Perturbation of neddylation-dependent NF-κB responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation

Published in:
Molecular Biology of the Cell

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2016 the authors. This is an open access article published under a Creative Commons Attribution-NonCommercial-ShareAlike License (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the author and source are cited and new creations are licensed under the identical terms.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Perturbation of neddylation-dependent NF-κB responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation

†Mucosal Inflammation Program, Department of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO 80045; ‡Department of Anesthesiology, University Hospital Bonn, 53127 Bonn, Germany; Eastern Colorado Veterans Affairs Hospital, Denver, CO 80220; Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717

ABSTRACT Recent work has revealed a central role for neddylation (the conjugation of a Nedd8 moiety to Cullin proteins) in the fine-tuning of the NF-κB response (via Cullin-1). In the present study, we investigated the contribution of Cullin-1 neddylation and NF-κB signaling to mucosal inflammatory responses in vitro and in vivo. Initial in vitro studies using cultured intestinal epithelial cells revealed that the neddylation inhibitor MLN4924 prominently induces the de neddylation of Cullin-1. Parallel Western blot, luciferase reporter, and gene target assays identified MLN4924 as a potent inhibitor of intestinal epithelial NF-κB. Subsequent studies revealed that MLN4924 potently induces epithelial apoptosis but only in the presence of additional inflammatory stimuli. In vivo administration of MLN4924 (3 mg/kg per day) in a TNBS-induced colitis model significantly accentuated disease severity. Indeed, MLN4924 resulted in worsened clinical scores and increased mortality early in the inflammatory response. Histologic analysis of the colon revealed that neddylation inhibition results in increased tissue damage and significantly increased mucosal apoptosis as determined by TUNEL and cleaved caspase-3 staining, which was particularly prominent within the epithelium. Extensions of these studies revealed that ongoing inflammation is associated with significant loss of deneddy lase-1 (SENP8) expression. These studies reveal that intact Cullin-1 neddylation is central to resolution of acute inflammation.

INTRODUCTION Posttranslational protein modifications (PPMs) play an important role in the regulation of protein function, allowing for rapid responses to external stimuli (Song et al., 2010). One of these PPMs, neddylation—the addition of a neural precursor expressed, developmentally down-regulated (Nedd8) moiety to proteins (Bruning et al., 2011)—has recently gained significant attention in a variety of diseases. Neddylation is involved in the regulation of two key transcription factors, facilitating activation of nuclear factor κB (NF-κB; Amir et al., 2002; Ehrentraut et al., 2013) and inhibition of hypoxia-inducible factor (HIF) during inflammatory processes (Cernada et al., 2011; Curtis et al., 2015). Their respective regulation relies on the intricate interplay between NF-κB and HIF, their regulator proteins, IκB, and von Hippel–Lindau protein and a group of scaffolding proteins called Cullin proteins (Pan et al., 2004; Merlet et al., 2009). The ability of these Cullin proteins to mark their target proteins for ubiquitin-dependent proteasomal degradation relies on their neddylation status (Pan et al., 2004).

The ability of proteins to be neddylated is dependent on the availability of free Nedd8, which is bound by the Nedd8-activating

This article was published online ahead of print in MBoC in Press (http://www.molbiocell.org/cgi/doi/10.1091/mbc.E16-05-0273) on September 28, 2016.

© 2016 Ehrentraut, Curtis, et al. This article is distributed by The American Society for Cell Biology under license from the authors. Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Monitoring Editor Alpha Yap University of Queensland

Received: May 9, 2016
Revised: Sep 19, 2016
Accepted: Sep 20, 2016

This article was published online ahead of print in MBoC in Press (http://www.molbiocell.org/cgi/doi/10.1091/mbc.E16-05-0273) on September 28, 2016.

†These authors contributed equally to this work.

The authors declare no financial interests in any of the work presented here.

*Address correspondence to: Sean P. Colgan (Sean.Colgan@UCDenver.edu).

Abbreviations used: SENP8, sentrin-specific protease 8/deneddylase-1; TER, transepithelial electrical resistance.
enzyme (NAE; also called UBA3-APPB1-E1-ligase; Wada et al., 1998; Mendoza et al., 2003; Huang et al., 2004). Subsequently the Nedd8 moiety is transferred to its E2-ligase (Jones et al., 2002) and then the target Cullin-E3-ligase protein complex, thereby activating it (Parry and Estelle, 2004). Free Nedd8 can be generated through cleavage of conjugated Nedd8 from the Cullin-E3-ligase, a process known as deneddylation. This process depends, at least in part, on the COP9 signalosome, which can be positively influenced by commensal bacteria (Kumar et al., 2007; Jones et al., 2015) and extracellular adenosine (Khoury et al., 2007), and offers a potentially protective mechanism during inflammatory processes. In addition, loss of the isopeptidase sentrin-specific protease 8 (SENPS)/deneddylace-1 leads to a loss of deneddylation function and an inability to activate NF-κB (Ehrentraut et al., 2013).

Studies of neddylation and Cullin pathways in vivo have been hampered by the embryonic lethality of gene-targeted mice (Tateishi et al., 2015; Curtis et al., 2007; Wada et al., 1998; Mendoza et al., 2003). As a result, the mechanism during inflammatory processes. In addition, loss of the isopeptidase sentrin-specific protease 8 (SENPS)/deneddylace-1 leads to a loss of deneddylation function and an inability to activate NF-κB (Ehrentraut et al., 2013).

RESULTS
Cytokine-induced Cullin-1 neddylation is abrogated by MLN4924

In the present study, we examined how neddylation affects epithelial NF-κB responses and mucosal inflammation endpoints. As shown in Figure 1A, Caco-2 intestinal epithelial cell exposure to tumor necrosis factor-α (TNF-α; 10 ng/ml, 1 h) induced p65 nuclear translocation. Coincubation of cells with the NAE inhibitor MLN4924 inhibited both p65 nuclear translocation and Cullin-1 (Cul-1) neddylation in a concentration-dependent manner. At doses as low as 100 nM MLN4924, the neddylated fraction of Cul-1 was significantly decreased (p < 0.05). Parallel studies using NF-κB reporter assays revealed concentration-dependent inhibition of NF-κB activity with MLN4924, with >60% loss of activity at 3 μM MLN4924 (Figure 1B). When Caco-2 and T84 intestinal epithelial cells were exposed to the combination of MLN4924 (3 μM) and TNF-α/interleukin-1β (IL-1β; 10 ng/ml each), we observed a 50–70% decrease in the induction of the NF-κB target genes IL-8 and ICAM-1 (Figure 1C; p < 0.025). These results indicate that MLN4924 is a potent NF-κB inhibitor and that loss of Cul-1 neddylation significantly inhibits NF-κB target gene induction.

Epithelial barrier function and neddylation

One of the hallmarks of mucosal diseases, including inflammatory bowel disease (IBD), is epithelial barrier dysfunction (Koch and Nusrat, 2012), allowing for translocation of luminal contents into the serosa. Here we examined the influence of neddylation on epithelial barrier function in the presence and absence of inflammatory stimuli. Epithelial barrier function has been widely modeled in vitro through measurement of transepithelial electrical resistance (TER).

For these purposes, T84 intestinal epithelial cells were cultured on polycarbonate inserts and grown to confluence (>1000 Ω cm²). Cells were exposed to medium alone (control), cytotoxic (10 ng/ml each of TNF-α, IL-1β, and interferon-γ, MLN4924 (1 μM) alone, or the combination of cytotoxic and MLN4924. As shown in Figure 2A, exposure of confluent epithelia to MLN4924 alone did not influence baseline epithelial barrier compared with medium alone (p = 0.54), suggesting that neddylation per se is not necessary to maintain epithelial barrier function. Treatment of epithelia with cytotoxin led to a significant (p < 0.05) decrease in epithelial resistance over 24 h, indicative of a loss of tight junctional integrity (Figure 2A), which has been previously demonstrated (Brouwer et al., 2003). This cytotoxic-dependent decrease in barrier was markedly enhanced in combination with MLN4924 (Figure 2A; p < 0.01 by analysis of variance [ANOVA]), indicated by an earlier and more severe reduction in TER measurements.

TER measurements reflect changes in electrical conductivity from both transepithelial and paracellular paths. To verify whether the observed changes were attributable to the paracellular path (i.e., tight junction permeability), we performed paracellular flux assays using 3-kDa fluorescein isothiocyanate (FITC)-dextran as a tracer. As shown in Figure 2B, similar to TER measurements, MLN4924 alone did not increase paracellular flux compared with control (p = 0.10), whereas cytotoxic treatment increased paracellular flux by a small (~10%) but significant amount (p < 0.05). The combination of MLN4924 and cytotoxic, however, increased transepithelial flux by nearly 50-fold (p < 0.01) compared with other treatment groups, clearly indicating that the loss of neddylation in combination with inflammatory stimuli results in a marked loss of tight junction integrity.

Previous studies showed that the disruption of epithelial junctions in response to inflammatory cytokines is related at least in part
Inhibiting NF-κB drives IEC apoptosis

Neddylation and intestinal inflammation in vivo

Having defined the importance of neddylation for epithelial barrier integrity in vitro, we extended these results to define the relative importance of neddylation in colonic inflammation in vivo, using a murine 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis model. This is a model characterized by disruption of the epithelial barrier in vivo (Karhausen et al., 2004). After TNBS instillation, body weight was monitored twice per day. In accordance with previous observations, TNBS treatment led to increased mortality (33% after 3 d, n = 9, compared with 0% death in control group, n = 5, treated with ethanol only; Figure 4A). The earliest time point of animal death was 2 d into the trial period. Treatment with MLN4924 alone (3 mg/kg per day) did not alter this ratio, and all of the animals survived the 3-d trial period (n = 5). Daily subcutaneous injections of MLN4924 combined with TNBS significantly increased mortality (60% of animals by day 3.5, n = 10, p < 0.025 compared with vehicle treatment; Figure 4A).

Colon shortening, a hallmark feature of murine colitis (Karhausen et al., 2004), was not different between vehicle and MLN4924-alone exposures (Figure 4B). Colitis induced with TNBS showed a nonsignificant trend toward shorter colons at the time of killing, which was consistent with previous data for this model (Robinson et al., 2008). However, animals receiving repetitive doses of MLN4924 along with the induction of colitis showed a significant reduction of colon length compared with their littermates receiving only TNBS (Figure 4B).

TNBS colitis has been shown to lead to apoptotic cell death (Crespo et al., 2012; Hjerpe et al., 2012). TNBS-induced inflammatory response was characterized by a loss of crypt architecture and infiltration of large numbers of inflammatory cells with mucosal and submucosal injury (Figure 4C, hematoxylin and eosin staining). MLN4924 treatment alone resulted in no observable change to colonic architecture compared with vehicle control. The combined use of MLN4924 and TNBS, however, significantly increased tissue destruction, leading to total loss of crypt structure, massive inflammatory cell infiltration, and transmural mucosal denudation (Figure 4C, bottom left). As a result, the tissue injury index in mice receiving MLN4924 with TNBS was significantly increased compared with those receiving TNBS alone (Figure 4F).

FIGURE 2: The combination of proinflammatory cytokines with the neddylation inhibitor MLN4924 leads to increased barrier disruption. (A) TER of T84 cells on Transwell inserts during a 24-h time course with control, cytomix (10 ng/μl each of TNF-α, IL-1β, and IFN-γ), 1 μM MLN4924, or cytomix plus MLN4924 (n = 3). (B) FITC-flux assay of T84 cells on Transwell inserts after a 24-h time course with control, cytomix, 1 μM MLN4924, or cytomix plus MLN4924 (n = 3). (C) Luciferase assay detecting activation of caspase-3/7 of T84 cells treated with control, cytomix, 1 μM MLN4924, or cytomix plus MLN4924 for 24 h; *p < 0.05.
amounts of detectable caspase-3 in the colonic epithelium. The in-cell death pathway. In our study, MLN4924 alone did not alter the degree of cell death. This was increased in the colonic epithelium of [TUNEL] staining, top right and left). TNBS-induced colitis increased apoptotic cell death) compared with vehicle-treated controls (Figure 3A). Epithelial isolates from animals undergoing TNBS colitis at days 1 and 3 after induction were examined and compared with ethanol-only controls. TNBS-colitic animals tended to express less SENP8 mRNA transcript at day 1 (n = 3 per group, p = 0.07; Figure 5B) and day 3 after colitis induction (p < 0.05, n = 5 per group; Figure 5B). The same response was observed in human tissue samples from patients with active IBD. Regardless of the type of colitis (i.e., ulcerative colitis vs. Crohn’s disease), mRNA levels of SENP8 were significantly lower than in samples from healthy individuals (p < 0.001; four nonactive controls, 19 individual samples per disease cohort; Figure 5C). Collectively these results suggest that intact neddylation is disease protective and that loss of SENP8 expression correlates with the development of mucosal inflammatory disease in both mice and humans.

In addition, colonic tissue of animals treated with only MLN4924 showed no increase in the amount of fragmented DNA (a sign of apoptotic cell death) compared with vehicle-treated controls (Figure 4D; terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] staining, top right and left). TNBS-induced colitis increased the detectable amount of fragmented DNA, indicative of some degree of cell death. This was increased in the colonic epithelium of animals receiving both TNBS and MLN4924 (Figure 4D, bottom). The activation of caspase-3 is another keystone along the apoptotic cell death pathway. In our study, MLN4924 alone did not alter the amounts of detectable caspase-3 in the colonic epithelium. The induction of cell death via TNBS colitis increased the activation of caspase-3 (Figure 4E, bottom left). Again, this proapoptotic response was significantly enhanced in animals receiving both MLN4924 and TNBS, as reflected by cleaved caspase-3 (Figure 4E, bottom right).

A loss of barrier function and cell breakdown is accompanied by the detection of colonic contents (e.g., bacteria) through the innate immune system. One of the major signaling pathways, the Toll-like-receptor pathway, elicits the induction of proinflammatory cytokines such as IL-1β and IL-6. The induction of these cytokines was significantly increased in the colonic tissue of animals undergoing TNBS colitis while concomitantly being dosed with MLN4924 (approximately sixfold compared with normalized control, p < 0.01; Figure 4G).

We previously showed that human deneddylase-1 (SENP8) is crucial for enabling NF-κB-mediated inflammation (Ehrentraut et al., 2013). Whether SENP8 itself is regulated during chronic inflammation is unknown. For this purpose, we investigated the expression of SENP8 in our model systems (cultured epithelia, murine tissue), as well as human tissue from healthy and IBD subjects. As shown in Figure 5, there was a striking similarity between the three models that revealed a correlation between disease and the loss of SENP8 mRNA expression. Exposure of T84 cells to cytomix (24 h) resulted in a nearly 70% decrease in SENP8 mRNA expression (p < 0.01; Figure 5A). Epithelial isolates from animals undergoing TNBS colitis at days 1 and 3 after induction were examined and compared with ethanol-only controls. TNBS-colitic animals tended to express less SENP8 mRNA transcript at day 1 (n = 3 per group, p = 0.07; Figure 5B) and day 3 after colitis induction (p < 0.05, n = 5 per group; Figure 5B). The same response was observed in human tissue samples from patients with active IBD. Regardless of the type of colitis (i.e., ulcerative colitis vs. Crohn’s disease), mRNA levels of SENP8 were significantly lower than in samples from healthy individuals (p < 0.001; four nonactive controls, 19 individual samples per disease cohort; Figure 5C). Collectively these results suggest that intact neddylation is disease protective and that loss of SENP8 expression correlates with the development of mucosal inflammatory disease in both mice and humans.

DISCUSSION

Posttranslational modifications of signaling proteins are critical to productive inflammatory responses and resolution of disease (Ehrentraut and Colgan, 2012). NF-κB is the quintessential signaling hub during acute inflammation, and its regulation is fine-tuned by multiple posttranslational modifications, including neddylation (Amir et al., 2002). Cullin proteins, as components of ubiquitin E3 ligases, are neddylated for the polyubiquitination of effectors (e.g., IkB). This neddylation response is regulated, in part, by the deneddylation using the AMP homologue MLN4924 potently blocks NF-κB activation/signaling and through these actions functions as a preapoptotic sensitizer (Figure 6).

The present studies revealed that MLN4924 is an effective (EC50 ≈ 1 μM) Cul-1 deneddylating agent and equally potent inhibitor of NF-κB in intestinal epithelia. Presumably through its actions on Cul-1 activity and subsequent inhibition of E3 ubiquitin ligase activity, MLN4924 appears to function as a “priming” agent of the inflammatory response. Consistent with this premise, in vitro or in vivo exposure to MLN4924 alone resulted in surprisingly little activity within the mucosa. By stark contrast, the addition of activators of
A central component of the active deneddylation response is the NF-κB pathway. In intestinal epithelia, MLN4924 more potently inhibits Cul-2 than Cul-1. Our previous studies, in fact, revealed EC50 ≈ 5 nM for MLN4924 actions on Cul-2 and HIF stabilization (Curtis et al., 2015). In these studies, lower concentrations of MLN4924 (0.1 mg/kg, compared with 3 mg/kg used in the present studies) activated HIF in vivo and were protective for dextran sulfate sodium (DSS) colitis at multiple levels. There are distinct differences in our findings here, that is, aggravation of inflammatory tissue damage after MLN4924 plus TNBS-induced inflammatory disease and previously reported findings from our group in DSS colitis. These differences may reflect the different pathogenic mechanisms of both colitis models. DSS colitis is believed to occur independent of adaptive immune cells, whereas TNBS colitis is directly T-cell dependent (Neurath et al., 1996). MLN4924 was initially discovered for the treatment of NF-κB-dependent B-cell lymphoma (Milhollen et al., 2010). Hence use of MLN4924 in a disease model dependent on adaptive immune cells might explain the observed differences. Together these findings suggest that both in vitro and in vivo, Cul-2 responses are significantly more sensitive to MLN4924.

Given the central role of NF-κB in inflammation, it is not surprising that numerous studies have revealed that inhibition of NF-κB is antiinflammatory (Kanarek and Ben-Neriah, 2012). The intestinal mucosa—specifically, epithelial cells—appears to be somewhat unique in this regard (Karrasch and Jobin, 2008). For example, genetic deletion of NF-κB components (e.g., Ikkb) within the intestinal epithelium results in significantly exacerbated pathogen-induced intestinal inflammation (Zaph et al., 2007). These studies revealed increased apoptotic responses with the loss of NF-κB signaling, resulting in a loss of epithelial barrier and ultimately septicaemia. Our studies here indicate similar results with targeting neddylation in vivo and that as a preapoptotic sensitizer, the combination of deneddylation in the presence of inflammatory stimuli significantly enhances the inflammatory response. It is noteworthy that throughout these studies, the inhibition of neddylation using MLN4924 had little to no detectable influence on basal epithelial function (i.e., in the absence of additional inflammatory stimuli). Barrier function, for example, was not changed by the inhibition of neddylation responses, even at relatively high concentrations of MLN4924. At multiple levels, these studies revealed a primed inflammatory response that correlated with the loss of neddylation and diminished NF-κB activity in vivo. Direct inhibition of NF-κB via Bay 11-7085 in conjunction with inflammatory stimuli partially recapitulated the reduction in TER measurements and thus barrier function observed with MLN4924.

A central component of the active deneddylation response is SENP8, an isopeptidase capable of directly deneddylylating Cullin in B-cell lymphoma (Milhollen et al., 2010). Other studies in T-cells show that MLN4924 targets Cul-2 and HIF stabilization (Curtis et al., 2015). In these studies, lower concentrations of MLN4924 (0.1 mg/kg, compared with 3 mg/kg used in the present studies) activated HIF in vivo and were protective for dextran sulfate sodium (DSS) colitis at multiple levels. There are distinct differences in our findings here, that is, aggravation of inflammatory tissue damage after MLN4924 plus TNBS-induced inflammatory disease and previously reported findings from our group in DSS colitis. These differences may reflect the different pathogenic mechanisms of both colitis models. DSS colitis is believed to occur independent of adaptive immune cells, whereas TNBS colitis is directly T-cell dependent (Neurath et al., 1996). MLN4924 was initially discovered for the treatment of NF-κB-dependent B-cell lymphoma (Milhollen et al., 2010). Hence use of MLN4924 in a disease model dependent on adaptive immune cells might explain the observed differences. Together these findings suggest that both in vitro and in vivo, Cul-2 responses are significantly more sensitive to MLN4924.

Given the central role of NF-κB in inflammation, it is not surprising that numerous studies have revealed that inhibition of NF-κB is antiinflammatory (Kanarek and Ben-Neriah, 2012). The intestinal mucosa—specifically, epithelial cells—appears to be somewhat unique in this regard (Karrasch and Jobin, 2008). For example, genetic deletion of NF-κB components (e.g., Ikkb) within the intestinal epithelium results in significantly exacerbated pathogen-induced intestinal inflammation (Zaph et al., 2007). These studies revealed increased apoptotic responses with the loss of NF-κB signaling, resulting in a loss of epithelial barrier and ultimately septicaemia. Our studies here indicate similar results with targeting neddylation in vivo and that as a preapoptotic sensitizer, the combination of deneddylation in the presence of inflammatory stimuli significantly enhances the inflammatory response. It is noteworthy that throughout these studies, the inhibition of neddylation using MLN4924 had little to no detectable influence on basal epithelial function (i.e., in the absence of additional inflammatory stimuli). Barrier function, for example, was not changed by the inhibition of neddylation responses, even at relatively high concentrations of MLN4924. At multiple levels, these studies revealed a primed inflammatory response that correlated with the loss of neddylation and diminished NF-κB activity in vivo. Direct inhibition of NF-κB via Bay 11-7085 in conjunction with inflammatory stimuli partially recapitulated the reduction in TER measurements and thus barrier function observed with MLN4924.

A central component of the active deneddylation response is SENP8, an isopeptidase capable of directly deneddylylating Cullin in B-cell lymphoma (Milhollen et al., 2010). Other studies in T-cells show that MLN4924 may have neddylation targets beyond Cul-2 and HIF stabilization (Curtis et al., 2015). In these studies, lower concentrations of MLN4924 (0.1 mg/kg, compared with 3 mg/kg used in the present studies) activated HIF in vivo and were protective for dextran sulfate sodium (DSS) colitis at multiple levels. There are distinct differences in our findings here, that is, aggravation of inflammatory tissue damage after MLN4924 plus TNBS-induced inflammatory disease and previously reported findings from our group in DSS colitis. These differences may reflect the different pathogenic mechanisms of both colitis models. DSS colitis is believed to occur independent of adaptive immune cells, whereas TNBS colitis is directly T-cell dependent (Neurath et al., 1996). MLN4924 was initially discovered for the treatment of NF-κB-dependent B-cell lymphoma (Milhollen et al., 2010). Hence use of MLN4924 in a disease model dependent on adaptive immune cells might explain the observed differences. Together these findings suggest that both in vitro and in vivo, Cul-2 responses are significantly more sensitive to MLN4924.

Given the central role of NF-κB in inflammation, it is not surprising that numerous studies have revealed that inhibition of NF-κB is antiinflammatory (Kanarek and Ben-Neriah, 2012). The intestinal mucosa—specifically, epithelial cells—appears to be somewhat unique in this regard (Karrasch and Jobin, 2008). For example, genetic deletion of NF-κB components (e.g., Ikkb) within the intestinal epithelium results in significantly exacerbated pathogen-induced intestinal inflammation (Zaph et al., 2007). These studies revealed increased apoptotic responses with the loss of NF-κB signaling, resulting in a loss of epithelial barrier and ultimately septicaemia. Our studies here indicate similar results with targeting neddylation in vivo and that as a preapoptotic sensitizer, the combination of deneddylation...
and increased apoptosis.

and leading to decreased transcription of antiapoptotic target genes

MLN4924 stabilizes cellular IκB out the nucleus

κB levels, keeping NF-κB cascades. Pharmacological inhibition of Cul-1 neddylation using

leading to the transcription of target genes, including antiapoptotic

κB can then translocate into the nucleus,

by the proteosome. NF-κB for polyubiquitination and degradation

κB (TRCP) complex, targeting IκB, which is recognized by the

Cul-1- to the phosphorylation of IκB sequestering them in the cytoplasm. An inflammatory stimulus leads

κB subunits,

NF-κB is unphosphorylated and binds NF-κB for polyubiquitination and degradation

conditions, IκB pathway and downstream apoptotic responses. Under normal

κB for systemic cytokine release (Ehrentraut et al., 2013). It was shown, for example, that knockdown of

NF-kB and Cul-1 neddylation to inflammatory responses in the intestinal mucosa. In particular, these studies identify MLN4924 as an inhibitor of Cul-1 neddylation, leading to loss of NF-kB signaling. These findings support a role for Cul-1 deneddylation as an apopotic presensitizer during inflammation, which in turn enhances intestinal inflammatory responses.

MATERIALS AND METHODS

Cell culture

Human T84 and Caco-2 intestinal epithelial cells were cultured in 95% air with 5% CO2 at 37°C in DMEM and DMEM:F12, respectively, supplemented with 10% calf serum (Fisher Scientific, Waltham, MA) and penicillin/streptomycin (100 U/ml, 100 μg/ml; Invitrogen, Carlsbad, CA).

Transcriptional analysis

TRIzol reagent (Invitrogen) was used to isolate RNA from Caco-2 or T84 cells. cDNA was reverse transcribed using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). PCR analysis was performed using SYBR Green (Applied Biosystems, Carlsbad, CA) and the following primer sequences: IL-8, forward 5′-CTGGCGCTGGTCTCTTGG-3′, reverse 5′-CCTTGCCCATAAATTGCACCTT-3′; ICAM-1, forward, 5′-ATGCCCAGACATCTGTGTCC-3′, reverse 5′-GGGCTCTCTCTATGCCCAACA-3′; and β-actin, forward, 5′-GGGAGGCTCTGCGGATGGA-3′, reverse, 5′-AGAGGGGTACAGGGATAGCA-3′. Each experiment was performed in triplicate.

Western blot analysis

The NE-PER extraction kit was used to prepare nuclear and cytoplasmic lysates from Caco-2 cells per the manufacturer’s instructions (Thermo Scientific, Waltham, MA). Western blotting of these lysates was performed using Cul-1 Rb polyclonal antibody (pAb; Invitrogen), p65 Rb pAb (Cell Signaling, Danvers, MA), TATA-binding protein (TATA-BP) Ms monocolonal antibody (mAb; Abcam), each experiment was performed in triplicate.

 Luciferase assays

An NF-kB luciferase reporter plasmid (500 ng; Ehrentraut et al., 2013) and a Renilla reporter plasmid (1 ng) were transfected into subconfluent Caco-2 cells using Lipofectamine LTX Reagent (Thermo Scientific). Luciferase activity was determined at 16 h using Promega dual luciferase reagents (Promega, Madison, WI), and luminescence was determined using the GloMax-Multi plate reader (Promega). Each experiment was performed in triplicate.

Barrier integrity, permeability assays, and apoptosis assays

T84 cells were plated on 0.33-cm2, 0.4-μm permeable polyester inserts (Corning, Corning, NY). TER was measured using the EVOM2 voltohmmeter (World Precision Instruments, Sarasota, FL) to monitor proteins (Mendoza et al., 2003; Wu et al., 2003), offering a cleavage pathway beyond the COP9 signalosome (Lyapina et al., 2001; Cope and Deshaies, 2003). It was shown, for example, that knockdown of SENP8 prevented LPS-induced NF-kB activation and systemic cytokine release (Ehrentraut et al., 2013). We extended these results to define the expression of SENP8 in murine and human colitis. Across each model tested, including human IBD tissue, inflammation was associated with a loss of SENP8 expression. Such observations suggest that down-regulation of SENP8 in murine/human colitis serves as a compensatory mechanism to quench the ongoing inflammatory response. Mechanisms of such regulation await further studies.

In conclusion, we demonstrate the contribution of epithelial NF-kB and Cul-1 neddylation to inflammatory responses in the intestinal mucosa. In particular, these studies identify MLN4924 as an inhibitor of Cul-1 neddylation, leading to loss of NF-kB signaling. These findings support a role for Cul-1 deneddylation as an apopotic presensitizer during inflammation, which in turn enhances intestinal inflammatory responses.
was used on additional inserts (BD PharMingen).

FMK; 30 μM) was given as a 30-min pretreatment to T84 cells plated and cytomix (30 μM) was used according to the manufacturer’s instructions. Briefly, 7085, or a combination of either MLN4924 or BAY 11-7085 with plates and treated with 1 μM MLN4924, cytomix, or a combination of both MLN4924 and cytomix.

To inhibit caspase activation, a general caspase inhibitor peptide (Z-VAL-FMK; 30 μM) or a caspase-3 inhibitor peptide (Z-DEVDFMK; 30 μM) was given as a 30-min pretreatment to T84 cells plated on permeable polyester inserts before treatment with cytomic plus MLN4924 (1 μM; BD PharMingen, San Diego, CA) or cytomic plus Bay 11-7085 (30 μM). A negative control peptide (Z-FA-FMK; 30 μM) was used on additional inserts (BD PharMingen).

Animals
Wild-type C57BL/6 mice (Mus musculus) were obtained from Jackson Laboratories (Bar Harbor, ME). All animal experiments were reviewed and approved by the Institutional Animal Care and Use Committee at the University of Colorado. TNBS colitis was induced as previously described (Louis et al., 2008). Animals were administered either MLN4924 (3 mg/kg) or cyclodextrin (Sigma-Aldrich, St. Louis, MO) via subcutaneous (s.c.) injection at day 1 of TNBS exposure, and this was continued daily. The groups were as follows: ethan

Histological and immunofluorescence
Histological examination was performed on sections of the distal colon from each group; samples were fixed in 10% Formalin before staining with hematoxylin and eosin. Slides used for immunofluorescence were first blocked with 5% normal goat serum (NGS). An In Situ Cell Death Detection kit (Sigma-Alrcht) was used to visualize apoptotic cell death by TUNEL staining. For cleaved caspase-3 staining, Rs mAb was used (Cell Signaling) at a 1:400 dilution. Secondary antibody was Alexa Fluor 488 goat anti-rabbit (Invitrogen), used at 1:500 dilution in 5% NGS. Immunolabeling was visualized with an Axiocam MR c5 attached to an AxioImager A1 microscope (Zeiss, Oberkochen, Germany). Where indicated, series of confocal fluorescence images were obtained using a Zeiss Axiocam MR c5 attached to an Axioscope microscope with a Meta spectral detection system (Zeiss NLO 510 with META; Zeiss, Thornwood, NY). Representative hematoxylin and eosin and immunofluorescence sections are presented.

Histology
Histological examination was performed on three samples of the distal colon. Samples were fixed in 10% Formalin before staining with hematoxylin and eosin. All histological quantitation was performed in a blinded manner, using a previously described scoring system (Dieleman et al., 1998). The three independent parameters measured were severity of inflammation (0–3: none, slight, moderate, severe), extent of injury (0–3: none, mucosal, mucosal and submucosal, transmural), and crypt damage (0–4: none, basal one-third damaged, basal two-thirds damaged, only surface epithelium intact, entire crypt and epithelium lost). The score of each parameter was multiplied by a factor reflecting the percentage of tissue involvement (<1: 0–25%; ≥2: 26–50%; ≥3: 51–75%; ≥4: 76–100%), and all numbers were summed. Maximum possible score was 40.

Human tissue
Deidentified human intestinal tissue cDNA was obtained from the TissueScan Crohn’s/Colitis II array (OriGene Technologies, Rockville, MD). Complete patient/sample characteristics can be accessed from the supplier’s website (www.origene.com).

Statistical analysis
Data are expressed as mean values ± SEM. Data were analyzed with Student’s t test between two groups or ANOVA coupled with post hoc Bonferroni test for multiple pairwise comparisons. \(p < 0.05 \) was considered to be statistically significant.

ACKNOWLEDGMENTS
This work was supported by a Deutsche Forschungsgemeinschaft research fellowship (DFG EH371/1-1) and a BONFOR starting grant to S.F.E., by National Institutes of Health Grants DK103659, DK50189, and DK95491 to S.P.C., and by funding from the Crohn’s and Colitis Foundation of America.

REFERENCES

