Secure Key Generation from OFDM Subcarriers' Channel Response

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Secure Key Generation From OFDM Subcarriers’ Channel Response

Junqing Zhang*, Alan Marshall†, Roger Woods*, Trung Q. Duong*
* ECIT, Queen’s University Belfast
** Belfast, BT3 9DT, UK
Email: {jzhang20, r.woods, trung.q.duong}@qub.ac.uk
† Department of Electrical Engineering and Electronics, University of Liverpool
Liverpool, L69 3GJ, UK
Email: Alan.Marshall@liverpool.ac.uk

Abstract—The ability to exchange keys between users is vital in any wireless based security system, so a key generation technique exploits the randomness of the wireless channel is a promising alternative to existing key distribution techniques, e.g., public key cryptography. In this paper a secure key generation scheme based on the subcarriers’ channel responses over time in OFDM systems is proposed. We first implement a time-variant multipath channel with its channel impulse response modelled as a wide sense stationary (WSS) uncorrelated scattering random process and demonstrate that each subcarrier’s channel response is also a WSS random process. We then define the X% coherence time as the time required to produce an X% correlation coefficient in the autocorrelation function (ACF) of each channel tap, and find that when all the channel taps have the same Doppler power spectrum, each subcarrier’s channel response has the same ACF as the channel taps. The subcarrier’s channel response is therefore sampled every X% coherence time and quantized into key bits. We test all the key sequences’ randomness using National Institute of Standards and Technology (NIST) statistical test suite and the results indicate that the commonly used sampling interval as 50% coherence time cannot guarantee the randomness of the key sequence.

I. INTRODUCTION

Key generation from the randomness of the wireless channel is currently receiving intensive attention in the research community because it can offer information theoretical security rather than computational security [1]. Traditionally, the distribution of the keys between different users is performed by public key cryptography, which depends on the computational hardness and requires a key management infrastructure. However it is a major challenge for wireless sensor networks and ad hoc networks to accomplish this task as sensor nodes have limited computational budget and the distribution infrastructure in ad hoc networks cannot always be guaranteed.

The notion of generating keys from their common wireless channel to ensure privacy is a promising approach to establish private communication between legitimate users, Alice and Bob. In operation, Alice first sends a probing signal to Bob who will measure some physical modality through the received signal, e.g., received signal strength (RSS), phase, channel state information (CSI) etc. Bob then immediately sends a probing signal back to Alice who will also measure the same physical modality as Bob. The concept is then to generate keys from the highly correlated measurements at each side. For indoor environment, the channel changes slowly so its coherence time is quite large (of the order of 10 ms) in comparison to the transmission time, therefore the channel can be regarded as static during Alice and Bob’s measurements. Thus, Alice and Bob can produce almost identical measurements. Then, by waiting another coherence time to do the next probing, they can obtain another measurement that is uncorrelated with the previous. This is repeated until enough measurements are obtained to be quantized into key bits. Assuming that an eavesdropper, Eve, is more than a half wavelength away from both Alice and Bob, then due to the spatial decorrelation, the channel between Eve and Alice/Bob is completely different from the channel between Alice and Bob, so Eve cannot produce the same measurement results as Alice or Bob. Thus Alice and Bob can establish a secret key between each other that is unknown to Eve.

Theoretically, every physical modality related to the channel randomness can be used for key generation, however RSS is the most popular parameter. Most practical work is implemented in IEEE 802.11 systems [2]–[4] or IEEE 802.15.4 systems [5]–[7] because RSS information is available in their commercial network interface cards (NICs) or transceivers. However RSS can only provide averaged channel information, so we can only get one uncorrelated RSS from one measurement within the coherence time. This results in a low key generation rate (KGR) which limits its application in cryptography. For example, the KGR from RSS reported in [2] is only 1.3 bit/sec while advanced encryption standard (AES) requires a key length at least 128 bits, which takes approximately 2 minutes to generate a full key. Although there exists an extended effort to improve the KGR by leveraging MIMO [4] or multi-bit quantization [7], it cannot change the fact that RSS is an averaged parameter and loses a lot of useful channel information.

Some simulation work has been undertaken to generate the key from the phase [8]–[10]. Specifically, Wang et al. [9] proposed a phase based key generation scheme which can measure multiple randomized phase information within a single coherence time interval. Whilst their system does not suffer from the low KGR problem, the accurate estimation of
the phase information limits its practical application in key generation.

Alternatively, CSI, including channel impulse response (CIR) and channel frequency response (CFR) is a powerful tool and presents a promising application for key generation [11], [12]. CSI is fine-grained channel information so it does not suffer from the same information loss, which leads to a higher achievable KGR than RSS based schemes [11]. However, in the case of CIR based schemes [11], those channel taps with small magnitude are highly subject to noise, which results in a high key mismatch between Alice and Bob. Liu et al. [12] present a CFR based key generation scheme using the Intel 5300 WiFi card and reports a KGR of 60 bits/packet while the KGR of RSS based schemes with the same setting is only 2 bits/packet. However their work lacks theoretical modelling of the system or the channel.

Previous work generating key from RSS or CSI claim that in order to guarantee the randomness of the key sequence, the measurement sampling interval should be larger than one coherence time [13], which is defined as the time over which the time correlation function is above 0.5 [14]. However, coherence time estimation is difficult in indoor environment as the Doppler spread is usually introduced by the moving of scattering objects rather than the transmitters or the receivers. It has been observed that whenever the experiments are actually performed, the authors usually just pick a time interval that is large enough so that their key sequence can pass the randomness test [12]. Thus, there is no evidence that sampling interval as coherence time will actually produce secure random keys.

In this paper, an approach for generating the key bits securely from OFDM subcarriers’ channel responses is proposed. We implement a time-variant multipath channel model and IEEE 802.11 OFDM transceiver, and then generate keys from the subcarriers’ channel responses. Our work differs from the previous work, e.g. [12], in that we quantize the key from the channel response of each individual subcarrier over time rather than across all of them. This allows us to theoretically model a subcarrier’s channel response as a wide sense stationary (WSS) random process and then analyze the relationship between the randomness of the key and the correlation coefficient of the measurements. Our main contributions are summarized as follows:

- We implement a time-variant multipath fading channel with its CIR as modelled a wide sense stationary uncorrelated scattering (WSSUS) random process and show that each subcarrier’s channel response is also a WSS random process. Thus, while each subcarrier’s channel response is sampled by the same time interval, the measurements will have the same correlation relationship between each other. We further explore this concept to show that when all the channel taps are modelled by the same Doppler power spectrum, the subcarriers’ channel responses will have the same autocorrelation function (ACF) as the channel taps.

- We explore the relationship between the correlation coefficient of different sampled measurements and the randomness of the key sequence generated from these measurements. We extend the idea of the coherence time by defining \(X\%\) coherence time which is the time required to make an \(X\%\) correlation coefficient of the ACF of each channel tap. We show that the commonly acknowledged 50% coherence time between different samples does not guarantee the randomness of the quantized key bits.

The rest of the paper is organized as follows. Section II models both the channel taps and subcarriers’ channel responses of the time-variant multipath channel as WSS random processes. Section III defines the \(X\%\) coherence time. Section IV outlines the simulation model and presents the performance of the model while Section V proposes the subcarrier’s channel response based key generation scheme and the randomness test results of the key sequence. Section VI concludes the paper.

II. SYSTEM MODEL

A. Channel model

The wireless multipath channel can be modelled as a linear time-varying system with a complex low-pass equivalent response \(h(\tau, t) \) [15]. If there are \(L \) discrete multipath components, the output of the channel consists of the sum of \(L \) delayed and attenuated versions of the input. Thus we have

\[
y(t) = \sum_{l=0}^{L-1} h(\tau_l, t)x(t - \tau_l),
\]

where \(h(\tau_l, t) \) and \(\tau_l \) are the complex attenuation and the delay of the \(l \)-th multipath at time \(t \), \(\tau_l = lT_s \) and \(T_s \) is the system’s sampling period.

The CIR \(h(\tau, t) \) is written as

\[
h(\tau, t) = \sum_{l=0}^{L-1} h(\tau_l, t)\delta(\tau - \tau_l).
\]

According to the central limit theorem, \(h(\tau_l, t) \) can be approximated as zero-mean complex Gaussian random variables, so \(h(\tau_l, t) \sim CN(0, \sigma^2_p(l)) \).

In an OFDM system with \(B \) MHz channel spacing and \(M \) evenly spaced subcarriers, the frequency of each subcarrier is shown as

\[
f_m = m\Delta f,
\]

where \(m \) is the subcarrier index, \(-\frac{M}{2} + 1 \leq m \leq \frac{M}{2}\) and \(\Delta f \) is the frequency difference between two adjacent subcarriers, \(\Delta f = \frac{B}{M}\). For example, in an IEEE 802.11 OFDM system [16] with 20 MHz channel spacing, there are 64 subcarriers in total (only 52 subcarriers are used to transmit data, the others are used as guard bands), thus \(M = 64 \), \(B = 20 \) MHz and \(\Delta f = \frac{B}{M} = 312.5 \) kHz.

In an OFDM system, CFR \(H(f, t) \) and CIR \(h(\tau, t) \) are an FFT pair. We obtain \(H(f, t) \) by applying IFFT operation to
ACF is denoted by $R_h(\tau, \Delta t)$ and is given by
\[
R_h(\tau, \Delta t) = E [h(\tau, t)^* h(\tau, t + \Delta t)].
\] (7)

2) WSS modelling of the subcarriers’ channel responses: The channel response of m-th subcarrier is given in equation (4). The mean value and ACF can be calculated as
\[
E[H(f_m, t)] = \sum_{l=0}^{L-1} E[h(\tau_1, t)] \exp(-j2\pi f_m \tau_1 / M) = 0,
\] (8)
and
\[
R_H(f_m, t_1, t_2) = E[H(f_m, t_1)^* H(f_m, t_2)]
= \sum_{l=0}^{L-1} \sum_{i=0}^{L-1} E[h(\tau_1, t_1)^* h(\tau_1, t_2)] \exp(j2\pi f_m T_s (l-i)/M).
\] (9)

As $h(\tau, t)$ is modelled as WSSUS, equation (9) can be simplified to
\[
R_H(f_m, \Delta t) = \sum_{l=0}^{L-1} E[h(\tau_1, t)^* h(\tau_1, t + \Delta t)].
\] (10)

The mean value of $H(f_m, t)$ is a constant and its ACF only depends on the time delay, thus channel response $H(f_m, t)$ is a WSS random process. So when we sample $H(f_m, t)$ by the same time interval, all the adjacent sampled points will have the same correlation coefficient between each other.

III. COHERENCE TIME AND CORRELATION

Coherence time is a statistical measure of the time duration over which the CIR is essentially invariant and quantifies the similarity of the channel response [14]. It can be quantified through channel’s correlation relationship at different times and usually is defined as the time over which the correlation function is above 50%.

In a multipath channel, each channel tap can have a different Doppler power spectrum. The power spectral density (PSD) and the ACF of the fading process form an FFT pair. The normalized ACF of the l-th tap can be given as:
\[
R_h(\tau_1, \Delta t) = \frac{E[h(\tau_1, t)^* h(\tau_1, t + \Delta t)]}{E[|h(\tau_1, t)|^2]}.
\] (11)

The $X\%$ coherence time $[18]$ is defined as that value of $T_{c,X\%}(\tau_1)$ such that the correlation coefficient is $X\%$, i.e.,
\[
R_h(\tau_1, T_{c,X\%}(\tau_1)) = \frac{X}{100}.
\] (12)

In some Doppler power spectrum models, e.g., Jakes model, the ACF is not a monotonic function, so there will be several Δt for some correlation coefficients. We use the first Δt which sets the correlation coefficient $X\%$ as $T_{c,X\%}(\tau_1)$.

When all the channel taps are modelled as the same Doppler power spectrum, then all the channel taps have the same ACF, so we can get:
\[
R_h(\tau_1, \Delta t) = R_h(\Delta t), \ l = 0, 1, ..., L-1, \ \ \ \ \ (13)
T_{c,X\%}(\tau_1) = T_{c,X\%}, \ l = 0, 1, ..., L-1. \ \ \ \ (14)
\]

Because $h(\tau, t)$ varies with time, $H(f_m, t)$ is also time-variant. A frequency selective fading channel’s frequency response at different time is shown in Fig. 1 and the 1-st subcarrier’s channel response over time $H(f_1, t)$ is shown in Fig. 2. As each channel tap $h(\tau_1, t)$ is modeled as a complex Gaussian process and $H(f_m, t)$ is a linear combination of $h(\tau_1, t)$, $H(f_m, t)$ is also a complex Gaussian random process, which can be used for key generation.

B. WSS model

1) WSSUS modelling of the multipath channel: The modelling of a rich scattering multipath channel as WSSUS was first proposed by Bello [17]. The time-varying nature of the channel is modelled mathematically by treating $h(\tau, t)$ as a WSS random process in t with an ACF [15]
\[
R_h(\tau_1, \tau_2, \Delta t) = E[h(\tau_1, t)^* h(\tau_2, t + \Delta t)].
\] (5)

In most multipath channels, the attenuation and phase shift associated with different delays (i.e., paths) are assumed to be uncorrelated. This *uncorrelated scattering* (US) assumption leads to
\[
R_h(\tau_1, \tau_2, \Delta t) = R_h(\tau_1, \Delta t) \delta(\tau_1 - \tau_2),
\] (6)
where $\delta(\cdot)$ is a Dirac delta function.

Equation (6) embodies both the WSS and US assumptions. It is often referred to as the WSSUS model for fading. This
The normalized ACF of m-th subcarrier’s channel response can be written as
\[
R_H(f_m, \Delta t) = \frac{E[H(f_m, t)^* H(f_m, t + \Delta t)]}{E[H(f_m, t)^2]}
= \sum_{l=0}^{L-1} \frac{E[h(\tau_l, t)^* h(\tau_l, t + \Delta t)]}{E[h(\tau_l, t)^2]}
= \sum_{l=0}^{L-1} \frac{E[R_h(\tau_l, \Delta t)] h(\tau_l, t)^2}{E[h(\tau_l, t)^2]}
= \frac{R_h(\Delta t)}{E[h(\tau_l, t)^2]}
\]
\[
R_H(\Delta t) = R_h(\Delta t).
\]
Thus the subcarrier’s channel response has the same ACF as the channel taps and is independent of subcarrier index m. All the subcarriers’ channel responses have the same ACF as
\[
R_H(\Delta t) = R_h(\Delta t).
\]

If we extend the concept of coherence time to the subcarrier’s channel response, then when all the channel taps have the same Doppler power spectrum, all the subcarriers’ channel responses have the same coherence time as the channel taps.

IV. SIMULATION MODEL IMPLEMENTATION AND PERFORMANCE ANALYSIS

A. Simulation model

A transceiver model is implemented in Matlab based on IEEE 802.11 OFDM [16]. The channel is modelled as a time-variable multipath fading channel [19]. All the channel taps are modelled as independent complex Gaussian random variables whose average power follows the exponential power delay profile and a Bell-shaped Doppler power spectrum [20]. The normalized Bell-shaped Doppler power spectrum can be expressed (in linear values, not dB values) as
\[
S(f) = \frac{\sqrt{A/(\pi f_d)}}{1 + A(f/f_d^2)^2},
\]
where A is a constant, in IEEE 802.11 channel, $A = 9$ and f_d is the Doppler spread, whose values were found to be up to approximately 6 Hz at 5.25 GHz center frequency and up to approximately 3 Hz at 2.4 GHz center frequency by experiments in indoor environment [20].

The ACF of the Bell-shaped Doppler spectrum is given as
\[
R(\Delta t) = \exp(-\frac{2\pi f_d}{\sqrt{A}} \Delta t).
\]
So the 50% coherence time can be calculated as
\[
T_{c,50\%} = \frac{\sqrt{A}}{2\pi f_d} \ln 2.
\]

The Doppler spread f_d is 6 Hz in the simulation. We use 20 MHz channel spacing and 20 MHz sampling frequency for the IEEE 802.11 OFDM model. Every 0.8 ms Alice sends a probing signal to Bob who will record the CFR. Then Bob sends a probing signal to Alice who will record the CFR as well. We run the simulation for equivalently 400 s so there are 500,000 measurements in total. The theoretical 50% coherence time calculated by (19) is 56 ms so the total simulation time is long enough to represent the channel variation.

B. ACF and WSS property of the simulation model

We calculate several channel taps and subcarriers’ ACF and WSS and the results are shown in Fig. 3. All the channel taps have almost the same ACF, showing a high consistence of the simulation model. All the subcarriers have almost the same ACF as the channel taps because all the taps are modelled as the same Doppler power spectrum, which is also shown analytically in (15).

The WSS property of the simulation model is evaluated by comparing two ACFs observed at different times. In the example shown in Fig. 4, $t_0 = t_0 + 10$ s, the ACF of channel taps and subcarriers does not vary with the observation time. The WSS property of the channel guarantees that the correlation relationship between different sampling data only depends on their sampling time difference. Thus we can make sure that all the adjacent data sampled by the same time interval will have the same correlation relationship between each other.

V. FREQUENCY RESPONSE BASED KEY GENERATION

A. Quantization

Quantization is the method to convert the measurements into key bits. Different schemes differ in the quantization level and threshold. Cumulative distribution function (CDF) based quantization is frequently used in key generation [7, 12]. The threshold is chosen according to the cdf of the
TABLE I
RANDOMNESS TEST RESULTS OF $H(f_1, t)$ SAMPLED BY DIFFERENT X% COHERENCE TIME

<table>
<thead>
<tr>
<th>Correlation coefficient X%</th>
<th>50%</th>
<th>40%</th>
<th>30%</th>
<th>20%</th>
<th>10%</th>
<th>5%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{c,X%}(s)$</td>
<td>0.0832</td>
<td>0.096</td>
<td>0.1104</td>
<td>0.1328</td>
<td>0.1552</td>
<td>0.1992</td>
<td>0.2232</td>
</tr>
<tr>
<td>Sequence length</td>
<td>4760</td>
<td>4166</td>
<td>3622</td>
<td>3012</td>
<td>2576</td>
<td>2008</td>
<td>1792</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.7942</td>
<td>0.8042</td>
<td>0.7904</td>
<td>0.9129</td>
<td>0.9372</td>
<td>0.8583</td>
<td>0.768</td>
</tr>
<tr>
<td>Block frequency</td>
<td>0.0734</td>
<td>0.0142</td>
<td>0.3148</td>
<td>0.2217</td>
<td>0.3898</td>
<td>0.6328</td>
<td>0.9615</td>
</tr>
<tr>
<td>Runs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Longest run of ones</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0061</td>
<td>0.1237</td>
<td>0.8042</td>
</tr>
<tr>
<td>DFT</td>
<td>0.0034</td>
<td>0.1229</td>
<td>0.3254</td>
<td>0.0262</td>
<td>0.9136</td>
<td>0.5123</td>
<td>0.0564</td>
</tr>
<tr>
<td>Serial</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0311</td>
<td>0.3526</td>
<td>0.6656</td>
</tr>
<tr>
<td>Cumulative Sums(fwd)</td>
<td>0.9387</td>
<td>0.7382</td>
<td>0.802</td>
<td>0.9029</td>
<td>0.8424</td>
<td>0.8117</td>
<td>0.7024</td>
</tr>
<tr>
<td>Cumulative Sums(bwd)</td>
<td>0.7237</td>
<td>0.5147</td>
<td>0.9108</td>
<td>0.9662</td>
<td>0.9049</td>
<td>0.6438</td>
<td>0.9386</td>
</tr>
</tbody>
</table>

Algorithm 1 CDF based quantization algorithm
1: $F(x) = P(H(f_m, t) < x)$
2: $\eta_k = F^{-1}(\frac{k}{2^n}), k = 1, 2, ..., 2^K - 1$
3: $\eta_0 = -\infty$
4: $\eta_2K = \infty$
5: Construct Gray code b_k and assign them to different intervals $[\eta_{k-1}, \eta_k]$ where η_k is the quantization level.
6: key$(n, K) = b_k$, if $\eta_{k-1} \leq H(f_m, t_n) < \eta_k$

B. Information reconciliation and privacy amplification

There can be mismatch between the key generated in Alice and Bob due to the noise, hardware difference etc. Information reconciliation is used to correct the key discrepancy, either using error correcting codes or some interactive information reconciliation protocols [3]. In our scheme, secure sketch [21] is employed to make Alice and Bob agree on the same key.

Some information is publicly transmitted between Alice and Bob in the information reconciliation stage, which can also be heard by Eve. So privacy amplification using universal hash function is employed to remove the revealed information.

C. Randomness test

We use a statistical test suite provided by National Institute of Standards and Technology (NIST) [22] to evaluate the randomness of the key bit generated from the subcarrier’s channel response, which is commonly employed in key generation [2], [3], [10], [12], [23].

There are 15 tests in total. The null hypothesis under test is that the sequence being tested is random. All the tests return a P-value which summarizes the strength of the evidence against the null hypothesis. When the P-value is larger than the chosen significance level (α), the sequence is accepted as random. Typically, α is chosen in the range $[0.001, 0.01]$. In this paper, α is chosen as 0.01. Some tests require an extremely long sequence, e.g., several tests recommend the input sequence length larger than 10^6, which is currently not available in the simulation, thus we run 8 tests, half of all the 15 tests, which still satisfies NIST’s requirements [22].

We calculate each subcarrier’s $X\%$ coherence time, $T_{c,X\%}$, through its ACF, and then sample the $H(f_m, t)$ every $T_{c,X\%}$ time over the entire 400 s simulation time. We generate a relatively long sequence in order to draw a more reliable conclusion on the randomness of the key sequence. We test all the sampled sequences with NIST’s statistical test suite and compare their results; an example is shown in Table I. All the cells highlighted in grey are those failing the test (P-value < 0.01).

The poor performance on the “runs” test concurs with intuition. A run is an uninterrupted sequence of identical bits and the focus of the “runs” test is the total number of runs in the sequence. When the sample time is small, the channel is highly correlated, as the subcarrier’s channel response has a high possibility that the next sample’s amplitude has the same sign; thus it is quantized into the same bits whenever single-bit quantization is used, which results in less runs.

In previous work, any two channels that are separated by the coherence time is considered as uncorrelated [14] and usually 50% coherence time is used. However, it may be observed from the randomness test results, that it actually requires a correlation coefficient smaller than 50% between different samples in order to make the quantized key bits pass the NIST statistical randomness test.

D. Discussion

We have proposed a key generation scheme based on a particular subcarrier’s frequency response over time. Channel frequency response is a good representation of the channel. We can simultaneously extract the key from several subcarriers’ channel responses. Each generated key sequence can be concatenated to form a longer sequence or used independently for different applications. Key generation based on subcarrier’s channel response has several advantages. Compared with RSS...
based key generation, there are more than one subcarrier’s channel response available for extraction, which offers a potential to achieve much higher KGR. Compared with phase based key generation, channel estimation in OFDM system is quite mature and so the subcarrier’s channel response is easier to obtain than phase information, and with a higher accuracy. Thus compared to RSS and phase based schemes, subcarriers’ channel responses based key generation is more applicable to practical application in cryptography.

VI. Conclusion
In this paper, we propose a key generation scheme that extracts keys from the subcarriers’ channel responses. To the best of the authors’ knowledge, this is the first paper that tests the randomness of the key sequences generated from measurements sampled by different X% coherence time. Current research that uses RSS and CSI for key generation proposes using a figure of 50% coherence time as the time to sample the channel. However, we find that using 50% coherence time cannot guarantee the randomness of the key sequence. We have modelled both the channel taps and subcarriers’ channel response as WSS random processes and find they have the same ACF when all the channel taps have the same Doppler power spectrum. We sample a particular subcarrier’s channel response \(H(f_n, t) \) by X% coherence time and quantize the sampled measurements into key bits, whose randomness is tested by NIST’s randomness statistical test suite. Coherence time estimation of an indoor environment, and implementation of our scheme based on WARP system will be the focus of our future work.

References