The impact of video technology on learning: A cooking skills experiment


Published in:
Appetite

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 30. Mar. 2019
Title: The impact of video technology on learning: a cooking skills experiment

Authors: Dawn Surgenor\textsuperscript{a}, Lynsey Hollywood\textsuperscript{b}, Sinéad Furey\textsuperscript{c}, Fiona Lavelle\textsuperscript{d}, Laura McGowan\textsuperscript{e}, Michelle Spence\textsuperscript{f}, Monique Raats\textsuperscript{g}, Amanda McCloat\textsuperscript{h}, Elaine Mooney\textsuperscript{i}, Martin Caraher\textsuperscript{j} and Moira Dean\textsuperscript{k}.

\textsuperscript{a,b,c}School of Hospitality & Tourism Management, Ulster University (Coleraine campus), BT52 1SA, United Kingdom.

\textsuperscript{d,e,f,k}Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, UK.

\textsuperscript{g}Food, Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, UK.

\textsuperscript{h,i} Home Economics Department, St. Angela's College, Sligo, Ireland

\textsuperscript{j}Department of Sociology, School of Arts and Social Sciences, City University London, UK

Email addresses: Dawn Surgenor (D.McdowellD-10@email.ulster.ac.uk); Lynsey Hollywood (l.hollywood@ulster.ac.uk); Sinéad Furey (ms.furey@ulster.ac.uk); Laura McGowan (laura.mcgowan@qub.ac.uk); Michelle Spence (m.s.spence@qub.ac.uk); Fiona Lavelle (flavelle01@qub.ac.uk); Monique Raats (m.raats@surrey.ac.uk); Amanda McCloat (amccloat@stangelas.nuigalway.ie); Elaine Mooney (emooney@stangelas.nuigalway.ie); Martin Caraher (M.caraher@city.ac.uk) and Moira Dean (moira.dean@qub.ac.uk).
Author Note: Correspondence concerning this article should be addressed to Dawn Surgenor, Ulster University Business School, Department of Hospitality and Tourism Management, Coleraine, County Londonderry, BT52 1SA.

Contact: McDowell-D10@email.ulster.ac.uk
Abstract

This study examines the role of how video technology impacts on learning, more specifically, the development of higher technical cooking skills. The study explored the views of 141 female participants on their perceptions of how video technology can promote confidence in learning new cooking skills to assist in meal preparation. Participants took part in a cooking experiment to assess the most effective methods of learning for low-skilled cooks across four experimental conditions (recipe card only; recipe card plus video demonstration; recipe card plus video demonstration segments, conducted in stages; and recipe card plus video demonstration ‘free access video demonstrations). Focus group findings revealed that video technology promoted cooking skills in the following ways: (1) visualisation of the cooking process; (2) reassurance during the process; (3) application of learning or replication of the process (4) flexibility to work at your own pace; (5) selective access to the video where required. Key learnings identified that video technology was perceived to be most effective when: (1) experiencing a new cooking skill (2) reinforcing a more advanced technical skill. These findings display the potential for video technology to enhance cooking skills among low-skilled individuals wishing to cook from scratch using fresh ingredients.

Key Words

Cooking skills, cooking confidence, technology, mobile digital technology, video, cooking demonstration.
1.1 Introduction

Research indicates that video’s facility to listen repeatedly to information is likely to be a mediating factor in reinforcing learning through increased motivation and engagement (McKinney et al., 2009). Video provides individuals with the opportunity to control the speed and the pace of information being presented, allowing them to process the content more effectively, before more information is presented and lost (Walls et al., 2009). Although there has been extensive research around technology and skills development, to date there are few studies on the impact of video technology on cooking skills development and engagement in the domestic environment.

1.2 Societal Changes in Domestic Cooking

Convenience has emerged as a key factor in consumer food choice, and many social and environmental factors have contributed to a decline in time spent in the kitchen (Jackson and Viehoff, 2016, Pula et al., 2014, Caraher and Lang, 1999) Industrialisation, urbanisation, commercialisation and social change have converted the social and economic landscape globally and in the UK where financial and lifestyle changes have resulted in changing eating patterns (Utter et al., 2016). There is evidence of a changes in traditional eating habits, a greater availability of high energy, ready-made convenience foods, and eating outside the home more often, with resulting over consumption (Jackson and Viehoff, 2016). Correspondingly there has been an escalation of consumer spending in the convenience food sector correlating with a lack of cooking skills (Mintel, 2010; Mintel, 2016; Jabs and Devine, 2006), where lower end-cost, pre-packaged convenience meals are generally energy-dense, high in fat and salt and low in micronutrients and fibre which inevitably contribute to dietary inequalities and ill-health. In recent decades the focus of policy makers and health promotion professionals has been the conservation of domestic cooking skills through health campaigns to promote awareness and
the facilitation of community cooking interventions to develop knowledge and skills albeit without an adequate or robust evidence base to support such initiatives (Reiks et al., 2014; Rees et al., 2012). Cooking skills interventions have become a popular tactic used to improve diet quality among the general population. In addition, policy debate has promoted the merits of cooking skills interventions to deliver wider public health policy solutions (Garcia et al., 2014; Condrasky and Helger, 2010). However, upon a review of the literature to date on cooking skills interventions, few studies have incorporated the use of digital technologies to support the development of individual cooking skills.

1.3 The Use of Digital Technology in Promoting Domestic Cooking Skills

Research into the effectiveness of video in enhancing learning has revealed wide ranging benefits in terms of cost as well as meeting the learning requirements of the digital native (meaning those who grow up with digital technology) (Prensky, 2010). Prensky (2010) contends that digital natives are used to receiving information at speed therefore the flexibility of video using portable devices may offer more efficient learning (Lim, 2005). Indeed there has been an increased emphasis on the use of digital technology to promote skills development through use of video across social media platforms and smart phone Apps (Comiskey, 2010; Whatley and Ahmed, 2007). Videoed cooking demonstrations and those presented on television, have tended to facilitate the full process, step by step, and often with some spoken information on for example the sourcing of fresh local ingredients or nutritional facts concerning the dish being created. Current thinking however suggests that as educators, it is necessary not to simply replicate steps and stages of a process but to consider the needs and learning requirements of the audience in order to fully engage and motivate them. Therefore it
is necessary to consider what environmental changes must be introduced to best meet the needs of the intended target audience. Watson (2006) states;

"We spend a lot of time trying to change people. The thing to do is to change the environment and people will change themselves"

(Watson, 2006 p24).

For most individuals, the digital device itself, for example, a smart phone or tablet, is close at hand with rapid internet access; and as more people choose portable devices to access this, the way in which they acquire their information has and continues to change (Ericsson, 2010). Several studies have utilised small screens, such as iPods in the school environment (Kellems & Morningstar, 2012; Rayner, 2011; Murray and Olcese, 2011) and handheld computers (Cihak, Kessler, and Alberto, 2008) as electronic prompting devices however few studies to date have focused on the domestic setting. Regardless of the differences in tasks and materials, video in these studies has been found to be effective in developing a range of skills. Few studies to date have specifically addressed the use of video technology to improve cooking skills.

1.4 How Digital Technology Impacts on Learning

Wishart (2016) contends that visualisation is especially relevant in understanding key concepts, and the visual nature and audible content of video serves as a substantial learning tool. Indeed according to Mayer’s (2001) cognitive theory of digital learning, an individual’s information processing system is separated by cognitive channels to differentiate visual and auditory stimuli. Learning is accessed by integrating the information from these separate channels suggesting that learners can process only a limited amount of information at any given time. This is highlighted through empirical research, which found that if a large amount of visual and verbal stimuli are
offered simultaneously, the learner experiences cognitive overload and cannot reach maximum understanding of the content (Mayer, 2001). However, because video offers the functions of repeated access and control of the speed and pace of the verbal and visual stimuli offered, cognitive overload is decreased. This paper proposes that using video technology to teach cooking skills has the potential to improve learning, engage individuals in the cooking process and have a positive influence on diet quality. The aim of this study is to gain greater understanding of individuals’ perceptions of using digital technology, specifically video technology, to assist the cooking process.

2.0 Research Context: Cooking Skills

The data presented in this paper is part of a larger study addressing the impact of cooking and skills and the role of technology in the promotion of cooking and their influence on the healthiness of diets in adults aged 20-60 years. Quantitative data was collected via a nationally representative consumer survey to measure cooking and food skills on the IOI and investigate their relationship with socio-demographic and psychological factors. Qualitative techniques (interviews, experiment and focus groups) explored individual behaviours and use of cooking skills. The data reported here is part of larger study involved a mixed methods approach using qualitative and quantitative techniques on the island of Ireland. This paper presents the qualitative findings of the focus groups which followed the cooking experiment.

2.1 Sample

One hundred and sixty participants were recruited to take part in the cooking experiment [40 participants x four experimental conditions]. All were selected using specific recruitment criteria based on results from the survey used within the larger study which identified the most
vulnerable groups in relation to cooking and food skills ability. Participants were recruited according to the following criteria: (a) female; (b) cook for a family; and (c) consider themselves as low-ability cooks. The final sample consisted of 141 participants (64 from St Angela’s College Sligo, and 77 from Ulster University Coleraine) across 16 focus groups. A total of 21 participants withdrew from the study for various reasons (e.g. unexpected commitments, non-attendance and illness). The sample size of each experimental condition is described as follows: condition one (n=34); condition two (n=33); condition 3 (n=35) and; condition 4 (n=39).

2.2 Methodology

To explore individual perceptions of video technology on cooking skills, a cooking experiment followed by a focus group discussion was used. Within the experiment participants were asked to prepare a lasagne using fresh ingredients, and were allocated as a group into one of four experimental conditions as illustrated in Table 1.

Table 1 Experimental Content and Measures

<table>
<thead>
<tr>
<th>Condition</th>
<th>Content</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>Recipe card only</td>
</tr>
<tr>
<td>2</td>
<td>Video modelling</td>
<td>Full video demonstration + recipe card</td>
</tr>
<tr>
<td>3</td>
<td>Video prompting</td>
<td>Step by step skills video + recipe card [view full sequence of skills]</td>
</tr>
<tr>
<td>4</td>
<td>Video prompting</td>
<td>Step by step video + recipe card [view skills as needed]</td>
</tr>
</tbody>
</table>
This paper will focus specifically on the results of the focus group discussion wherein participants reflected on their use and perceptions of the video technology used in the experiment. Each focus group discussion was based on the appropriate experimental condition therefore only one experimental condition was discussed in any given focus group.

2.3 Procedure

Data were collected in 16 focus groups facilitated at Ulster University, Coleraine and St. Angela’s College, Sligo and facilitated by an experienced moderator (DS). Each focus group began with an ice-breaker activity requesting participants to introduce themselves and state how often they cooked from scratch. The moderator then provided instruction on ground rules of the focus group discussion (e.g. not talking over each other, the importance of confidentiality) before proceeding to a series of guided open-ended topics. Results from the literature review and data from an earlier round of interviews from the larger study informed the development of the focus group topic guide (Table 2). Each focus group was conducted immediately after the cooking experiment, lasted between 50 and 65 minutes and was audio recorded. An assistant moderator (FL) was also present to take notes to help focus the discussion. At the end of each focus group, participants were thanked and an honorarium of £60 (60 Euros) was paid and a free copy of a safefood cookbook given to each participant for their time and to remunerate the travel costs of study participation.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Aids/activities</th>
<th>Description</th>
<th>Duration</th>
</tr>
</thead>
</table>
| Introduction                 | Participants may use pre survey and post self-evaluation sheets                   | • Facilitator introduction  
• Boundaries of the focus group and contracting including recording consent                                                                                                                                         | 5 minutes|
| Confidence Levels            | Check dishes in oven and serve  
Taste testing Participant taste testing evaluation sheet. | • What was your perceived confidence ability in cooking lasagne from scratch prior to the task?  
• Has this confidence changed as a result of the experiment?                                                                                                                                     | 5 minutes|
| Evaluation of dish           |                                                                                   | • Individual perception of taste and appearance of the finished dish - How does it taste?  
• Comparisons with group participants’ dishes?  
• Is this what was expected in terms of ability and taste of the finished dish?                                                                                                               | 20 minutes|
| Barriers/ Facilitators to cooking from scratch |                                                                                   | • How challenging did you find the task? What were the most/least challenging aspects of the task?  
• What would encourage/discourage you to cook using fresh ingredients at home?  
• What additional barriers do you consider prevent you from cooking this or a similar dish in the home environment? | 10 minutes|
| Identification of skills used |                                                                                   | • What skills can you identify in cooking lasagne?  
• Do you consider these skills achievable in your home?  
• Which skills did you consider most challenging?  
Would you practise these to enable you to cook this or a similar dish at home?                                                                                               | 5 minutes|
| Use of technology            |                                                                                   | • Do you have home access to the internet?  
• Do you use the internet to assist with learning practical skills?  
• Can you think of an example?  
• Group 1 – Do you consider the task as more/less challenging because of lack of visual demonstration?  
• Groups 2-4 – How do you consider technology to have assisted/hindered learning?                                                                 | 10 minutes|
 Groups 2-4 – Are there aspects of this form of learning which you consider particularly useful?
Would you consider using technology to assist with home cooking?
What part do you consider technology can play in promoting cooking from scratch in your own homes?

| Transferability of skills/learning to the home setting | • Considering the skills you identified earlier - Can you think of other meals where you might incorporate skills developed today, or different ingredients for example you may like to change or incorporate ingredients to make the dish healthier or more preferable for the family’s taste?
• What would you do differently next time? |
| Summary and ending | 5 minutes |

2.4 Analysis

All discussions were digitally recorded, professionally transcribed and uploaded to the qualitative analysis software Nvivo 10 (QSR International Pty Ltd, Victoria, Australia). An inductive coding approach was used to identify a comprehensive set of evolving codes to: (1) summarise the raw data and (2) establish links between the research aim and the raw data. Using a sample of two transcripts initial codes were generated independently by two researchers (DS and LH) and discussed in a process of triangulation for the purposes of developing a codebook to be applied to the remainder of the data. To ensure inter-coder reliability, a further three transcripts were coded and agreed. Codes were then grouped together to form potential themes in relation to the aim of the study. Verbatim quotes are displayed with the day, focus group number, experimental condition and the location in which the focus group was held, respectively, following in parentheses.
3.0 Results and Discussion

Results are presented addressing participant perceptions of the use of technology within each condition. In addition, results were analysed across experimental conditions to identify key themes highlighting the benefits of technology to promote cooking skills.

3.1 Condition 1 - control group (recipe card only)

Within this experimental condition participants did not have access to a video demonstration or images of each stage of the cooking process, only written information on a recipe card with a small thumbnail picture of the lasagne. The reported outcomes of Condition 1 indicated that the text-only recipe did enable the participants to produce an end product; however those who had not experienced this process before lacked confidence and expressed concerns with certain technical (cooking skills) aspects of the recipe.

“I suppose, with the white sauce, you think you’re doing it wrong with the recipe card. I've not made it before so I lobbed the milk in too quickly. If you'd seen it being done first you'd know you were doing it wrong before you went ahead. Yeah, if you want to learn something new, even, it’s good to see how other people do it.” (2, 2, 1, R.O.I.)

In addition participants discussed their ability to visualise the end product (lasagne) but struggled to visualise certain steps and stages within the recipe (béchamel sauce). Subsequently, participants suggested that a sequence of images reflecting each stage of the process would have been more helpful than written text instruction.
“I have made it from scratch but I’ve never made the cheese sauce from scratch, so that was an experience! I kind of found, as I was going through, I hadn't a clue if I was doing it the right way. I think you'd need to see what the end product is supposed to look like after the meat, then the cheese sauce. Especially through the cheese sauce even if you had pictures.” (2, 1, 1, N.I.)

Wishart (2016) contends that visualisation is important in understanding key concepts, and as a result, emphasised the visual nature of video as a beneficial learning tool. This condition lacked the visual aspect of outlining the steps involved in the cooking process and participants highlighted this where they reported a lack of visual expectation in terms of what was required from them in completing each stage of the task. Results underlined the importance of visualisation in developing confidence and reassuring the participants that they were following the cooking process correctly.

3.2 Condition 2 - Video demonstration - (watch full video before task + recipe card)

Within this experimental condition participants watched the video demonstration in advance and had access to the recipe card. The outcome of Condition 2 revealed that the majority of participants positively perceived the video technology, specifically discussing how it improved their technical skills required in béchamel sauce making. While results indicated that viewing the video in its entirety prior to the experiment led to an increased inability to recall all of its content, participants did discuss how they retained specific images in key stages of the experiment. This result was particularly evident during the sauce making process, offering reassurance of following the correct process.
“I forgot exactly what to do when I came to make it, but I remembered that the sauce was supposed to look really thick to start with, so I knew I did it right.” (3, 2, 2, R.O.I.)

“I probably wouldn’t have been able to do it unless I’d watched the video first because I would have thought I’d have made a mess of it and given up. ... When you remembered back to the video you realised you were ok.” (3, 1, 2, N.I.)

The majority of participants within this condition expressed a preference to follow recipe text rather than instruction via video however this may have been due to their prior experience of making a bolognese sauce consequently not finding this part of the video beneficial. However, results did highlight the significance of visualisation in the development of cooking skills. In this instance, individuals did consider seeing the demonstration prior to beginning the experiment beneficial for anticipating that certain stages within the cooking process were being completed correctly.

3.3 Condition 3 - Video demonstration (watch each segment then cook + recipe card)

Within this experimental condition, participants watched a total of five segments of the video demonstration in pre-determined stages while cooking the recipe and had use of the recipe card. The outcome of this condition demonstrated that the majority of participants positively perceived the video in terms of the staged sequencing of the cooking process. Participants were aware of how the consistency of the béchamel sauce should appear once prepared, however were uncertain of what the viscosity should be throughout the stages of the sauce-making process. Watching the video offered them a visual expectation of the cooking process and
provided them reassurance that they were following each stage of the cooking process correctly.

“I can’t remember what it was but I got a video on how to prepare fish because I didn't know where to start, and you could do it in stages like we did today by stopping and starting it ... You could see exactly what to do, and follow it.” (3, 3, 3, N.I.)

In addition, results indicated that the step-by-step sequencing reduced the need to recall aspects of the recipe as they simply followed the video in real time.

“You can pause it where they’re at and catch up, so you're not having to remember things.” (1, 2, 2, N.1.)

Results indicated that this real time step-by-step process also allowed participants to work at their own pace by stopping and starting the video as and when needed.

“I’d watch it first when I’m trying to figure out what I’m doing.... I’ll, you know, look and research and, you know, watch it to see if I think I can do it, and then when I’m doing it I’d, you know, watch it and pause it as I go along then.” (3,1,2, R.O.I.)

While this condition did show an overall positive effect of technology on cooking skills and practices, results revealed some negative reactions to its use. Participants who had previous
experience in making a bolognais sauce found viewing some of the steps within the process
time-consuming and off-putting.

“It was a pain having to watch the rest of it though...it made me run
out of time.” (1, 1, 3, N.I.)

Participants also discussed how the step-by-step video instruction illustrated the amount and
speed at which ingredients should be incorporated throughout each step of the cooking process.

“It gave me more guidance, as you’re saying, with each step; now have
I done this right or am I adding the milk at the right times, you know,
or am I adding too much milk too quickly?” (1, 1, 3, R.O.I.)

This condition offered visualisation and reassurance of the cooking process in real-time
through watching the steps of the video in sequence. Watching the video in stages helped to
prevent cognitive overload (Mayer, 2001). In addition, participants considered that the skills
demonstrated in the video made it easier for them to replicate during the experiment. However,
the ability to replicate key skills was only viewed as valuable when undertaking a new skill for
the first time (e.g. sauce-making) or a more complex skill which typically they did not practise
on a routine basis.

3.4 Condition 4 - Video demonstration (watch video segments as required + recipe card)
Within this experimental condition, participants watched the segmented video cooking
demonstration and had use of the recipe card as and when required. Results displayed similar
findings to those of Conditions 2 and 3 in relation to the use of technology for the purposes of
visualisation. However, by allowing participants the flexibility of selecting which steps to view as and when required, as many times as they required (selectivity), this resulted in participants utilising the video to meet their individual needs.

“You can rewind it, you can just put it on pause; I like dipping in and out when I need it.” (1, 2, 4, N.I.)

“I’d probably have it running in the background as an audio while I do something else, and just listen to what I need.” (2, 3, 4, N.I.)

Results showed that the majority of participants were familiar with making the bolognaisce sauce so chose not to watch the steps relating to this stage in the recipe. However, this did not apply when undertaking the steps relating to the sauce-making. Walls et al. (2009) contend that an important learning aspect of video technology is the facility to pause, rewind and repeat. This ensures that participants may process video content more effectively, before more information is presented and lost. Indeed according to Mc Kinney et al. (2009) the ability to repeatedly watch and listen to video reinforces learning, promoting further motivation and engagement. Some participants discussed how they viewed only the steps relating to the sauce-making and that they viewed these steps more than once to ensure a successful outcome. Individuals highlighted that, in terms of learning a new skill, the visual nature of the video together with the facility to reinforce key aspects of sauce-making served to reassure and engage them in the process.

“I was able … I just wanted to see what my cheese sauce looked like compared to the girl’s in the video. I just used one bit of that video, the
sauce really, because I make spaghetti all the time and didn’t need the video then." (1, 2, 4, N.I.)

Again, findings or accounts from respondents were similar to Conditions 2 and 3 whereby technology was beneficial to those carrying out a new skill for the first time (sauce-making). Similarly, results revealed that participants who had no experience of preparing a béchamel sauce suggested that the visual impact of the video was important in terms of anticipating what the sauce should look like at each step of the process, as well as reassuring them that they had replicated an acceptable consistency.

Condition 4 demonstrated the importance of visualisation, flexibility and selectivity in using technology while cooking. It is now recognised that simply replicating the steps and stages of a process is not sufficient to engage the target audience. Consideration should be given to the learning needs and requirements of a range of individuals within that target audience. Therefore in order to meet these needs, as educators, it is necessary to make changes to the learning environment (Watson, 2006). Results suggested participants experienced the benefit of having the freedom to view the segments of the demonstration they needed as often as they needed throughout the experiment. Therefore in order to engage and motivate the audience to develop and learn new cooking skills, perhaps it is more beneficial to offer individuals the option to select relevant parts of the process of which they are unfamiliar, as a result promoting self-determination, empowerment and a person-centred approach to learning.

3.5 Summary of experimental conditions

It is important to note that in some cooking processes, there is no prescriptive method in producing a final edible meal, and indeed innovation and creativity is encouraged in the area
culinary skills. However in order to reach the stage where individuals may feel confident enough to experiment with food, it may be argued that basic knowledge, skills and experience are required to enable the higher level skills of creativity and application to be enacted (Surgenor et al., 2015; Bransford et al., 2000). Findings in this experiment highlighted that the majority of individuals perceived the video technology positively in terms experience of experiencing and learning new or more technical cooking skills.

Focus group results suggested that technology assisted the cooking process in the following ways: (1) visualisation of the process and final product; (2) real-time reassurance of individual progress; (3) replications of cooking skills; (4) flexibility to work at your own pace; and (5) selective access to the video as and when required. While visualisation and reassurance were deemed important to the control group these were not discussed specifically in relation to the video technology used within the experimental task but rather imagery (or photographs) of the stages within the recipe. In contrast however, Condition 4 demonstrated that all the benefits considered helpful in the cooking process were present in Condition 4. All five benefits are summarised across each experimental condition in Table 3.
Table 3 Benefits of technical assisted cooking across experimental conditions

<table>
<thead>
<tr>
<th>Identified Benefit</th>
<th>Condition 1</th>
<th>Condition 2</th>
<th>Condition 3</th>
<th>Condition 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time reassurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selectivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

Areas where video technology improved learning through the experimental conditions

Key learnings across all four conditions identified that individuals perceived the video technology to be most effective when: (1) learning or applying a new cooking skill; and (2) reinforcing a more advanced technical skill. More specifically, this occurred when participants were asked to make a béchamel sauce with which they were unfamiliar meaning the majority of participants relied on the use of the video technology to assist them. Table 3 displays the stages of the sauce-making process shown in both the text and video demonstration and describes how the visual nature of the video supports skills development.
Table 3 Stages of sauce-making

<table>
<thead>
<tr>
<th>Stage of Process</th>
<th>Text instruction on recipe</th>
<th>Additional visual actions as seen in the video – not available on recipe card</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Melt the fat</td>
<td>• No stirring, fat not bubbling and fat becomes transparent</td>
</tr>
<tr>
<td>2</td>
<td>Add the flour and cook for 1 minute</td>
<td>• Visualisation of the expected texture of flour and fat mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visualize the speed at which flour was added</td>
</tr>
<tr>
<td>3</td>
<td>Take off the heat, place on a pot stand and stir in the milk slowly</td>
<td>• Visualisation of the gradual addition of milk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reassurance of the dense, gloopy consistency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• After all the milk is added the appearance is like thin custard</td>
</tr>
<tr>
<td>4</td>
<td>Return to the heat and bring to the boil</td>
<td>• Visualisation of vigorous stirring to a smooth consistency</td>
</tr>
<tr>
<td>5</td>
<td>Reduce to simmer until the sauce coats the back of the wooden spoon</td>
<td>• Visualisation of a smooth consistency; no lumps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The demonstrator lifts spoon out of sauce to leave a trail, coating the back of the wooden spoon</td>
</tr>
</tbody>
</table>

For the majority of participants, sauce-making was deemed a new skill. A number of participants suggested that, without the video, they would have disposed of the sauce at the stage when the flour was added to the fat and cooked.

“That’s my first time making the sauce, so if I hadn’t seen the video, mine would have been thrown in the bin at the point before you add the milk because it just looked wrong. I paused it too and did a bit, then it was easier.” (1, 1, 3, N.I.)

“No, if it was home I’d have thrown it in the bin, just no: I’d have no patience. The only thing was the girl on the video made it and I saw hers was like the way mine was, so I went on ahead with it and it turned out ok.” (1, 2, 4, N.I.)
The “gloopy” consistency (at stage 2) was unfamiliar with the smooth viscosity typical of a finished béchamel sauce. Therefore through watching the video, participants conceptualised the thick and “gloopy” appearance of the batter and felt reassured to continue cooking. In contrast, participants from Condition 1 (recipe card only) did not have access to the visual aspect of the stages in sauce-making and expressed lesser reassurance at this stage of the process.

“I thought I had made the cheese sauce wrong: when I added the flour and the butter it just went to mush. I thought no…and then I started looking over at somebody else’s… you have to add milk yet, because I thought that was it.” (2, 1, 1, N.I.)

These results highlight how video technology assisted participants in visualising the consistency of the sauce at each stage of the process, which in turn reassured them to continue the cooking process. Reflecting on the findings it is helpful to note that technology is moving at such a rate that the possibilities are endless for individual learning. For example, speeded up video enables individuals to gain an overview of the cooking process then rewind the aspects which are unfamiliar to consolidate learning.

4.0 Conclusion

It is clear that video technology has a place in supporting some people to cook from scratch. Video technology, due to its flexibility and the ability to utilise at one’s own discretion (selectivity), further served to reassure and reinforce the key cooking skills required to achieve
a successful meal outcome. The results from this study provide evidence of the potential to rely on the scalability of video technology to redress the current cooking skills imbalance among the general population.
References


