Eels, beavers and horses: Human niche construction in the European Late Upper Palaeolithic.

Published in:
Proceedings of the Prehistoric Society

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© The Prehistoric Society 2017. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Eels, Beavers, and Horses: Human Niche Construction in the European Late Upper Palaeolithic

By ANTONY G. BROWN¹, LAURA S. BASELL² and REBECCA FARBSTEIN³

[ABS] This paper examines interactions between co-occupants of riverine niches in north-west Europe during the Late Upper Palaeolithic using both ecological and archaeological data. It is argued that consideration of both the Lateglacial record and autecology of eel, beaver and horse supports a reinterpretation of some famous but enigmatic panels of Magdalenian mobiliary art as representations of eel fishing, along with horse and beaver exploitation in disturbed riverine habitats. It is further suggested that this constitutes a humanly co-constructed niche in ecological, nutritional and symbolic terms, which was also particularly advantageous for human well-being and social development in this time and place.

Keywords: niche construction theory, Magdalenian, nutrition, mobiliary art, sedentism

Anatomically modern humans can be viewed as both occupants of a wide variety of Late Pleistocene ecological niches and also as modifiers of those niches (Laland & O’Brien 2010). This paper examines the interaction between Magdalenian (17,000–12,000 BP) co-occupants of the riverine niches in parts of north-west Europe using both ecological and archaeological data. We go beyond a passive interaction between Late Upper Palaeolithic hominins and ecology to consider the creation and recognition of active and reciprocal ecological modifications as an application of niche construction theory (NCT; Odling-Smee et al. 2013). The functional context for this analysis is human survival and health, but the implications are behavioural and even cognitive. In this paper we first present key aspects of the ecology (cf. autecology) of the key non-human species in this niche before relating them to human behaviour as reflected by mobiliary art.

A recent analysis of the distribution of Lower Palaeolithic super-sites in southern England and northern France by Brown et al. (2013) has highlighted the location-specific importance of fat and carbohydrate in balancing protein intake, and the importance of critical nutrients such as vitamins C, D, E, and folate. The typical location of super-sites in the most nutritionally diverse locations in the interglacial landscapes of this region (namely the lowest freshwater reaches on braided floodplains) strongly suggested that sources of fats, carbohydrate, and critical nutrients may have been utilised from sources other than, or in addition to, large herbivores. It was also noted that humans co-inhabited this niche with a distinctive combination of flora and fauna including aquatic plants, beaver, and eel, as well as other fish and waterfowl. This zone also attracted the herbivores that butchery evidence suggests were the main target prey, particularly horse and deer.

However, for the Lower Palaeolithic, apart from tool type, palaeoecological data, and site distribution – all of which can have multiple drivers – there is little or no other behavioural information and, as yet, limited isotopic data (Bocherens 2015). Data from analysis of dental calculus for microfossils (pollen, chemical compounds, starch, phytoliths, micro-charcoal, and diatoms) is generating a wealth of fascinating information (Salazar-García et al. 2013; Hardy & Buckley 2013; Buckley et al. 2014; Power et al. 2015; Hardy et al. 2015; 2016; Radini et al. in press). However, how such data, particularly phytoliths, relates to overall diet over the lifetime is still being established and is complicated by factors such as differential preservation (Hardy et al. 2015; Power et al. 2015), difficulties of identification related to mastication damage (Shillito 2011), and the fact that these environmental signatures can become incorporated through breathing, eating, oral hygiene activities, and raw material processing. The analysis of faecal biomarkers is an emergent field, but the results cannot be resolved to species level (Sistiaga et al. 2014). More behavioural data exist for the Late Upper Palaeolithic (Late Upper Palaeolithic (LUP), c. 15–10 ka ka BP) where additional data sources include portable and fixed art, a wider range of perishable artefacts, and human isotopic data as well as reduced confounding factors as a result of higher chronological resolution and less post-depositional disturbance.

Human settlement of north-west Europe in the LUP over the area covered by the Magdalenian culture (Fig. 1) must be seen in climatic context with high spatial as well as temporal variation, with biomes varying from tundra to cool temperate forest. After the Lastglacial maximum (LGM) this variation includes the rapid melting of permafrost which had covered all the non-glaciated parts of the British Isles, central and northern-central France, and the Low Countries as well as the northern part of the European Plain eastwards. This had melted by the Termination 1a c. 16.6 ka BP (end of the Heinrich 1 event meltwater pulse) which was marked by rapid warming with July temperatures rising 2–5°C into the Lastglacial Interstadial (Windermere or Bolling Interstadial, Lotter et al. 2012). July temperatures show a declining trend of c. 2°C during this interstadial with increasing instability (i.e., cold oscillations) culminating in the Lastglacial Stadial (Younger Dryas) before the rapid warming at the beginning of the Holocene at 11.7 ka BP (Walker et al. 2009).

Recent work by the INTIMATE project utilising tephrachronology (Blockley et al. 2012) has allowed regional event stratigraphies to be identified which although broadly phase-locked to the Greenland NGRIP ice core record do show significant variations which were manifest by regional to local variations in vegetation cover (Walker et al. 2012). The lack of well-developed soils and high rates of climate change promoted moderate to high ecological disturbance
regimes with a high prevalence of, what we would recognise today as, early successional stages. For example open shrublands and light or scrubby woodland dominated by pioneers, ruderals, and light-demanding herbaceous species (Peyron et al. 2005). Many of these species, now found as Arctic or Alpine plants, are calcicoles suggesting soils were far less acidified than they became in the early Holocene (Rhind & Jones 2003). One of the best Lateglacial records for Central France, La Taphanel, shows rapid variations in major taxa such as pine, juniper, birch, grasses, mugworts (Artemisia), and other herbs (eg, Chenopodiaceae, Helianthemum) reflecting rapid climate change from just after the LGM, through the Older Dryas, the Allerød-Bolling, the Younger Dryas, and finally rapid warming into the Preboreal (Ponel et al. 1990). These biomes had high herbaceous productivity which attracted, and may have been partly maintained by large herbivores, small mammals, and birds but are without an analogy today (Gill et al. 2012). Fire may also have played an important role in maintaining moderate to high disturbance regimes (Thonicke et al. 2005) and variations in lithology, geomorphology, and geo-hydrological conditions created locally variable vegetation patterns as has been show for the Netherlands (Hoek 1997). Of particular importance here is the probably persistence of more climatically temperate refugia, so called cryptic refugia (Birks & Willis 2008), in valley floors dominated by willows, birch, hornbeam, and alder (Ponel & Cooper 1990).

Although this paper concentrates on the Magdalenian, the broader focus is on the wider interpretation of Palaeolithic artefacts and the relationship between different ‘actors’ within an ecological niche rather than an exhaustive survey of Magdalenian art. It is also important to note that ecological conditions through abrupt environmental transitions (AETs) were similar in other interstadials in the MIS 3 such as IS 7–IS 5 (van Andel & Davies 2003; Davies et al. 2014). Two of the first migrants into this region during de-periglaciation were the European eel (Anguilla anguilla) from the west (Atlantic) and the European beaver (Castor fiber) from the east and south, with wild horse (Equus) probably surviving the LGM throughout most of central to northern continental Europe (Bignon et al. 2005). By the Magdalenian (c. 17–12 ka BP) these three species were common throughout north-west Europe and formed part of the ecosystems that Magdelanian people occupied and interacted with.

[H1]JEEL, BEAVER, & HORSE ECOLOGY

There are aspects of the species specific ecology (autecology) of eels, beavers, and horses that are of particular archaeological significance. Eels are ecologically and evolutionarily unusual fish which humans have always struggled to understand – Aristotle, for example, suggested that they generated spontaneously from mud as he could find no larvae (Tskamoto & Kuroki 2014). Although there are some 800 species of eel alive today, only the European freshwater eel (Anguilla Anguilla L. 1758) is commonly found in north-west European freshwaters. Anguilla anguilla is the only catadromous fish common in Europe descending rivers to the Sargasso Sea to spawn (Schmidt 1922) with the pelagic eggs and then larvae taking 3 years to drift with the North Atlantic Current back to the European shelf where they metamorphose into ‘glass-eels’ and then into elvers (‘civelles’ in France) before migrating upstream (Wheelier 1969). After living in rivers and lakes for 8–18 years they migrate downstream to begin their 6000 km journey to the Sargasso Sea where they spawn and die. The triggers for their spawning-migration as silver eels are not fully understood but appear to be influenced by declining day length (photoperiod), high rainfall, and a complex effect of the lunar cycle (Brujs & Durif 2009).

This life-cycle means that eel re-occupation of the region after the LGM would have been directly linked to the re-establishment of the Gulf Stream as the Polar Front retreated from 35°N to above 55°N in under 1000 years. This re-occupation would have occurred during the Lateglacial from glacial refugia in Iberia and, using palaeoecological data, Kettle et al. (2008) show that eel was present in central France by 19,000 BP, although not into the British Isles until c. 11,000 BP (Table 1). Although some may die during their period in rivers and lakes, most will die in the Sargasso Sea, which makes their presence on LUP sites more likely to be due to human activity than natural processes. Eels can also spread rapidly from river to river and to lakes due to their semi-amphibian capabilities. As shown in this interglacial the European eel can occupy a wide range of habitats spanning the marine– freshwater ecotone and this ecological plasticity (Vollestad 1992) produces large variations in their stable isotopes values (Harrod et al. 2005). This also reflects the eel’s generalist die,t being both carnivorous and a scavenger, with the ability to detect blood through its keen sense of taste. One of its main prey is bloodworm, although it eats fish and larvae and, indeed, almost all aquatic fauna (Sinha & Jones 1975). The eel’s semi-amphibian abilities to cross land and come out of water also allows it to feed on earthworms (Deelder 1985) and may be due to an overwhelming urge to migrate (Tesch 2003).

There are two other aspects of eel ecology which are particularly relevant to humans. First, eel is of high nutritional value being high in both protein (66 g per 100 g) and fat (42 g per 100 g) with high levels of polyunsaturated fat (0.95 g per 100 g). It is also high in several essential minor nutrients including potassium, phosphorous, iron, zinc and sodium, taurine, and vitamins A, B6, and B12. Eels are also high in docosahexaenoic acid (DHA) which has recently been strongly linked to human brain development both directly and indirectly through mother’s milk (Xiang et al. 2000; Brenna & Carlson 2014). The high nutritional value of eel was utilised in the medieval and post-medieval period in Europe when it became a major food source promoted by the Church and, later, a major source of nutrition for urban settlements (Bunting & Little 2005). Eels were the full-bellied food of settlers in North America who faced starvation in AD 1620 but traded for them with Native American peoples (Prosek 2011). Secondly it is the only common fish species in Europe that is ichthyohemotoxic; its blood is toxic to mammals, including humans. However the poison, which is a protein (Yoshida et al. 2008) that cramps muscles including the heart, is broken-down by any cooking, exposure to gastric juices, or naturally a few hours after the eel has died (Halstead 1988; Auerbach & Halstead
2007). Experiments in the 19th century showed that just a few drops of fresh eel blood could kill a medium-sized mammal such as a dog (Anon 1899; Sato 1917; Keffer & Welsh 1936). In the early 20th century Charles Robert Richet tried to use it as a vaccine but found that it caused anaphylaxis, and more recently it has been trialled in both traditional Chinese and northern English folk medicine (Amin et al. 2003; Hatfield 2004). Although it may be difficult to prove its use on points of spears for hunting game it is a possibility and warrants further investigation.

Beavers (*Castor fiber* L. 1758) migrated back into north-west Europe as part of the development of riverine woodlands and would have established themselves quickly in most river systems during this period (Table 1) from glacial refugia in Spain and south-east France (Liaoursou 2014). The basic biology and major role of beavers in modifying riverine habitats is described by Coles (2006) who also reviews their post LGM history from at least 15.5 ka BP and recent redating of museum bones has confirmed that beaver survived through the Younger Dryas cold stage in south-west England (Marr 2016). Recent work on beavers has shown that they are driven to dam running water through audible cues and in the absence of high levels of predation would come to a self-limiting density related to the density and gradient of streams (Meentemeyer & Butler 1999; Westbrook *et al.* 2011). There are many ways in which beavers would have been of high value to hunter-gatherers from the high thermal value of their dense pelts, to their meat which is equivalent in energy to a roe deer (Coles 2006). As Coles discusses there are many ways in which beavers would have been of high value to hunter-gatherers from the high thermal value of their dense pelts to their meat, which is equivalent in energy to that of a roe deer (Coles 2006). There is also ethnographic evidence of their castor sacs being used as they contain a substance with similar medicinal properties to aspirin (Kitchener 2001). Other ethnographic examples exist of hunter-gatherers using theirhafted teeth and mandible as tools (Osgood 1940). One of their most valuable features may have been their tails which store fat and can be as much as 60% fat by weight during the winter (Kitchener 2001).

The wild ‘caballine’ horses of Late-glacial Europe which belonged to the species *Equus caballus* showed regional morphological variations which suggest they survived the LGM in mainland Europe rather than migrating in from the south or east (Bignon *et al.* 2005). Horse remains are found at most bone-rich Magdalenian sites indicating they were one of, if not the, prime prey species for humans (Nitecki & Nitecki 1987). These small sized horses were common in a variety of open habitats and their dentition suggests they were adapted to grazing rather than browsing (Mihlbachler *et al.* 2011). The high land cover of sedges and graminoids would have promoted large herds (Bignon *et al.* 2005). The challenges presented by free running herds are best addressed by ambush hunting, as demonstrated by ethnographic analogy (Stiner 2002). While the earliest evidence for ambush hunting at 1.8 million years ago remains a matter of debate (Bunn & Pickering 2010; Bunn & Gurtov 2014; Pante *et al.* 2012), skeletal adaptations are consistent with modern human’s ability to throw at high speed (Roach *et al.* 2013). Good evidence also exists that Lower Palaeolithic hominins hunted horses cooperatively (Stiner *et al.* 2009), as exemplified by the scapula of a horse punctured by a wooden spear found at Boxgrove GTP17 (Roberts & Parfitt 1999) and the horses found in association with the famous Schöningen spears (Conard *et al.* 2015). Floodplains were an easy place to kill horses while they were drinking. Horses are not habituated to swimming and try to avoid it; if forced to swim, they are at their most vulnerable. Although the palaeoecological contexts of the examples given above support a floodplain ambush hunting scenario as early as the 500 ka BP, recent research has demonstrated that Schöningen was not a mass kill site and instead represents several separate episodes of hunting and butchery (Urban & Bigga 2015; Balter 2014). Interestingly, new research on the site sediments has demonstrated that the spear and horse remains were not deposited on dry land, but in the lake under 1–2 m of water (Urban & Bigga 2015). After 250 ka BP it is more widely accepted that ambush hunting would have been possible (Stiner 2002) and, certainly by the Magdalenian, horse and reindeer were dominant components of the diet (Kuntz & Costamagno 2011) and seem to have been symbolically embedded in Magdalenian lifeways in a way that is not apparent for earlier periods (Langley 2013). An alternative to ambush hunting may be correlling and even proto-domestication has been discussed for the Solutrean and Magdalenian (Lewis 2009).

By the early Magdalenian beaver, eel, and horse were ubiquitous and probably numerous in central France and common throughout the area by the middle–late Magdalenian (Table 1). Beavers are highly adaptable and this makes them in effect pioneer species (Liaoursou 2014) and one which was almost certainly hunted (Petillon 2008). Recent evidence from the Caune de l’Arago shows that, by the Lower Palaeolithic (MIS 13), in southern France beaver was being systematically exploited for its skin and meat (Lebreton *et al.* 2017). The attraction of horses to water and their vulnerability near it, and the effect of beavers on Late-glacial river systems, are just two of the ways these species interacted with each other and impacted the floodplain environment. Geomorphological research has shown that floodplains in this period were covered by secondary channels (Brown 1995; Pastre *et al.* 2003; Lespez *et al.* 2015) and beaver damming of these channels would have increased the year-round water availability – effectively creating many lakes or ponds (Coles 2006). This would have increased habitats available for fish (Häglund & Sjöberg 1999), waterfowl, and amphibians. The increase in fish and other aquatic species would have increased eels in particular and ponding would also have attracted grazing herbivores, especially in drought periods. Such beaver-modified ecosystems would have been particularly attractive for humans who, if present in low numbers, could be regarded as a part of this ecological association. It is argued here that humans introduced another interaction between the species co-occupying this ecosystem through sophisticated food procurement strategies which would have, in turn, altered competitive conditions for plant growth as part of the constructed niche evolution (Allaby *et al.* 2015).
ARCHAEOLOGICAL EVIDENCE OF LATE UPPER PALAEOLITHIC EEL, BEAVER, & HORSE

Eel bones are relatively uncommon archaeological remains and otoliths, which offer the best information about age, have yet to be reported at Palaeolithic sites (Kettle *et al.* 2008, 1320). Even in later prehistoric and into historic contexts, eel remains are very rare finds. For instance, there is written evidence of eel exploitation during the medieval period but the relative lack of their bones in the archaeological record suggests that their recovery is poor (Kettle *et al.* 2008) and also that preserving (eg, smoking) and consumption softens bones so they are ingested or unlikely to be preserved. Indeed in several cultures, including Japanese, eel bones are themselves eaten as a delicacy. However, a few Magdalenian sites have yielded isolated eel remains. Trou du Frontal (Belgium) yielded two dentaries and a caudal vertebra (van Neer et al. 2007, 8), and an eel ‘fishery’ at Grotta della Serratura (Italy) suggested exploitation of immature yellow eel during the spring (Kettle *et al.* 2008).

Human exploitation of beavers is known from as early as the Lower Palaeolithic in Southern France (Lebreton *et al.* 2017) and beaver remains are evident throughout the Upper Palaeolithic in this region. In contrast, beaver remains are evident throughout the Upper Palaeolithic. The Aurignacian archaeozoological assemblage from Mladec Cave (Czech Republic) provides some of the earliest evidence of beaver exploitation (Svoboda 2001) along with bones from Kent’s Cavern, UK (Campbell 1977; Currant & Jacobi 2011). The important ornamental assemblage from the Mladec cave also includes nine perforated beaver teeth, at least one of which was excavated less than a metre from the famous human skull (Schwartz & Tattersall 2006: Antl-Weiser 2006), suggesting symbolic interest in this species. However, a few Magdalenian sites have yielded isolated eel remains. Trou du Frontal (Belgium) yielded two dentaries and a caudal vertebra (van Neer et al. 2007, 8), and an eel ‘fishery’ at Grotta della Serratura (Italy) suggested exploitation of immature yellow eel during the spring (Kettle *et al.* 2008).

Human exploitation of beavers is known from as early as the Lower Palaeolithic in Southern France (Lebreton *et al.* 2017) and beaver remains are evident throughout the Upper Palaeolithic in this region. In contrast, beaver remains are evident throughout the Upper Palaeolithic. The Aurignacian archaeozoological assemblage from Mladec Cave (Czech Republic) provides some of the earliest evidence of beaver exploitation (Svoboda 2001) along with bones from Kent’s Cavern, UK (Campbell 1977; Currant & Jacobi 2011). The important ornamental assemblage from the Mladec cave also includes nine perforated beaver teeth, at least one of which was excavated less than a metre from the famous human skull (Schwartz & Tattersall 2006: Anti-Weiser 2006), suggesting symbolic interest in this species. Noteworthy LUP zooarchaeological assemblages from north-west Europe with significant quantities of beaver remains include the Magdalenian assemblage from Le Morin, France (Boudadi-Malige *et al.* 2012), the Federmesser assemblage from Andernach, Germany (Stapert & Street 1997, 179–80), and Dog Hole cave at Cresswell (Campbell 1977) and King Arthur’s Cave in the Wye Valley, UK (Currant & Jacobi 2011).
Horse bones are ubiquitous throughout Palaeolithic archaeological horizons and the species is commonly represented in art, from the Aurignacian through the Magdalenian (e.g., Graziosi 1960; Simões de Abreu & Bednarik 2000; Pigaud 2002; Stevens et al. 2009). During the Lateglacial, horse would have made up a significant component of human diet (Bignon & Turner 2003; Turner 2006). Rice and Paterson (1996) calculated that 43.7% of Palaeolithic engravings are of horses. There is also evidence that the horses frequently portrayed in Magdalenian art were illustrative of real herds of animals (Hodgson 2003).

[H1]MOBILIARY ART

At least four sites yielded mobiliary art that may offer evidence of human engagement with the beaver-eel-horse ecosystem and exploitation of these species. The first is the Magdalenian type-site of Abri de la Madeleine rock-shelter in the Vézère Valley in the Dordogne, first excavated in 1863–4 by Edward Lartet and Henry Christy and later by Denis Peyrony (in 1926) and dating largely to the late Magdalenian (c. 12,640–13,440 BP: Boyle 1994; Gambier et al. 2000; Maier 2015). The Abbé Breuil interpreted one of the many zoomorphic engravings executed on a so-called ‘baton de commandement’, as a human representation, a snake or an eel, and two horse heads (Fig. 5). Marshack later described the same group of engravings more generally as a ‘complex composition of “obscure significance”’ (Marshack 1972, 208), and there are some discrepancies between Marshack’s (1972) and Breuil’s transcriptions of the eyes on the anthropomorphic engraving. However, their transcriptions of the horse heads and snake- or eel-like animal are in accordance with one another. Other thematic elements on this engraving include a suggestion of water or a stream (which Marshack interpreted as vegetation), and a human figure holding a long stick, spear, or pole.

We propose a revised interpretation of this depiction in which the snake-like animal may instead be interpreted as a European eel. This engraving includes a series of marks that seem to depict the confluent dorsal-anal and caudal fins (dorsal and ventral) near the tail end of an eel. Furthermore, the width to length ratio of the engraved animal is closer to that of an eel than that of a grass-snake (*Natrix natrix*), which would be the most likely common snake to be associated with rivers and wetlands. However, we have a very incomplete record of snakes and other herpetofauna for the Lateglacial in this region and snakes, like most of the herpetofauna, are thermophiles, require a long enough period of summer warmth (over 16°C) in order to incubate eggs (Gleed-Owen 1999). Three true snakes (*Natrix natrix*, *N. maura*, and *Vipera latasteri*) are known from Magdalenian levels at Gorham’s cave in Gibraltar (Blain et al. 2013) and it is assumed that Iberia was the nearest refugium for these species during the LGM. There is also evidence of snakes at two Magdalenian sites in the Pyrenees. At Bois du Cantet Cave, in the Hautes Pyrénées *Natrix sp.*, *Zamenis longissimus* (Aesculapian snake), and *Vipera aspis* (European adder) were recorded, and at Malarode Cave, Pyrénées-Atlantiques remains of *Natrix sp.* (Baillon 1991; Baillon pers. comm. 2016). It therefore has to remain an open question as to whether snakes were present in sites further north such as Abri de la Madeleine although it is likely by the end of the Magdalenian they would have migrated into this area, assuming they had not survived in a local refugia (Stewart pers. comm.).

Although there is little definitive detail on the stick held by the anthropomorphic figure, it could depict either a poke pole for eel fishing or a harpoon. The downward orientation of the stick is strongly reminiscent of the way the eel poke pole is held and used. Marshack (1972) refers to two branches or leaves on the lower end of the pole, but in his drawing they are on opposing sides of the pole and quite uniform and symmetrical, so they might represent prongs on an eel spear, killing baton, or harpoon. This alternative interpretation leads, in turn, to a revised narrative for the whole engraving: it may depict humans exploiting eels using both a tool similar to a poke pole and ‘horses’ heads as an eel trap. This implies that the engraving may not be just a random assemblage of representational elements but, rather, an intentional narrative of activities that held both practical and symbolic importance to Magdalenian culture.

From the same site there is also a ‘fish carved on reindeer antler’ on display at the Musée de Saint-Germain-en-Laye, (see http://donsmaps.com/laugeriebasse.html). We argue here that it is possible that this is also a representation of an eel, for two reasons. First, although the artefact is incomplete, the length and shape of the carved fish is more typical of an eel than other freshwater fish (although it could be argued that this shape was mandated by the morphology of the antler). Even if the shape of the depicted species was dictated in part by the material support, the rib depicted at the top of the body is more reminiscent of the dorsal fin of an eel than a pike, which would be the most likely alternative fish species.

Another baton from La Madeleine, curated at the British Museum, preserves four schematic engravings previously interpreted as ‘fish’ (Sieveking 1987, 21, pls 28–9) alongside and, in one case superimposed on, an engraving of a horse. Several of these engravings are sufficiently abstract that they might be equally interpreted as schematic depictions of eels, and the hatched marks are particularly reminiscent of the scales and markings on eels. A similar ‘ladder’ motif found on another baton from La Madeleine (Sieveking 1987, 20–1, pls 26–7) was interpreted in the *Reliquiae Aquitanicae* (1875) as a schematised fish. However, the elongated shape of this motif and the suggestion of a dorsal fin again introduces the possibility that it represents an eel. The horse muzzle overlaps the eel/fish motif, spatially reinforcing the association between these two species; to modern viewers, the eel might appear to be moving into or out of the horse’s head, similar to its expected behaviour while being trapped in a horse-head. There are also bevelled spear points from La Madeleine along with several harpoons and leisters from the site attesting to the importance of fishing to the site’s occupants.

At Grotte de Montgaudier, Charante, central France, a reindeer antler *baton de commandement*, found in 1886, was incised with depictions of two eels (whose fins are discernable), two feel, a fish, and vegetation and/or water (Fig. 6).
6). It was first described 1887 by Albert de Nadaillac who clearly recognised the site as late Magdalenian. The engraved baton was accompanied by pieces of ivory decorated with engravings and a pierced bone which was decorated with a frieze of three horses as well as perforated reindeer antlers decorated with two heads of goats (Airvaux 2002). It is relevant here that this site is only just above river level with the lower areas liable to flooding today.

An engraved bone from El Pendo, north-west Spain depicts a ‘horse and a serpent associated with a set of linear marks’ (Marshack 1972, 211). Pozzi (2004) has noted that the representations on harpoons rarely represent terrestrial animals, so this example is unusual. By contrast the representation of fish on Magdalenian harpoons is frequent, although many are stylised and schematic (ibid.). Again the shape of the serpent is far more like an eel and it does not display the markings and forked tongue seen on representations that are almost definitely snakes such as the engraved bone from Grotte de Lorthet in the foothills of the Pyrenees (Breuil & Saint-Périer 1927; Marshack 1972, 223). The linear marks are curved and could represent water by analogue with depictions such as the line angles on the horse, bison and fish engraving on the eagle bone from La Vache (Ariège) as interpreted by Marshack (ibid., 275).

An enigmatic representation from the Grotte du Mas d’Azil, Ariège, depicts a horse’s head with a thin irregular line emanating from its mouth (Fig. 7). This has generally been interpreted as grass or some form of foliage (Tyldelesley & Bahn 1983). Although possible, this seems rather prosaic and it is argued here that an equally plausible interpretation is that this also represents horse-head eel fishing. This is further supported by the presence of a possible ‘spear-thrower’ from the site with an unusual form (Garrod 1955). The spear-thrower, illustrated in Piette (1907 pl. ii, no. 2), is 21 cm long and is thought to represent an eel with a small fish’s tail against its head (Piette 1907; Garrod 1955). It is made on reindeer antler and its use as a spear-thrower is considered dubious by Garrod for a variety of reasons; however, the representation of the eel remains significant, even if the purpose of the artefact remains enigmatic. An alternative interpretation of the artefact might be that this is instead a fishing device of some unknown function. Two other artefacts from Mas d’Azil reinforce the possible significance of horse heads in the trapping and fishing of eels. A famous spear-thrower from the site depicts three horses heads in various stages of life and death (Mas D’Azil Website 2012). It has been interpreted as a young horse, an older horse, and a horse skull. The horse skull depiction is famous spear-thrower from the site depicts three horses heads in various stages of life and death (Mas D’Azil Website 2012). It has been interpreted as a young horse, an older horse, and a horse skull. The horse skull depiction is particularly relevant to this discussion. Another sculpture fragment from Grotto du Mas d’Azil has similarly been interpreted in the past as a horse head with the flesh removed. Overall, the graphic juxtaposition of images of life and death may be related to meaning associated with the use of the spear-thrower in killing horses, but it should be noted that the same life-death relationship is present in the use of a carcase to attract eels. An association between fish and horses and vegetation is also seen at Cueva los Casares where there are also images of possible anthropomorphic mustelids, such as otters, but which could also be reintepreted as beavers (Fig. 8, see below for further discussion of beaver/otter representation).

A strong association between fish and fertility is suggested at Bruniquel, Tarn-et-Garonne (Sieveking 1987), where a broken baton, which was carved to the shape of a phallicus, was decorated with fish and ‘angles probably representing water’ (Marshack 1972, 330). A broken engraved bone from the same site is interpreted as a depiction of fish on one side and uncertain images, fish tails, or trees on the other. An alternative interpretation is that these are fish or eel heads and the uncertain images are eel spears, similar to those used by Maori, or a fish-catcher (ibid., 200).

Several other artefacts have depictions that might be related. A rib bone from La Vache, in the French Pyrenees, was engraved with a horse head, which Marshack (1972, 225) interpreted as a stallion, followed by a mare; the two figures are separated by a symbolic branch. However, Marshack does not discuss the curved line emanating from the stallion’s mouth which might be a schematic interpretation of an eel. Mobiliary art from other sites associates horses or horse’s heads with rivers and fish. For instance, an engraving on stone from Trois Frères (Ariège) features a small horse’s head engraved over a fish (Marshack 1972, 244). Similarly, an engraving on a baton from Abri Mège, Teyjat, depicts a horse and deer head surrounded by three serpentine shapes (ibid., 260). At least one of the shapes has a pectoral fin while another has a clear lateral-line, suggesting that they are probably depictions of eels rather than snakes. At Grotte de Raymonden, Chancelade (Dordogne), a stone baton was engraved with a horse’s head, fish, harpoon, and a possible bud or flower (Breuil 1937; Marshack 1972; Tyldelesley & Bahn 1983).

While evidence for the use of beaver pelts exists from at least the Middle Palaeolithic (Fiore et al. 2004), there are only a few possible depictions of beavers in Magdalennian art. One of them comes from Abri de la Madeleine regarded by the Musée Les-Eyzies-de Tayac as an anthropomorph entitled ‘The sorcerer of La Madeleine’ (Fig. 9). The other is a very well known engraved image of two women-otter figures from the Middle Magdalenian levels at Isturitz (on display at the Musée National de Préhistoire Les Eyzies de Tayac; Isturitz Websites). Both images have traditionally been regarded as human-otters and, in the La Madeleine case, an otter-like human/shamanistic being (Cooper 2001). However, this figure (Fig. 9) appears to have a wide/fat tail and the other has a similar body shape and either no tail or possibly a fat tail rendered as feet. In these regards, both images are more likely to be beavers than otters, in which case a symbolic link is suggested between the human form (and/or human behaviour) and beavers. The presence of beaver in the region during the Magdalenian is not in doubt (see Table 1), however, there is only one find of fossil otter (Lutra lutra) from the Lateglacial in France and that comes from the Alps (Chaix & Olive 1984) although finds are known from Germany and Poland (Knu pers. comm.). Although it might be argued that otter would likely be under-represented in caves and not being a human food resource (like most carnivores) there is no fossil data at present to question the view of Sommer and Beneck (2004) that the European population of otter was restricted to a single glacial refuge and did not expand westwards into France until the Holocene. Other purported otter representations might
be similarly reconsidered as beavers. For instance, an engraving from Laugerie Basse, Dordogne, repeatedly interpreted as an otter, is located adjacent to one fish engraving and overlapping another (MacCurdy 1924, 37; Guthrie 2006, 224). Like the other enigmatic zoomorphs discussed above, the purported ‘otter’ is easily re-interpretable as a beaver.

[H1] NICHE CONSTRUCTION THEORY & LATEGLACIAL HUMAN–ENVIRONMENT INTERACTIONS

Niche construction theory (NCT) provides a potentially valuable framework for analysing the bi-directional interactions of humans with environments in the past which explicitly considers human behaviour, abiotic factors, and ecological feedbacks within an evolutionary context (Smith 2007; Lewontin 2000; Odling-Smee et al. 2013; Allaby et al. 2015). Niche construction refers to the ‘modification of both biotic and abiotic components in environments via trophic interactions and the informed (i.e., based on genetic or acquired information) physical work of organisms’ (Odling-Smee et al. 2013, 5). Of importance here is that this includes both actions by humans and also by other biotic components of the ecosystem. It is evolutionary in that it can increase carrying capacities, facilitate co-operative behaviour, and lead to ecological inheritance with can include acquired social learning. This includes an element of selective pressure provided by the diet that would enhance brain development in infants and facilitate cognition, rapid learning, and visual acuity (Cheetham et al. 2006; Agostini 2008). NCT goes beyond the extended phenotype approach (sensu Dawkins 1982) in considering such behaviour as more than adaptations, including by-products such as artefacts that include signs, signals, or new behaviours which may or may not be ‘profitable’ (Madden et al. 2012). In both evolutionary and archaeological terms NCT is important because it can: (a) influence the strength and selection acting on all participants (Odling-Smee et al. 2003), (b) increase the abundance of individuals by increasing fecundity and/or extending longevity, and (c) encompass ecological spill-overs which are modifications to other species niches creating multiple co-evolutionary events. NCT also implicitly recognises ecological change through the occurrence of new assemblages creating potentially novel trophic interactions as must have been common under the rapidly changing climates and biogeographical biotic distributions during periods of rapid climate change such as the Late Upper Palaeolithic (Dawson et al. 2011; Birks & Birks 2008). Thus particular associations brought into being by climatic change can interact to produce locationally-specific nutritional advantages for human populations, in this case along river-corridors. Of particular significance for this paper is the commonly cited example in the NCT literature of the beaver’s dam which alters the environment of many populations and even the abiotic environment (Naiman et al. 1988; Odling-Smee et al. 2003). We can also differentiate niche construction (as with the beaver dams), opportunistic niche recognition via inherited environmental knowledge and niche maintenance through repeated use involving social memory.

[H1] INTERACTION, NICHE CONSTRUCTION, & DISCUSSION

The re-interpretation of some panels of mobiliary art as possible depictions of interactions between eels (and in some cases fish), horses, and in a few cases beavers highlights the interactions between these species and Magdalenian hunter-gatherer-fishers. The similarity between fish or eel killing batons, bâton de commandement and bâton perforé should be explored more although they have been interpreted in a bewildering number of ways (Bahn & Vertut 1988). It is also during the Magdalenian that harpoon technology becomes widespread (Julian 1982). It is not clear what the prey species were, but a link with fishing is most commonly made (Julien 1982; 1995; Román and Villaverde 2012) although this is difficult to prove due to the lack of detailed studies of ichthyofauna.

In the riverine environments of mainland north-west Europe along with the niche constructing activities of beavers we can add the involvement of Magdalenian peoples through butchery by rivers (attracting eels), and the hunting/trapping of eels and beavers (Fig. 10). This niche co-constructed by humans and beavers would have produced ecological spill-over effects of increases in waterfowl and fleshly tubors such as reed-maces (Typha sp.). In this context it is interesting to note that the highest proportion of all birds represented in art are water-birds such as swans, geese, ducks, and heron (Bahn & Vertut 1988). This niche can also be seen in relation to evolving views on Magdalenian diet and nutrition as counterbalancing potentially excess protein in the Magdalenian diet (Speth 1991). Whilst the Magdalenian in north-west Europe has commonly been viewed as the ‘reindeer-horse hunters’ with regional variations (Ávarez-Fernández 2011) this is biased by the data which are largely artefacts, animal bones, and a limited amount of isotopic data. Recent studies using different datasets such as dental calculus have argued for a much broader dietary base including significant plant consumption including underground storage organs (Power et al. 2015). This study also recovered a sponge spicule from dental calculus suggesting some plant or animal input from a freshwater habitat.

This can be seen as part of the co-evolution of plant–human relationships (Allaby et al. 2015) and which we argue here includes co-constructed riverine niches. These niches would also have been relatively stable in the face of climatic instability during this period (Bignon et al. 2005) and may have provided an expanded season of both protein and carbohydrate/fat. Any linkage between the exploitation of individual resources inevitably raises the question of seasonality. It has been argued that, in the Magdalenian in France, reindeer was hunted in the autumn/winter and horse in the spring/summer (Fontana 2000). There is direct evidence of reindeer hunting in autumn from Verberie in northern France (Enloe 2006). If so, a link between the exploitation of horse and eel would suggest a spring to summer window, however, both eel and beaver are potentially available year-round. Beavers do not hibernate but store enough wood underwater to last the winter, which they can access even if the pond or river is frozen over and snow cover has made terrestrial plants inaccessible. Ethnographic records from North America indicate that beaver tail fat provided an important late winter fat component for human diet (Coles 2006). Winter availability also applies to several plant
resources such as the rhizomes of reed-maces and the leaves of plants such as watercress (Rorippa nasturtium aquatic) which are high in valuable nutrients, particularly vitamin C. Although it is difficult to be precise about the targeted species, the noted rise of harpoons as an artefact type during this period reinforces the centrality of riverine environments (Julien 1982; 1995; Román & Villaverde 2012). This accords well with Boyle’s (2010) argument in favour of true specialisation during the Magdalenian and Solutrean, and it is possible to see how this adaptation could fit into arguments regarding the expansion of the Magdalenian to north-west Europe (Miller 2012).

It is proposed here these relationships, between eel, beaver, horse, and Magdalenian peoples constitute a humanly-constructed niche in both ecological and symbolic terms, which was also advantageous for human well-being and social development in at least two ways. First it allows year-round occupation which has reproductive, social, and cultural consequences (Shennan 2001; Zubrow 2010). Secondly the diet, and in particular the high consumption of eels, eggs, and fish would be unusually high in long-chain polyunsaturated acids (LCPs, including omega-3 and omega-6) and docosahexaenoic acid (DHA). These nutrients are all known to promote eye and brain development in babies and social learning (Xiang et al. 2000; Brenna & Carlson 2014; Birch et al. 2007; Kuratko et al. 2013). In terms of culture and to paraphrase Lévi-Strauss (1964), food and cooking is a language – and an essential part of group identity and culture. Both the sedentism and the nutritional advantages are part of the ecological feedbacks and selective pressure within an evolutionary context that underlie niche construction theory (Smith 2007; Lewontin 2000; Odling-Smee et al. 2013; Allaby et al. 2015) and simultaneously can be seen as part of the way human agency was created and transformed through inhabitation of complex material conditions (Barrett 2001). We suggest here that the representation of the affluence and development of such a society is embodied in the symbolism of the artistic representations discussed here.

[H1]CONCLUSIONS

It is argued here from a combination of ecology, palaeoecological evidence, and the reinterpretation of several pieces of mobiliary art that Magdalenian hunter-gatherers had honed the skill set and technologies necessary to undertake eel-fishing using poke poles, nets, or baskets, and horse heads used as traps. These innovations which are part of the ‘broad spectrum evolution’ could have arisen when eels were attracted to horse butchery sites in shallow channels and on river banks, and the roots of these practices might extend even earlier in the Palaeolithic. This can also be seen as part of a larger socio-ecological interaction between humans and beavers, with horses and eels (as beaver dams are ready-made eel traps and ideal for horse-head eels traps) which, we argue, formed part of a particularly valuable and probably symbolically loaded humanly constructed niche. The similarity between hedge-type fish traps now known to date from at least the early Mesolithic in north-west Europe (Zvelebil 2008; Smart 2003; Zhilin 2014) suggests this niche construction could have been an integral part of associative innovation which extended north during the Magdalenian. Both the act of depicting eels, horses, and beavers as elements on mobiliary art at sites with other elements of ritual significance, and the biology of these three animals (which have engendered myths until the present day), suggests that they were part of an animistic association which represented important elements of the Magdalenian peoples’ view of both themselves and other occupants of this ecological niche. This also implies that key panels of Magdalenian mobiliary art could be seen as representing ecological assemblages and a constructed niche rather than isolated biological, resource, or symbolic elements. Seen as such, this is part of the deeper time-depth of co-evolutionary process with selective pressure that led eventually to domestication of key species such as the horse (Allaby et al. 2015). This behaviour is also part of an evolving socio-ecological cognition that some have argued forms part of modern human behaviour.

However, the existence of this ecological association earlier in the Pleistocene, but relative lack of artistic representation, cautions against such an interpretation. Indeed, whilst the primary focus for this paper has been on the Magdalenian, there is intriguing evidence that the association of hominins in this particular niche may have much deeper roots. For example, the site of Cueva Millán dating to 37,600 BP yielded six species of fish including trout (Salmo truta farios, N=198), Iberian nase (Chondrostoma polyplepis, N = 52), and eel (Anguilla Anguilla, N = 29) in association with human activity (Izquierdo 1992; Boyle 2010). Even older is the remarkable 2012 discovery of the Eemian site of Waziers, France (minimum U/Th age of 103±3.5/–3.4 ka, Hérisson et al. 2015) where wood shows clear marks of beaver activity and a cut mark on one of the beaver bones (Castor fiber) (Hérisson pers. comm. 2015). Although analysis is still underway, a range of other interglacial fauna were also present including horse, roe and red deer (Hérisson pers. comm. 2015). Whilst we can never put ourselves in the place of these Palaeolithic peoples and the use of ethnographic analogy such as Maori or even historical eel fishing should be used with care (Lane 2014), a holistic approach to understanding their artefactual remains and landscapes surely places some constraints on the plethora of possibilities and can only improve our interpretations of artefactual evidence. Re-interpreting some key Palaeolithic art objects also highlights the importance of studying Palaeolithic art in its broader ecological and archaeological context, rather than continuing to focus on the iconographic features and interpret them in isolation.

[9P]Acknowledgments: Thanks to John Stewart, Chris Gleed-Owen, Mark Roberts, Katheryn Boyle, William Davies, John Stewart, Monika Knul, Mike Lobb, Kevin Walsh, Mark Gardiner, Finbar McCormick, Exra Zubrow, and Des Tatana Kahotea for helpful discussions on this topic which improved the paper. Thanks also to Don Hitchcock for assistance with photographic materials.

[H1]BIBLIOGRAPHY

[BIBL]Aaris-Sorensen, K. 2009. Fossils and strata, diversity and dynamics of the mammalian fauna in Denmark throughout the last glacial interglacial cycle 115–0 BP. Fossils and Strata 57, 1–59

[N1] RÉSUMÉ

Anguilles, castors et chevaux: Construction de niche humaine dans la deuxième partie du paléolithique supérieur européen, de Antony G. Brown, Laura S. Basell et Rebecca Farbstein

Cet article examine les interactions entre les divers occupants de niches riveraines dans l’Europe du nord-ouest durant la deuxième partie du paléolithique supérieur final utilisant à la fois des données écologiques et archéologiques. On argumente que l’étude à la fois des récents vestiges de glaciation et de l’autécologie des anguilles, castors et chevaux donne du poids à une réinterprétation de certains célèbres, mais énigmatiques, panneaux d’art mobilier magdaléniens comme représentation de pêche à l’anguille, au côté de l’exploitation de chevaux et de castors dans des habitats riverains perturbés. On propose, de plus, que ceci constitue une niche humaine co-construite en termes d’écologie, de nutrition et de symbole, qui était aussi particulièrement propice au bien-être et à l’avancement social en ce temps et lieu.

ZUSSAMENFASSUNG

Aale, Biber und Pferde: Die Bildung menschlicher Nischen im europäischen Späten Jungpaläolithikum, von Antony G. Brown, Laura S. Basell und Rebecca Farbstein

RESUMEN

Anguilas, castores y caballos: construcciones de los nichos humanos en el Paleolítico Superior Final, por Antony G. Brown, Laura S. Basell y Rebecca Farbstein

En este artículo se examinan las interacciones entre los ocupantes de los nichos ribereños en el noroeste de Europa durante el Paleolítico Superior final, a partir de los datos ecológicos y arqueológicos. La documentación durante el último glacial y la ecología de poblaciones de algunas especies como la anguila, el castor y el caballo apoyan una reinterpretación de algunos famosos pero enigmáticos restos de arte mueble magdaleniense tales como representaciones de la pesca de la anguila y la explotación de caballos y castores en hábitats ribereños alterados. Se sugiere además que esto supone un nicho construido por parte de los seres humanos en términos ecológicos, nutricionales y simbólicos, lo que fue particularmente ventajoso para el bienestar humano y su desarrollo social en ese momento y entorno.

Fig. 1. Magdalenian Europe with ecological, palaeontological, and Magdalenian art sites mentioned in the text. Stars: sites with art reproduced in this paper; solid circles: other Magdalenian sites mentioned in the text.

Fig. 2. A poke pole being used to flush eels out for filming (photo courtesy of the Monkeyface News).

Fig. 3. A scene of horse head eeling from the 1979 adaptation of *The Tin Drum* by Gunter Grass directed by Volker Schlöndorff and produced by Jadran Films (Reproduction by permission of Jadran Films, Croatia).

Fig. 4. A Maori eel-weir on the outlet stream of Horowhenua lake New Zealand (above) and eel killing baton (*patu tuna*) and eel spears (*matarau*) (below) (by permission from Museum of New Zealand Collections. Wweir photographer Leslie Adkin 1925, gift of the G.L. Adkin family estate 1964).

Fig. 5. ‘Snake or eel, man and two horse heads’ from Abri La Madelaine redrawn from Marshack (1972) (redrawn and adapted from original © MNP Les Eyzies – Dist.RMN - cliché Ph. Jugie).

Fig. 6. Engraving on a *bâton de commandement* from Grotte ds Montgaudiet from de Nadaillac (1887) (Creative Commons licence).
Fig. 7. ‘horses head with herbage’ from Grotte du Mas d’Azil, adapted from Tyldesley & Bahn (1983) (copyright: Elsevier)

Fig. 8. Three panels from Lortet. Magdalenian. From Antropomorfos en la Cueva de los Casaresal Website, (http://quintadimension.blogcindario.com/2008/09/00019-antropomorfos-en-la-cueva-de-los-casares.html (Creative Commons licence)

Fig. 9. engraved bone of an anthropomorph entitled ‘The sorcerer of La Madeleine’ from Abri La Madeleine (reproduced by oermission of the Musée Les-Eyzies-de-Tayac. © MNP Les Eyzies – Dist.RMN - cliché Ph. Jugie)

Fig. 10. Schematic representation of ecological relationships between humans, beaver, eels and horses in the European Late Upper Palaeolithic

1Palaeoenvironmental Laboratory University of Southampton (PLUS), Shackleton Building, Highfields Campus, Southampton SO17 1BJ UK. Email: Tony.Brown@soton.ac.uk
2School of Natural & Built Environment, Queen’s University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland
3Department of Archaeology, University of Southampton, Avenue Campus, Southampton SO17 1BJ

running header
A. Brown. EELS, BEAVERS, HORSES: HUMAN NICHE CONSTRUCTION, EUROPEAN LUP
<table>
<thead>
<tr>
<th>Site</th>
<th>Evidence</th>
<th>Date(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bois des Brousses, Aniane,</td>
<td>Vertebrae</td>
<td>Middle Magdalenian</td>
<td>Duche 1986–7</td>
</tr>
<tr>
<td>Hérault, France</td>
<td></td>
<td>c. 18,500 cal BP</td>
<td></td>
</tr>
<tr>
<td>Tossal de la Rocca, Alicante,</td>
<td>Vertebrae</td>
<td>17,020–19,540 cal BP</td>
<td>Rosello & Morales 1995</td>
</tr>
<tr>
<td>Spain (668 m altitude)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bois Ragot (Level 5),</td>
<td>vertebrae</td>
<td>Final Magdalenian</td>
<td>Cravinho & Desse-Berset 2005</td>
</tr>
<tr>
<td>Atlantic, France</td>
<td></td>
<td>Younger Dryas II anciet</td>
<td></td>
</tr>
<tr>
<td>Mladec, Czech Republic</td>
<td>Perforated beaver incisors</td>
<td>Aurignacian</td>
<td>Pacher 2006</td>
</tr>
<tr>
<td>Beaver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les Hoteaux, Mas d’Azil,</td>
<td>Bones with human burial</td>
<td>Magdalenian</td>
<td>Burkitt 1921</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Morin rock-shelter,</td>
<td>Bone</td>
<td>Magdalenian, Azilian levels,</td>
<td>Osborn 1915</td>
</tr>
<tr>
<td>Gironde, France</td>
<td></td>
<td>Magdalenian</td>
<td></td>
</tr>
<tr>
<td>Grottes des Hoteaux,</td>
<td>Bones possibly associated with a burial?</td>
<td>Magdalenian</td>
<td>Burkitt 1921</td>
</tr>
<tr>
<td>Rossillon, France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hohlen Stein, Westphalia,</td>
<td>Bone</td>
<td>Middle Magdalenian</td>
<td>Clark 1936</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nørre-Lyngby, Denmark</td>
<td>Bone</td>
<td>Middle-Late Magdalenian</td>
<td>Aaris-Sorensen 2009</td>
</tr>
<tr>
<td>Moravian Karst, Czech</td>
<td>Bone from fireplace 2</td>
<td>Magdalenian</td>
<td>Musil 2000</td>
</tr>
<tr>
<td>Republic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les Pecheurs, Casteljau,</td>
<td>Bone (faunal list)</td>
<td>Mousterian & Upper Palaeolithic</td>
<td>Pêcheurs et al. 2010</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>c. 15,000 cal BP</td>
<td></td>
</tr>
<tr>
<td>Wilczyce, Poland</td>
<td>bone</td>
<td>Late Magdalenian</td>
<td>Fiedorczyk et al. 2007</td>
</tr>
<tr>
<td>Grotte de la Borie del Rey,</td>
<td>Bone (faunal list)</td>
<td>Magdalenian</td>
<td>Couloonges 1963</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grotte d’Arlay, France</td>
<td>Bone (faunal list)</td>
<td>Magdalenian</td>
<td>David 1996</td>
</tr>
<tr>
<td>La Grotte du Rond du Barry,</td>
<td>Bone (faunal list)</td>
<td>Magdalenian</td>
<td>Poulain 1972; Liarsou 2014</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Grotte de Jeannue à</td>
<td>Bone (faunal list)</td>
<td>Magdalenian</td>
<td>Poulain 1976; Liarsou 2014</td>
</tr>
<tr>
<td>Rebeuville, France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Grotte du Bourrouilla,</td>
<td>Bone (faunal list)</td>
<td>Magdalenian</td>
<td>Fosse 1999; Dachary 2008; Liarsou 2014</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinchon I, France</td>
<td>Bone (faunal list)</td>
<td>Magdalenian</td>
<td>Brochier & Livaxhe 1978</td>
</tr>
<tr>
<td>Chinchon II, France</td>
<td>Bone (faunal list)</td>
<td>Magdalenian</td>
<td>Créguet-Bonnoure 1992</td>
</tr>
<tr>
<td>Grotte des Balmes de Glos,</td>
<td>2 fragments of scapula (faunal list)</td>
<td>Magdalenian final/Azilien</td>
<td>Bocquet 1969; Pion 2009</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L’Abri Dufaure, France</td>
<td>Bone (faunal list)</td>
<td>Magdalenian & Azilian</td>
<td>Straus 1988</td>
</tr>
<tr>
<td>Gough’s Cave, Cheddar, UK</td>
<td>bone</td>
<td>12,386–11836 & 11989–11,405 cal BP</td>
<td>Currant 1986</td>
</tr>
<tr>
<td>Miesenheim II, Germany</td>
<td>Bone (faunal list)</td>
<td>Federmesser</td>
<td>Bosinski 1979; 1983 after Barton et al. 1991</td>
</tr>
<tr>
<td>Kettig, Germany</td>
<td>Bone (faunal list)</td>
<td>Federmesser</td>
<td>Street et al. 2006</td>
</tr>
<tr>
<td>Niederbieber, Germany</td>
<td>Bone (faunal list)</td>
<td>Federmesser</td>
<td>Street et al. 2006</td>
</tr>
</tbody>
</table>
FIGURE 4
FIGURE 10

Magdalenian riverine corridor

Horse
meat, viscera, bone, teeth, skin

Hominins
+ve conception, live births, cognitive development...

Beaver
meat, fat, pelt, bone, teeth

Eel
meat, skin, toxin use?

River pond expansion & increasing aquatic vegetation

River pond expansion +

Hunting

Fishing

Toxin use?