Cross comparison of two Analysis Tools for a Braceless Semi-Submersible Wind Turbine Versus Ocean Basin Test Results

Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 The Authors.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Cross comparison of two Analysis Tools for a Braceless Semi-Submersible Wind Turbine Versus Ocean Basin Test Results

Dr N. Lampropoulos¹ and Dr Majid Karimirad²,³

¹Research Associate, Center for Renewable Energy Sources and Saving (CRES), Greece
²Currently: Senior Lecturer, Civil Engineering, School of Natural and Built Environment, Queen’s University Belfast (QUB), UK
³Previously: Scientist, MARINTEK (SINTEF Ocean) from January 2017, Trondheim, Norway

Abstract

In the frame of the IRPWind project (Integrated Research Programme on Wind Energy), a benchmark is going on for comparing the numerical tools versus results obtained from ocean basin tests. A braceless semi-submersible wind turbine platform is considered herein. Real-time hybrid model (ReaTHM*) tests were done at 1:30 scale in MARINTEK’s Ocean Basin in 2015 (https://www.marinetek.net/marine). The goal was to estimate the performance of a novel hybrid technique which avoids the use of a physical turbine for reproducing the aerodynamic loads. Instead, these being representative of the Northern North Sea wind conditions, were in real time calculated by a Blade Element Momentum (BEM) software and subsequently applied by a 5-degree-of-freedom actuators on the structure. The mooring system was typical of a three catenary mooring lines while the waves were produced by flapping mechanisms at basin’s borders. The above mentioned system produced experimental results that were taken as reference for calibrating numerical hydrodynamic and structural models [1, 2, 3].

Methods

Two distinct methods are cross-compared in this work (https://www.marinetek.net/marine). On the one hand, SIMA (Advanced Analyses of Marine Operations and Floating Systems) is the state of the art numerical tools of MARINTEK for coupled/integrated simulations of floating offshore structures considering aero-hydro-servo-elastic formulations. It is an almost linear time-domain simulation tool which can capture all of the relevant hydrodynamic and aerodynamic loads, incorporate the control system actions and logic, and compute the structural response. On the other hand, HydroFoam is a combination of two open source tools forming a high fidelity analysis software for floating wind turbines. The first one is OpenFOAM v3.0.0 which predicts the hydrodynamic forces exerted on a moving floating through full CFD simulation, namely the Volume of Fluid method for two phase flows (air-water). Turbulence is accounted for through k-epsilon RANS model. The concatenated chain model accounts for internal axial stiffness and damping forces, weight and buoyancy forces, hydrodynamic forces from Morison’s equation, and vertical spring-damper forces from contact with the seabed [4]. Upon application of the constant excitation force (see figure upper, left) the platform reaches a terminal position as depicted in figure (upper, right) having a realistic inclination. The offset from the initial position matches with the experimental value (see figure, lower) while the estimated maximum line tension matches within a 6% error with the experiment. The full pull out results are available at the following site: (http://windbench.net/pull-out-tests).

In the present work a cross comparison between an engineering tool (SIMA) and a high level CFD software (HydroFoam) is attempted. While the former has reached a certain degree of maturity, the latter is a promising method for simulations under extreme weather conditions where the application of potential theory is very challenging. Nevertheless, the computational overhead induced by the CFD method decelerates the development of the code. The preliminary results provided by a fully unsteady simulation on calm water with constant excitation seems promising.

References

Acknowledgement

We are grateful to SINTEF Ocean (fmr. MARINTEK) and NTNU (Norwegian University of Science and Technology) for the permission to use the data from the NOWITECH model tests (www.nowitech.no).