alpha \) and \(n \) are van Genuchten curve fitting parameters, and \(m = 1 - 1/n \).

These equations were used to develop a computer program. A detailed presentation of this program, its validation and applications can be found in Ahmed (2008, 2009).

3. Description of the application problem and the analysis procedure

The problem represented in the numerical model was a hydraulic structure founded on a permeable homogenous isotropic soil of depth 6 m and having a hydraulic conductivity of \(3 \times 10^{-5} \) m/s, representing a silty sand. The length of the modelled zone was 60 m, and the channel width was 10 m. The banks of the channel extended 10 m each side and its top level was 2 m above the bed level of the channel. The impermeable floor of the structure was 16 m in length and extended across the channel width with retaining walls at both sides up to the top bank level as shown in Figure 1(a). The seepage flow occurred owing to a differential head \(H \) of 1 m between the upstream and the downstream sides of the structure. Figure 1(b) shows the finite-element mesh used for one of the
simulations. The total number of nodes was 21,887 and a total of 18,816 brick elements were used.

In the current investigation, the problem was studied for the situation in which no cut-off wall was installed. Two positions of a sheet pile cut-off wall were then studied; at the middle and at the end of the floor of the hydraulic structure. A combination of middle and end walls was also studied. In the two wall configuration, leakage was assumed to occur in one of the walls. Ahmed (2011) found that the combination of middle and end sheet pile walls had a significant effect in reducing the exit hydraulic gradient and seepage losses below hydraulic structures.

Figure 1. (a) Schematic of the modelled problem showing a single sheet pile wall in the central location; (b) dimensions and finite-element mesh of the analysed problem
4. Model results

4.1 Effect of location of leakage

A single sheet pile wall of penetration depth 4 m was represented under the structure as shown in Figure 1(a). For this configuration the effect of leakage through a hole in the sheet pile wall having an area of 2.5% of the wall area was investigated. The results are shown in Table 1. It can be seen that the worst case was when the leakage occurred in the upper central area. This is because the flow path beneath the structure will be less, and the seepage larger, if the leakage occurs in the upper region of the barrier wall. All further simulations used this location.

Leakage having different areas ranging from 2.5% to 10% of the wall area was then investigated. In each case, the flow efficiency E_Q of the barrier was studied. The flow efficiency relates the flow with the barrier in place, Q, with the flow without the barrier, Q_0. It is defined as the ratio of the change in flow with the barrier in place to the flow without the barrier or

$$E_Q = \frac{(Q - Q_0)}{Q_0}$$

The flow efficiency, uplift force and exit hydraulic gradients for each case were calculated.

4.2 Single central sheet pile wall

A centrally located single sheet pile wall was represented in the mathematical model. Leakage having different areas ranging from 2.5% to 10% of the wall area was then investigated. The model results are shown in Table 2 and in Figure 2.

4.3 Single sheet pile wall at downstream end

In the second case, the sheet pile wall was assumed to be located at the downstream end of the floor. Again leakage was assumed to occur through a hole ranging from 2.5% to 10% of the wall area in the centre of the wall. The model results are shown in Table 3.

4.4 Two sheet piles with leakage in the middle wall

In the third case two sheet pile walls were assumed to be installed located under the middle of the structure and at the downstream end of the floor. Leakage was assumed to occur in the centre of the cut-off located under the middle of the structure through an area ranging in size from 2.5% to 10% of its wall area. The results are presented in Table 4.

4.5 Two sheet piles with leakage in the end wall

In the final configuration, two sheet pile walls were assumed to be installed and located under the middle of the structure and at the downstream end of the floor. Leakage was assumed to occur in the centre of the cut-off located at the end of the structure through an area ranging in size from 2.5% to 10% of that wall area. The results are presented in Table 5.

5. Discussion

5.1 Single central sheet pile wall

The installation of a watertight sheet pile wall at the middle of the floor was shown to have reduced the flow seeping under the structure. The calculated flow efficiency, considering only flow under the structure, was 17.6% (Table 2). When flow through the canal banks was considered, it was found that the flow efficiency was much less at 3.2%. This result confirms the need to consider flow through banks as, if it is not included, seepage flows tend to be overestimated.

When leakage occurred in the sheet pile wall, it did not have significant influence on its performance as a cut-off wall. Results of this case, presented in Table 2, show that the flow efficiency, considering the total flow around and below the sheet pile wall, was about 2% owing to a leakage area of 10% of the wall area compared to about 3% for a watertight wall. This is not surprising because the reduction in total flow made by

<table>
<thead>
<tr>
<th>Position of 2-5% leakage area</th>
<th>Increase in flow under the floor: %</th>
<th>Increase in total flow (including through the banks): %</th>
<th>Increase in uplift force: %</th>
<th>Increase in centre exit gradient: %</th>
<th>Increase in edge exit gradient: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watertight sheet pile wall</td>
<td>0-0</td>
<td>0-0</td>
<td>0-0</td>
<td>0-0</td>
<td>0-0</td>
</tr>
<tr>
<td>Centre upper</td>
<td>7-02</td>
<td>0-64</td>
<td>3-58</td>
<td>1-82</td>
<td>0-91</td>
</tr>
<tr>
<td>Centre lower</td>
<td>4-67</td>
<td>0-29</td>
<td>0-90</td>
<td>0-74</td>
<td>0-36</td>
</tr>
<tr>
<td>Edge upper</td>
<td>3-87</td>
<td>0-18</td>
<td>0-91</td>
<td>0-41</td>
<td>0-45</td>
</tr>
<tr>
<td>Edge lower</td>
<td>3-33</td>
<td>0-09</td>
<td>0-21</td>
<td>0-17</td>
<td>0-18</td>
</tr>
</tbody>
</table>

Table 1. Effect of locations of leakage on flows, uplift force and exit gradients. Case (a) of single cut-off located at the centre of the structure.
placing a watertight sheet pile wall at the middle of the floor can be found from

\[0.032 = \frac{(Q_0 - Q)}{Q_0} \]

giving \(Q = 0.968Q_0 \), indicating a decrease of 3.2%. The reason for this limited reduction in seepage is due to the existence of the impermeable floor and abutments. It should be noted that when only the flow below the structure is calculated, the leak effect is greater, with the flow efficiency decreasing from 17.6 to 8.2% at a 10% leakage area.

The total increase of the uplift force when there was no cut-off compared to the case of watertight sheet pile wall was about 12%. The effect of leaks on the uplift force was more pronounced than its effect on the total seepage flow below the structure and through the banks. A leakage area of 10% increased the uplift force by about 6% – that is, half the value of increase produced from the case of no sheet pile wall. It

<table>
<thead>
<tr>
<th>Area of leakage as % of total area</th>
<th>Flow efficiency (E_Q) for under floor flow: %</th>
<th>Total flow efficiency (E_Q) (including flow through the banks): %</th>
<th>Increase in uplift force: %</th>
<th>Increase in centre exit gradient: %</th>
<th>Increase in edge exit gradient: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watertight sheet pile wall</td>
<td>17.6</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.5</td>
<td>11.8</td>
<td>2.6</td>
<td>3.6</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>10.3</td>
<td>2.3</td>
<td>4.9</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>10</td>
<td>8.2</td>
<td>1.9</td>
<td>6.2</td>
<td>3.5</td>
<td>1.8</td>
</tr>
<tr>
<td>100 (no wall)</td>
<td>0.0</td>
<td>0.0</td>
<td>12.1</td>
<td>7.3</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Table 2. Flow efficiency, uplift force and exit gradients for varying areas of leakage. Case (a) of single cut-off located at the centre of the structure.

Figure 2. Change of flow, downstream uplift force and exit hydraulic gradient with leakage area. The y-axis is normalised to the case of tight sheet pile wall.
means that a 10% leakage reduced the sheet pile efficiency with respect to the uplift force by 50%. This confirms the need for a significant factor of safety against uplift in design.

The increase in the uplift force and in the total flow around and below the structure is generally lower than the values obtained by Ahmed et al. (2007). This is because Ahmed et al. (2007) have not considered the flow through the banks of the canal; they considered only the flow below the structure.

The central exit hydraulic gradient when no cut-off was installed was 3-3% greater than when a watertight cut-off was present. A 10% leakage increased the hydraulic exit gradient by 3-5% compared to the case of watertight sheet pile. This again is about 50% of the increase in exit hydraulic gradient caused by the case of no sheet pile, which means that a 10% leakage dropped the efficiency of the sheet pile with respect to exit hydraulic gradient by about 50%. In general, the reduction in the exit hydraulic gradient resulted from the installation of watertight sheet pile, is not large. This is attributed to the existence of the concrete floor.

Karadi et al. (1980) found that, for relative penetration depth of 0-75, the exit gradient may attain a value of 4 or 5 times that for equivalent impervious sheet pile. This again is greater than the increase in the exit gradient observed in this study, which also has a sheet pile with penetration depth of 0-75 of the aquifer thickness. The reason for this disagreement is due to the assumption made by Karadi et al (1980) that the leak is uniformly distributed on the whole sheet pile and not at a local

<table>
<thead>
<tr>
<th>Area of leak as percentage of total area</th>
<th>Flow efficiency E_Q for underfloor flow: %</th>
<th>Total flow efficiency E_Q (including flow through the banks): %</th>
<th>Increase in uplift force: %</th>
<th>Increase in centre exit gradient: %</th>
<th>Increase in edge exit gradient: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watertight sheet pile wall</td>
<td>3-3</td>
<td>2-7</td>
<td>0-0</td>
<td>0-0</td>
<td>0-0</td>
</tr>
<tr>
<td>2-5</td>
<td>2-8</td>
<td>2-4</td>
<td>-1-2</td>
<td>293-2</td>
<td>-0-8</td>
</tr>
<tr>
<td>5</td>
<td>2-5</td>
<td>2-2</td>
<td>-1-9</td>
<td>263-4</td>
<td>-1-3</td>
</tr>
<tr>
<td>10</td>
<td>1-9</td>
<td>1-8</td>
<td>-3-1</td>
<td>251-1</td>
<td>-2-1</td>
</tr>
<tr>
<td>100 (no wall)</td>
<td>0</td>
<td>0</td>
<td>-8-6</td>
<td>262-5</td>
<td>2-5</td>
</tr>
</tbody>
</table>

Table 3. Flow efficiency, uplift force, and exit gradients for varying areas of leakage. Case (b) of single cut-off located at the downstream end of the structure

<table>
<thead>
<tr>
<th>Area of leak as percentage of total area</th>
<th>Flow efficiency E_Q for underfloor flow: %</th>
<th>Total flow efficiency E_Q (including flow through the banks): %</th>
<th>Increase in uplift force: %</th>
<th>Increase in centre exit gradient: %</th>
<th>Increase in edge exit gradient: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watertight sheet pile walls</td>
<td>18-1</td>
<td>3-0</td>
<td>0-0</td>
<td>0-0</td>
<td>0-0</td>
</tr>
<tr>
<td>2-5</td>
<td>12-2</td>
<td>2-4</td>
<td>3-2</td>
<td>1-1</td>
<td>0-9</td>
</tr>
<tr>
<td>5</td>
<td>10-8</td>
<td>2-2</td>
<td>4-4</td>
<td>1-5</td>
<td>1-2</td>
</tr>
<tr>
<td>10</td>
<td>8-7</td>
<td>1-8</td>
<td>5-6</td>
<td>2-1</td>
<td>1-7</td>
</tr>
<tr>
<td>100 (no walls)</td>
<td>0</td>
<td>0</td>
<td>11-1</td>
<td>4-5</td>
<td>3-9</td>
</tr>
</tbody>
</table>

Table 4. Flow efficiency, uplift force, and exit gradients for varying areas of leakage. Case (c) of two cut-offs, with leakage occurring in the central cut-off
point. In addition, Karadi et al (1980) only conducted a two-dimensional analysis; hence the seepage through the canal banks is not accounted for.

The results presented in Figure 2 confirm that when leakage exists in a sheet pile wall derived at the middle of the floor, the flow under the floor is the most influenced by this leakage. Note that the vertical axis represents the flow, the uplift force and the exit hydraulic gradient normalised to their values obtained for the case of watertight sheet pile. A 10% leakage caused the flow below the structure to increase by about 11%. This is equivalent to the 8.2% flow efficiency shown above. The total flow below the structure and through the banks is the least influenced by the existence of leakage. The total flow increased by only 0.6% as a consequence of a leakage area of 2.5% of the cut-off wall area.

Figure 2 shows that at small leakage areas, any slight increase of this area caused a large increase in the seepage losses under the floor, in the downstream uplift force, and in the exit hydraulic gradient at the centre of the canal. When the leak area exceeded 30%, the rate by which the seepage losses, uplift force, and hydraulic exit gradient increase was small. This means that when the leak area is 30% or higher of the sheet pile area, the sheet pile will be rendered ineffective.

Table 5. Flow efficiency, uplift force, and exit gradients for varying areas of leakage. Case (d) of two cut-offs, with leakage occurring in the end cut-off

<table>
<thead>
<tr>
<th>Area of leak as percentage of total area</th>
<th>Flow efficiency E_Q for under-floor flow: %</th>
<th>Total flow efficiency E_Q (including flow through the banks): %</th>
<th>Increase in uplift force: %</th>
<th>Increase in centre exit gradient: %</th>
<th>Increase in edge exit gradient: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watertight sheet pile walls</td>
<td>3.9</td>
<td>2.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.5</td>
<td>0.5</td>
<td>2.1</td>
<td>-1.3</td>
<td>285.1</td>
<td>-0.7</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>2.0</td>
<td>-2.0</td>
<td>256.3</td>
<td>-1.2</td>
</tr>
<tr>
<td>10</td>
<td>-0.3</td>
<td>1.6</td>
<td>-3.4</td>
<td>244.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>100 (no walls)</td>
<td>0</td>
<td>0</td>
<td>-9.5</td>
<td>253.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Note: minus donates a reduction in the variable.

The hydraulic exit gradient at the canal edges was slightly decreased. This is because the flow through the hole represented in the sheet pile has slightly reduced the flow through the banks of the canal leading to slight decrease in the exit gradient at the edges of the canal.

The exit hydraulic gradient at the centre of the channel markedly increased because of the leakage in the sheet pile. A leakage area of 2.5% increased this exit hydraulic gradient to almost three times that resulting from an impervious cut-off and was even greater than when the cut-off was not present. At a leakage area of 5%, the gradient was similar to that when there was no cut-off. While the flow decreased with decreasing leakage area, its concentration in a small region resulted in high local gradients.

5.3 Two sheet piles with leakage in the middle wall

The results presented in Table 4 show similar trends to those in Table 2. While the absolute values of uplift force were found to be about 10% larger than those calculated for a single cut-off in the middle of the structure, they follow the same trends. The major difference was found to be in the exit hydraulic gradients at the centre of the channel. Their magnitudes were significantly decreased because of the increased flow path length produced by the presence of the second cut-off wall. Consequently, when leakage occurred in the middle wall, its is concentrated at the cut-off location rather than being distributed along the length of the floor. When leakage in the sheet pile wall was represented, the flow below the structure showed a lower drop in flow efficiency than that found for a cut-off in the middle of the structure.
effect was of lesser magnitude. The absolute exit gradient was
0.12 for case (a), and 0.034 for case (c). These absolute values
are calculated when watertight sheet piles are installed.

5.4 Two sheet piles with leakage in the end wall
The results presented in Table 5 show similar trends to those in
Table 3. The effect of leakage through the end cut-off wall
causes a small reduction in the uplift force. This is because
the existence of the end cut-off wall makes the drop in potential
head to be concentrated at the cut-off location rather than
being distributed along the length of the floor. The existence
of the leakage slightly reduces this potential head concentration
at the end cut-off wall. As a result, the downstream uplift force
slightly decreases.

As with a single cut-off wall at the end of the floor, the leakage
in the end wall for the two wall configuration causes a marked
increase in the central exit hydraulic gradient. Again, a leakage
area of 2.5% increased the exit hydraulic gradient to almost
three times that resulting from an impervious cut-off.

5.5 Practical relevance of the study
In the design of hydraulic structures in rivers and canals,
especially where the foundation is reasonably permeable, sheet
piles are assumed to be watertight but are often subject to leakage. The standard
forms of a composite section are

\[(a)\] a straight horizontal floor of negligible thickness with a
sheet pile wall at the end
\[(b)\] a depressed floor of finite thickness but no cut-off wall
\[(c)\] a straight horizontal floor of negligible thickness with an
intermediate sheet pile wall.

Khosla et al. (1954) developed pressure charts for intermediate
and end pile walls from which pressures at key points can be
predicted. However, these do not consider the consequences
of wall leakage. The current study enables designers of structures,
which incorporate single or dual sheet pile cut-offs, to evaluate
the effect of leakage on the seepage rates, the consequent
hydraulic gradients and the uplift forces on a structure in a
canal or river. Hence the design can include a factor of safety
against such leakage. A further research is needed to accurately
estimate this factor of safety.

6. Conclusions
When a sheet pile cut-off wall which is installed below a
hydraulic structure within a channel leaks, it can affect the
stability of the structure. The current study suggests that when
a single cut-off wall is driven at the middle of the floor of the
structure, the leakage does not have significant influence on the
performance of the cut-off. The total flow bypassing the
structure, increased by only 0.6% as a consequence of a leakage
area of 2.5% of the cut-off wall area. Water seeping only below
the floor of the structure increased by about 7% because of
2.5% leakage.

For the above case of single cut-off wall driven at the middle
of the floor of the structure, leakage area of 10% increased the
downstream uplift force on the floor by some 6%. This shows
that the possibility of leakage should be taken into considera-
tion at the design stage. However, there was no significant
change in the value of the exit hydraulic gradients as a
consequence of the leakage. Thus piping within the soil,
causing undercutting of the structure, is unlikely.

When flow through the canal banks was considered, it was
found that the flow efficiency was much less than the efficiency
of flow seeping only below the structure. This result confirms
the need to consider flow through banks as, if it is not included,
seepage flows tend to be overestimated.

A single cut-off wall located at the downstream end of the floor
will increase the uplift force. The leakage in such wall slightly
reduced the uplift force on the floor. More importantly, if
leakage occurs, it will greatly increase the exit hydraulic
gradient, therefore dramatically affecting the stability against
piping. A leakage area of 2.5% was found to increase the exit
hydraulic gradient at the channel centreline to almost three
times that experienced at a watertight cut-off wall. Although
for an end sheet pile wall, leakage causes a reduction of the
uplift force, the increased risk of piping is of concern.

When two cut-off walls are installed at the middle and end of a
structure, the uplift force on the structure is increased. Leakage
in the first wall will have little effect on the overall performance
of structure. However, leakage in the downstream cut-off wall
will cause a slight reduction in the uplift force and a large
increase in the exit hydraulic gradient at the centre of the
channel producing a significant risk to the stability against
piping at this wall.

REFERENCES
dams. ASCE Journal of Geotechnical and Geoenvironmental
through earthen dams. Computers and Geotechnics 36(7):
1186–1190.
Ahmed AA (2011) Design of hydraulic structures considering
different sheet pile configurations and flow through canal
Ahmed AA and Bazaraa AS (2009) Three-dimensional analysis
of seepage below and around hydraulic structures. ASCE

WHAT DO YOU THINK?
To discuss this paper, please email up to 500 words to the editor at editor@britishdams.org. Your contribution will be forwarded to the author(s) for a reply and, if considered appropriate by the editorial panel, will be published as discussion in a future issue of the journal.