The place of sperm DNA fragmentation testing in current day fertility management

Lewis, S. E. M. (2013). The place of sperm DNA fragmentation testing in current day fertility management. Middle East Fertility Society Journal, 18(2), 78-82. DOI: 10.1016/j.mefs.2013.01.010

Published in:
Middle East Fertility Society Journal

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2013 Production and hosting by Elsevier B.V. on behalf of Middle East Fertility Society. This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/3.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Sperm DNA fragmentation testing: To do or not to do?

Comment by: Khaldoun Sharif

Reproductively speaking, the package carried in the sperm is the paternal DNA, which upon union with the oocyte will potentially lead to the creation of an embryo and consequently a baby. Therefore, it is both biologically plausible and clinically tempting to assume that testing sperm DNA damage (the so-called fragmentation) will increase our understanding of fertility problems and help us decide the most suitable treatment for them.

A lot of work has been done in this field in recent years, and a search in Google Scholar for “sperm DNA fragmentation” between the years 2001 and 2012 showed 2390 publications, in contrast to only 20 such publications between 1991 and 2000.

So given this amount of published work, the biological plausibility and the clinical appeal of the idea, one would think that incorporating sperm DNA fragmentation testing in clinical practice is a given. Well, the experts disagree, and in this debate we have asked two world-renowned experts in the field to debate the ‘for’ and ‘against’ of sperm DNA fragmentation testing.

Khalidoun Sharif
Istishari Fertility Center, 44 Al Kindi St., Amman, Jordan Tel.: +962 799725555 E-mail address: k.sharif@mac.com

The place of sperm DNA fragmentation testing in current day fertility management

Comment by: Sheena E.M. Lewis

1. We know traditional semen analysis tells us little-why do we keep using an inadequate batch of tests?

Male infertility is the commonest cause of infertility yet we keep sidetracking it. It contributes to nearly 50% of the ~15% of couples of reproductive age. As a result of population aging and adverse changes in our lifestyle, infertility increases (with 4% more couples seeking ART per year) while we are only making a marginal improvement in pregnancy and birth rates after 30 years of trying. ART year on year (average live birth rate 21%, (6)). Why do we accept this as good enough for our patients? Why can we not improve? I believe that one major reason is that we do not understand the causes of male infertility at the molecular level. Furthermore, since the advent of intracytoplasmic sperm injection (ICSI), there has been no incentive to develop pharmaceutical therapies for male infertility. We believe we can get around the problem rather than solving it. But let us remember, in 30% of cases, women are subjected to invasive procedures for ICSI although they are fertile. Conventional semen analysis remains the only routine test to diagnose this condition although it cannot discriminate between the sperm of fertile and infertile men (10). This belief is reflected in the shifting values for normality (all ‘normal’ values are now lower) in the 5th edition of the WHO manual, (18) compared to previous WHO guidelines. Further, only 1% of sperm even reach the oocyte in vivo, so why would we expect an analysis of the widely ranging gross parameters of the whole ejaculate to give strong discriminatory information? That approach is simply not scientific. All that a semen analysis can do is identify men whose chance of achieving a natural pregnancy is very low i.e. they have few or no sperm…!

1.1. Why test sperm DNA?

Over the last decade, a plethora of studies (11) have confirmed that sperm DNA damage testing has strong associations with every early fertility check point. These include impaired fertiliza-
tion, slow early embryo development, reduced implantation, miscarriage and, in animal studies, birth defects in the offspring. Childhood cancers have also been associated with oxidative damage to sperm DNA as a consequence of paternal smoking.

What couples would benefit from a sperm DNA test? To answer this question, we must first ask another. Why are we testing sperm DNA? The answer is so that we may guide couples with low damage to intrauterine insemination (IU) or in vitro fertilization (IVF) and guide those couples with high DNA damage to ICSI (reasons why these sperm are successful after ICSI will be explained later). So, the only group who would not benefit from testing is that of couples with oligo-astheno-terato-zoospermia as there is no treatment other than ICSI for them.

As for all other categories of couples, sperm DNA testing will provide essential information on which clinics can guide couples to bespoke treatment for their particular needs. These include couples with unexplained infertility, men with normal semen by semen analysis prior to embarking on IVF, couples who have had unsuccessful IVF and couples who have had miscarriages.

1.2. What tests are currently available for sperm DNA damage?

For a sperm DNA test to be clinically useful it must have strong predictive capacity for pregnancy with little overlap between fertile and infertile samples. The four tests most often used today are the Comet assay, SCSA, the terminal transferase dUTP nick end labeling (TUNEL) assay, and the Sperm Chromatin Dispersion (SCD or Halo) test. Sperm DNA tests are all different. Just as apples are NOT oranges! Both are fruits but they are very different types of fruits. The current range of sperm DNA tests measure different aspects of DNA damage and have different sensitivities. That is why combining them in a meta-analysis (19) must be viewed with a little caution.

2. The Sperm chromatin structure assay

The SCSA is a fluorescence cell sorter test which measures the susceptibility of sperm DNA to denaturation after exposure to heat or acid conditions. A strength of SCSA is its ability to measure large numbers of cells rapidly. This gives it robust statistical power. It measures only single stranded fragments, and has demonstrated repeatedly strong associations between native, although not DGC, sperm and ART outcomes. In terms of sensitivity, it can detect sperm DNA damage in ~20% of unexplained couples. However, the SCSA test has been tried and tested over many years and has a standardized protocol for all users. This has reduced inter-laboratory variation and allowed comparison of studies from different groups globally. The clinical threshold is a DNA fragmentation index (DFI) of 30% - that means 30% of the sperm have damage (with quantification into moderate or high damage) and 70% have no detectable damage. Couples with >30% damage are more likely to have success with ICSI than IVF.

3. The TUNEL assay

The TUNEL assay detects ‘nicks’ (free ends of DNA) by incorporating fluorescently stained nucleotides. This allows the detection of single and double stranded damage. The cells can be assessed either microscopically or by flow cytometric (FCM) analysis. A disadvantage of the assay is its many protocols, which makes comparison between laboratories almost impossible and explains many clinical thresholds. Recently, Aitken’s group (2011) (14) has improved the TUNEL assay by including a preliminary step of DDT to relax the whole chromatin structure and allow access to all ‘nicks’. They have also added a viability stain so that DNA damage is measured only in live sperm. This has eliminated a previous inaccuracy of measuring damage (often at high levels) in dead cells. The TUNEL has major potential but robust clinical thresholds have yet to be established.

4. The sperm chromatin dispersion (Halo) test

The Halo test is a ‘cheap and convenient’ kit form of sperm DNA testing. It is a simple and inexpensive assay, available in fertility labs for in house use. Unlike all the other tests, it measures the absence of damage rather than the damaged DNA in sperm. One limitation of the assay is that its low-density nucleoids are relatively faint, with less contrasting images. To date, correlations have been observed between DNA and other sperm parameters, although few correlations between sperm DNA damage and ART outcomes have been established with the Halo test, even in large studies.

5. The Comet assay

The comet assay is a second generation sperm DNA test. Unlike the other three tests, it quantifies the actual amount of DNA damage per sperm. As the mass of DNA fragments stream out from the head of unbroken DNA, they resemble a ‘heavenly comet’ tail, hence the name of the assay. One major advantage of this assay is that it uses only 5000 sperm, so is suitable for the assessment of small samples left over from clinical use, or for samples where only a few sperm are available. The Comet assay can measure both single and double strand breaks, and with an additional step can measure even altered bases. This is useful, because we do not yet know which types of DNA damage are most deleterious to male fertility. The Comet is sensitive, repeatable and capable of detecting damage in every sperm (even those of fertile donors). Since 2010, clinical thresholds for the diagnosis of male infertility and the prediction of successful IVF have been established.

5.1. Unexplained infertility is unexplained no more

As we all know, unexplained infertility is a very unsatisfactory diagnosis for couple and clinic alike. In our latest study we have shown that 80% of couples diagnosed with idiopathic infertility have sperm DNA damage (>25% damage per sperm). This suggests that sperm DNA damage is the cause of infertility in a substantial number of men if we compare these levels of damage we reported in sperm of donor men with proven fertility (15). We also reported that 40% of these couples had such high sperm DNA damage (>50%) that IVF had very poor success for them. Couples with idiopathic infertility had lower live birth rates following IVF (15%) compared with couples undergoing IVF (20%) following the detection of a female problem. This finding is also reflected in disappointingly low effectiveness of the IVF treatment when measured as the
cumulative incidence of live delivery after commencing IVF treatment. Previously we would have expected these couples to have high success rates since we could detect no anomalies but we now know this is a mis-diagnosis. Offering them IVF or in some cases (IUI) without DNA testing can lead to treatments with very low chances of success. From the clinic’s viewpoint, using IVF for these couples is a poor choice too as it reduces their overall IVF success rates.

5.2. The benefits of sperm DNA testing

For all couples having IVF, after diagnosis with a female factor, sperm DNA fragmentation also has a close inverse relationship with live birth rates. Our latest results (15) were based on dividing couples into groups depending on the severity of their sperm DNA damage. Those with sperm DNA fragmentation (<25%) had live births of 33% following IVF treatment. In contrast, couples with sperm DNA fragmentation (>50%) had a much lower live birth rates of 13% following IVF treatment.

If we were to incorporate this new information into routine clinical care, we could direct these patients straight to ICSI treatment thus avoiding loss of valuable biological time, cost of failed cycles and heartache after repeatedly unsuccessful cycles of IVF treatment.

Further compelling reasons for testing sperm DNA come from its strong associations with miscarriage. A systematic review and meta-analysis (16) of 16 cohort studies (2969 couples), 14 of which were prospective studies which examined the effect of sperm DNA damage on miscarriage rates was performed. We used the terms ‘DNA damage’ or ‘DNA fragmentation’ combined with ‘miscarriage’, ‘abortion’ or ‘pregnancy’ to generate a set of relevant citations. Sub-group analyses were performed by the type of DNA damage test, whether the sperm examined were prepared or raw ejaculate and IVF or ICSI treatment. The meta-analysis showed a significant increase in miscarriage in patients with high DNA damage compared with those with low DNA damage (Risk Ratio (RR) = 2.16 [1.54, 3.03], P < 0.00001).

5.3. A fresh look at the ‘evidence’ against Sperm DNA damage testing

The meta-analyses of Zini and Sigman (19) and of Collins et al. (5) were the first to bring all the sperm DNA data together and highlight the substantial body of work. However, we must view their conclusions with caution due to the significant heterogeneity of different assays, different female ages, some sperm from raw semen, some from prepared sperm, different ART endpoints and different thresholds for clinical significance. The primary objective of the ESHRE position paper in 2009 was not to support or refute clinical DNA testing. The couples with sperm DNA fragmentation also has a close inverse relationship with live birth rates. Our latest results (15) were based on dividing couples into groups depending on the severity of their sperm DNA damage. Those with sperm DNA fragmentation (<25%) had live births of 33% following IVF treatment. In contrast, couples with sperm DNA fragmentation (>50%) had a much lower live birth rates of 13% following IVF treatment.

If we were to incorporate this new information into routine clinical care, we could direct these patients straight to ICSI treatment thus avoiding loss of valuable biological time, cost of failed cycles and heartache after repeatedly unsuccessful cycles of IVF treatment.

Further compelling reasons for testing sperm DNA come from its strong associations with miscarriage. A systematic review and meta-analysis (16) of 16 cohort studies (2969 couples), 14 of which were prospective studies which examined the effect of sperm DNA damage on miscarriage rates was performed. We used the terms ‘DNA damage’ or ‘DNA fragmentation’ combined with ‘miscarriage’, ‘abortion’ or ‘pregnancy’ to generate a set of relevant citations. Sub-group analyses were performed by the type of DNA damage test, whether the sperm examined were prepared or raw ejaculate and IVF or ICSI treatment. The meta-analysis showed a significant increase in miscarriage in patients with high DNA damage compared with those with low DNA damage (Risk Ratio (RR) = 2.16 [1.54, 3.03], P < 0.00001).

5.4. Reasons why sperm with poor DNA are successful in ICSI

One question that has exercised my mind much upon analyzing the data is ‘Why do sperm with DNA damage not reduce success following ICSI?’

I have four hypotheses (all based on sound studies) to explain this:

1. **Reproductive Efficiency**: Sperm that have DNA damage may have lower overall reproductive efficiency, but when combined with other factors during fertilization, they may still achieve success.
2. **Assay Sensitivity**: The methods used to detect DNA damage may not be sensitive enough to detect all abnormalities, allowing some potentially damaged sperm to contribute to successful fertilization.
3. **Epigenetic Influence**: Sperm with DNA damage may have altered epigenetic marks that could enhance their ability to fertilize an egg, despite the genetic imperfections.
4. **Mitochondrialtalk**: Sperm with damaged DNA may have a lower mitochondrial function, which could help them during the ICSI process despite their genetic challenges.
Debate 81

caused by oxidative stress (1) and so these sperm are producing reactive oxygen species. If they are used in IVF, the oocyte may be exposed to oxidative assault during the overnight incubation from these ~0.5 million sperm. In ICSI, the oocyte is protected from this attack and can use its energies to repair the damage in the sperm immediately following fertilization. Finally, there is now evidence that embryos created from sperm with high DNA damage are associated with early pregnancy loss (reviewed by Robinson et al. (16) so ICSI success rates are sometimes affected adversely by sperm DNA damage, but at a later stage.

5.5. Limitations of sperm DNA testing

The major limitation of testing for sperm DNA damage is that the assay renders the tested sperm unsuitable for clinical use. In an effort to overcome this problem, a number of non-invasive tests have been developed and their correlation with DNA damage assessed. These novel test include Birefringence, Intracytoplasmic morphologically selected sperm injection (IMSI) and Hyaluronic acid-selection of sperm for ICSI. If these tests can help embryologists choose sperm with low DNA damage for ART, a major step forward in sperm selection will be achieved, but presently this is not the case.

5.6. Why wait? The benefits for clinics and couples

Couples will avoid the loss of valuable biological time, the cost of failed cycles and the heartache of repeatedly unsuccessful cycles of IVF treatment. Unexplained couples will get a diagnosis and thus directs to the best treatment for them. Happier, better informed couples will spread the word of their clinic’s success.

Clinics will have improved IVF success rates, a scientific rationale for using ICSI and additional revenue from appropriate male fertility testing. Their greater success rates will help them retain their patient bases (with couples attending for their next child).

Alas, although some of these novel biomarkers (particularly sperm DNA testing) have increasingly robust data to support them, there is still a reluctance to incorporate them into routine clinical care. While this inertia continues and our traditional tests prevail, it seems unlikely that success rates in the treatment of male infertility will improve and success rates will be doomed to mediocrity.

References

11. Lewis Sheena EM, John Aitken R, Sarah J Conner, Geoffry De Iuliis, Donald P Evenson, Ralph Henkel, Aleksander Giwercman, Parviz Gharagozloo. The impact of sperm DNA damage in assisted conception and beyond: Recent advances in diagnosis and treatment. Reprod Biomed 2013 [accepted for publication].
Andrology is desperate for a new assay – Let us make sure we get it right this time . . .

Comment by: Christopher L.R. Barratt, Steven A. Mansell

Although the diagnostic and predictive value of traditional semen parameters is limited, two facts are clear: (1) at the lower ends of the spectrum, e.g. low concentrations of motile spermatozoa, there are significantly higher chances of sub fertility (9,11) (2) except in rare cases values above these limits of semen analysis provide minimal diagnostic clarity (14). Consequently, semen analysis is very helpful, but andrology requires more robust sophisticated functional assays to be placed in the patient’s pathway to assist/change management decisions. Unfortunately, the search for this Holy Grail has been littered with false dawns (2,13) continually blighted by two key problems (1) poor technical and methodological control of purported assays (2) low quality clinical trial information example by poor design often accompanied by low numbers. Not surprisingly, the resultant data often produce conflicting results.

Two key questions arise: will the testing of DNA and its packaging in the human spermatozoan be an important tool in the armamentarium? Is it not already (3)? We suggest the answers here are yes and no, respectively.

The assessment of DNA integrity in the spermatozoon is not new. In 1980, a landmark publication by Don Evenson suggested that DNA integrity may be a useful and potentially independent marker of fertility for both animals and men (8). Significant data are now available to suggest that higher levels of DNA damage is present in men with severe sperm defects and is an indication of a potentially negative impact on both natural and assisted conception outcomes (4). So why do we answer no to the second question? Simply, aside from a relatively low (but significant negative) influence of high levels of DNA on miscarriage (15), three comprehensive reviews of the clinical data concluded that the significance of sperm DNA integrity assessment for natural and ART remains unclear (7,4,16). Routine testing is not supported. This has been reinforced recently by the clinical practice guidelines produced by the British Fertility Society (19). The BFS concludes that ‘there is evidence of a relationship between sperm DNA damage and either semen parameters and/or outcome of assisted conception. However, reports conflict and depend largely on the laboratory test utilized. Results are unlikely to alter patient management’. The draft document presented by the American Society for Reproductive Medicine (1) on ‘The clinical utility of sperm DNA integrity testing: a guideline’ concurs with these conclusions. Its final recommendation is: ‘there is insufficient evidence to recommend the routine use of sperm DNA integrity tests in the evaluation and treatment of the infertile couple (Evidence Level B)’.

These are powerful, consistent and persuasive conclusions. But why is this so? Unfortunately assessment of DNA is affected by the three key problems identified for sperm function testing. Firstly clear technical difficulties of performing the three key assays used to test DNA integrity in sperm – SCSA, TUNEL and Comet have affected their clinical usefulness. However, rigorous attention to detail and defined methods now exists for all these methods, e.g. see (12) for TUNEL. Application of robust protocols will, hopefully, minimize future methodological challenges. Secondly, to date the clinical evidence is based on relatively low numbers and poorly designed trials. Surprisingly, in this area there are a large percentage of uncritical reviews compared to primary data which distort the field (3). In 2012 for example there was only one high quality clinical study examining outcomes for IVF/ICSI using relatively large numbers (18). This is very disappointing and unacceptable. No progress will be made if this is not urgently addressed. Thirdly, it has been unclear where the assays (when validated) fit within the patient pathway. For example, diagnostic tests can be used as replacement, triage or add-on with their usefulness being dependent on a large number of factors (6). A critical factor will be cost effectiveness. Two examples suffice here. Mitchell and colleagues showed that the TUNEL assay was highly correlated to sperm viability (12) demonstrating that a simple viability assay could effectively replace an expensive estimate of DNA damage. But why is this so? Unfortunately assessment of DNA is affected by the three key problems identified for sperm function testing.

For the field to progress we must address the above points. These are not new (10) or specific to reproductive medicine (5). However, to date, DNA damage assays have not been evaluated in a critical manner and, quite simply, they need to be. We are very hopeful that this will occur and DNA assessment