Ward round simulation in final year medical students: Does it promote students learning?

Published in:
Medical teacher

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 Taylor & Francis. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Ward round simulation in final year medical students: Does it promote students learning?

Short title: Ward round simulation to promote learning

CLAUDIA BEHRENS¹, DIANA DOLMANS², JIMMIE LEPPINK², GERARD J GORMLEY³, ERIK DRIESSEN²

¹ Medical Education Unit, Universidad Católica del Norte, Coquimbo, Chile; ² School of Health Professions Education, Maastricht University, Maastricht, The Netherland; ³ Centre for Medical Education, Queen’s University, Belfast, Northern Ireland.

Correspondence: Claudia Behrens, M.D., M.Med., Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile. Tel: 56-51-2209817; 56-9-96094280. Email: ebehrens@ucn.cl
Abstract

Introduction: Ward round skills are essential for doctors in hospital settings. Literature shows medical students deficiencies in these skills. Simulation has been used to train these skills. However, exposing learners to simulation at an early stage may be associated with a high cognitive load and limited learning. This study aims to determine how students experience this load and its interplay with performance and which factors promote and impair learning.

Method: Fifty-six final year medical students participated in a simulated ward round training exercise. Both students’ performance and cognitive load were measured to determine if there was any correlation and interviews were carried out to understand which factors support and impair learning.

Results: Performance scores revealed deficiencies in ward round skills. Students experienced a cognitive load that weakly correlated with performance. Qualitative findings provided important insights into simulated ward-based learning. It is clear that well-designed clinical scenarios, prioritization tasks, teamwork and feedback support students’ learning process whereas distractions impair learning.

Conclusion: WRS proved to be a good teaching method to improve clinical skills at this stage as the cognitive load is not too high to impair learning. Hence, including tasks in the simulation design can enhance the learning process.
Introduction

Doctors face many challenges working in the complex arena of modern clinical practice. Hospital ward rounds represent a key activity that brings a structured process to interact with patients in order to best guide their clinical care. Ward rounds integrate a wide range of skills including teamwork, interpersonal communication, clinical reasoning, patient management, and decision-making skills (Nikendei et al. 2007). However, the evidence base would suggest that both medical students and junior doctors have deficiencies in ward round skills, which could be defined as a range of technical and non-technical skills that healthcare professionals need to apply to work effectively in a clinical ward based environment, such as decision making, initiating appropriate prescriptions and documentation (Nikendei et al. 2007; Norgaad et al. 2004).

Ward round simulation

We are aware that simulation-based education (SBE) has the potential to be an effective and important learning tool for healthcare professionals (Cook et al., 2011; Haji, Khan, et al., 2015; Issenberg et al., 2005; McGaghie et al., 2011). Recently, a specific SBE has been developed called ward round simulation (WRS). Simulation-based ward round learning activities have emerged, aiming to best prepare students for ward round based activities. Overall, characteristics of WRS consist of complex clinical scenarios situated in a simulated clinical ward that involves multiple elements such as managing more than one patient, interacting with relatives and other healthcare professionals, and dealing with multiple competing tasks activities where interruptions and distractions happen (Ker et al., 2006; Nikendei et al., 2007; P. H. Pucher et al., 2013). Thus, WRS provides a realistic environment that has the
potential to help students develop their clinical ward skills such as diagnostic and management skills, decision-making, communication and teamwork skills. By developing these skills in a safe controlled simulated environment, students can prepare for actual clinical practice (P. Pucher et al., 2013).

However, immersive simulations such as WRS are complex and challenging learning environments that can place a high demand on learners’ cognitive resources. Hence, it is necessary to have an adequate instructional design in order to achieve desired learning outcomes without overburdening learners and inhibiting their development. Cognitive load theory can bring value insights into such learning contexts and challenges (Fraser et al., 2015).

Cognitive load theory

Cognitive load theory (CLT) builds on classical working memory research that demonstrates the narrow limits of working memory (Miller, 1956). Instructional design must operate within the narrow limits of working memory, otherwise learning and performance are likely to be impaired (Young et al., 2014). CLT defines learning as the development of cognitive schemas of a topic, skill, or problem-solving procedure (Leppink et al., 2015) and currently distinguishes between two types of cognitive load: *intrinsic cognitive load* and *extraneous cognitive load* (Leppink & Van den Heuvel 2015). Intrinsic cognitive load arises from new information, elements that are not yet part of learners’ cognitive schemas, whereas extraneous cognitive load results from cognitive processes that as such do not contribute to learning. Some examples of the latter include ineffective problem-solving search (Leppink et al. 2015), having split attention between sources that could be integrated into a single source (Van Merriënboer & Sweller 2010) and distracting ambient noise from clinical
monitor alarms while a student is evaluating a patient. Education and training should be designed so that extraneous cognitive load is minimized and students are stimulated to optimally allocate their resources to deal with intrinsic cognitive load (Lafleur et al., 2015; Leppink et al., 2015).

A recent educational design model inspired by CLT has potential implications for SBE (Leppink & Van den Heuvel 2015). In this model, three dimensions are to be considered: task fidelity, task complexity, and instructional support. This model implies that the process of reducing instructional support (i.e., from worked examples to autonomous task performance) should be repeated for each subsequent complexity level and level of fidelity. Providing early stage learners with a very complex task (e.g. a case with many possible diagnoses and a high degree of comorbidity) (Leppink & Duvivier 2016) with too little instructional support is not likely to result in learning for two reasons. Firstly, the many interacting information elements about the case that have to be processed, constitute a high intrinsic cognitive load. Secondly, the lack of instructional support will likely trigger ineffective search processes that contribute to an extraneous cognitive load (Leppink et al. 2015).

Tremblay and colleagues (Tremblay et al., 2016) recently demonstrated how a high level of fidelity may hinder learning in novice pharmacy students. In line with CLT and the aforementioned three-dimensional model, the simulated workplace environment resulted in higher levels of intrinsic and extraneous cognitive load and somewhat higher levels of stress. Moreover, focus groups revealed that participants were more capable of engaging in clinical reasoning in a low fidelity environment, because – again in line with CLT and the three-dimensional model – the simulated working environment triggered participants to pay attention to other potential stimuli
that take away from the main learning focus for the learner, for example, locating and collecting information from the patients computer record rather than engaging in deep problem solving.

New medical graduates have to face complex clinical scenarios with autonomous task performance during ward rounds. The use of ward round simulation as training method during the last year of medical programme could best prepare students for this duty. However, there is a paucity in the literature as to whether a high level of fidelity of simulation fidelity may actually impair learning for novices being trained to develop their clinical ward based skills. This study aims to determine 1) to what extent students experience intrinsic and extraneous cognitive load and what their performance scores during ward round simulations are 2) how cognitive load scores and performance scores correlate 3) factors that enhance learning and 4) factors that hinder learning.

Methods

This study was conducted using an explanatory sequential mixed method design (Creswell, 2012). We studied these questions with the help of a cognitive load questionnaire, the Postgraduate Ward Round Simulation assessment tool and individual interviews with students who participated in a final-year ward round simulation.

Setting

This study took place from April to July 2016 at the Clinical Simulation Center of Universidad Católica del Norte (UCN), Chile in the simulated emergency room, which replicated an emergency workplace fully equipped with medical equipment,
(simulated) medicines, electronic records, and other artifacts commonly found in
ward environments such as a nurse station, telephones and pagers. The UCN has a
traditional medical curriculum. The degree program lasts 7 years. The last 2 years
respond to internships where students are enrolled in emergency ward rounds as
part of their medical training. They join the medical team and act as observer during
the emergency management. The exercise was part of their final year medical
curriculum.

Emergency ward round: the ‘hand over’ exercise

Each participant participated in a simulated emergency ward round experience.
During the teaching exercise, each participant was involved on an ‘hand over’
exercise for 30 minutes followed by a 45 minute debriefing using a ‘Debriefing with
good judgment’ approach (Rudolph et al., 2006). This approach utilizes a self-
reflection process that helps students recognize and resolve clinical and behavioral
dilemmas raised by the simulation itself and instructor. This supports the participant
to critically reflect on their actions and how they could modify their future
performance.

In this emergency simulated ward, participants had to interact with 3 patients in a
ward round that included medical and surgical scenarios. A qualified nurse also took
part in the scenarios as well as a doctor, who received the patients at the *change of
shift*, after they were taken care by participants. Each role player had to adhere to
scenario scripts which guided their performance and roles in the scenarios. Three
sources of distractions were part of the exercise: 1) a patient’s daughter asking for
information 2) a phone call from a nurse who was asking for interpretation of some
laboratory tests and 3) ambient noise from other patients and clinical monitor alarms.
Participants were given the role of junior doctors whose task was to gain an overview of the patients’ cases. They had to define consultation goals, conduct the ward round, re-evaluate the patients’ therapy and prepare written notes regarding the proposed management plan. They also had to deal with distractions as detailed above. All final-year students were invited to participate in the study by filling out a cognitive load questionnaire and participating in an individual interview.

Quantitative data collection and analysis

Simulation scenario sessions were video recorded. All video recordings were viewed by two independent raters who were experienced medical doctors and educators. They applied the Postgraduate Ward Round Simulation assessment tool (PgWRS) (Stirling et al., 2012) to rate participants’ performances as formative assessment (Appendix A). Each of the raters had received training in using PgWRS. This tool assesses 9 domains: Task management, clinical skills, acutely ill patients, prescribing techniques, written documentation, response to interruptions, communication, health and safety and professionalism. For each domain, a five-point Likert scale was used to assess domain performance, ranging from ‘1’ (very poor performance) to ‘5’ (outstanding performance).

Immediately after completing the simulated exercise, students were asked to complete a cognitive load questionnaire (Leppink & van den Heuvel, 2015) translated to Spanish with an 11-point (0-10) rating scale, in which ‘0’ indicates if you do not agree at all and ‘10’ indicates if you completely agree.

Four items were intended to measure intrinsic cognitive load, and four other items aimed to measure extraneous cognitive load (Appendix B).

Quantitative analysis was conducted with SPSS version 23. A principal components
analysis resulted in two components with item-component loadings in line with previous versions of the instrument (e.g., Leppink et al 2014). Hence, scores for the four intrinsic cognitive load items were averaged to obtain an intrinsic cognitive load score, and the same was done for the extraneous cognitive load items.

Qualitative data collection and analysis

After the debriefing session, individual interviews were carried out in order to explore the perceived factors that enhance or hinder learning.

An explanatory sequential mixed methods design was used in this study. For qualitative analysis, one author (CBP) carried out all fifty-six individual interviews to determine participants’ perception of learning in WRS. Each interview lasted from 20 to 30 minutes. Open-ended questions were asked on the students’ perceptions of factors that enhanced and impaired learning during WRS, and how it affected their learning process (Appendix C). Interviews were audio-recorded and transcribed verbatim. CBP listened and coded half of the interviews and a research assistant also read all the interviews and validated the coding (topics, themes). The research team discussed and reviewed the emergent themes based on importance and relevance to the study. After this step CBP and the research assistant analyzed the remaining interviews with this coding scheme. Finally, the research team reached consensus on the main themes of the data.

Ethical considerations

This study received approval from the Research Ethics Committee of Universidad Católica del Norte (F.M. Nº 09-2016). Written informed consents were obtained prior
to filling the questionnaire and participating in interviews. Investigators were not directly involved with students’ training at the moment of conducting the research.

Results

Fifty-six out of sixty-four subjects (87.5%) were recruited by email, with an equal ratio of male to female trainees with a mean age of 24.3 years.

Quantitative results

Cognitive Load perceived by students

There was considerable variation in intrinsic cognitive load ratings among participants reaching a mean of 4.42 (SD ± 1.73) on a scale from 0 to 10, whereas extraneous cognitive load scores had a mean of 0.50 (SD ± 1.19). 62.5% of the participants had a score of '0', and more than 90.0% of the participants had a score of less than 1.5.

Students’ performance

For the three patient scenarios, the overall score reached by participants had a mean of 3.43 out of 5 (SD ± 0.72). Its results per component are shown in Table 1. The best domain-specific learning goals that were attained were “communication with colleagues” with a mean of 4.48 ± 0.73, “communication with patients/relatives” with 3.93 ± 0.93 and “response to interruptions” with 3.70 ± 0.83; whereas the lowest domains were “health and safety” with 3.05 ± 1.24 “prescribing techniques” with 3.02 ± 1.05 and “written documentation” with 2.82 ± 1.16.

Twenty out of fifty-six participants (35.7%) were scored by a second observer. Ratings of the two observers correlated almost perfectly ($r = 0.976, p < 0.001$).
Intrinsic ($r = -0.22, p = 0.879$) and extraneous cognitive load ($r = -0.217, p = 0.108$) had small, negative but statistically non-significant correlations with performance.

Qualitative results

All participants perceived the exercise as a meaningful task and identified several factors that contributed to their learning process. Overall, 1130 minutes of data was obtained. Analysis yielded themes relating to factors that influenced learning. Table 2 summarizes each factor and provides quotes that illustrate the factor.

Factors that contribute to learning

Prioritization tasks and clinical decision-making into the exercise mobilized their major mental effort and participants stated that this was the first time that they had to make decisions in prioritization on critical ill patients without support of their tutors. Those factors gave realism to the exercise and participants perceived that they would be able to transfer their learning to real situations. Participants expressed that an important contribution of WRS to the curriculum, was the feedback received during the debriefing sessions. The feedback focused not only on technical skills but also on non-technical skills. This exercise gave participants the opportunity to discuss aspects that were less discussed during their internships, e.g. patients’ management, communication, team working, time management and prioritization.

Factors that impair learning

According to the participants’ perspective; distractions (i.e., phone calls, patient relatives’ inquiries and ambient noise) negatively affected their management planning
of patient care. However, they felt that those elements must be present into simulation because they provided realism, making the exercise close to the real clinical practice.

Clinical decision-making

At the same time, participants felt underprepared for making decisions in complex scenarios due to a lack of opportunities to practice this during previous internships. This lack of practice influenced their performance during the ward round simulation. This is consistent with the variation in performance scores.

Discussion

We used CLT to determine the relationship of its effects on students performance in WRS. We found moderate intrinsic cognitive load scores and low extraneous cognitive load scores. In other words, it appeared that cognitive resources were largely allocated to dealing with intrinsic cognitive load, which is desirable (Leppink & van den Heuvel, 2015). However, there were other elements (e.g. distractions, ambient noise and even stress) that arise as potential sources of extraneous cognitive load and were not caught by the questionnaire. This is consistent with a systematic review on the validity of cognitive load measures in SBE which stated that, although CLT is a useful framework for instructional design in healthcare simulation, current tools to measure cognitive load seem to generate inconsistent correlations between cognitive load and learning outcomes in simulation (Naismith & Cavalcanti, 2015). This shows the need for the development of adapted tools to measure cognitive loads in simulation (Haji, Childs, et al., 2015; Naismith & Cavalcanti, 2015).

Our quantitative and qualitative data revealed sub-optimal ward round skills, mainly related to the management of acutely ill patients, prioritization, documentation and
clinical decision-making skills. This is consistent with literature, in which other researchers in WRS have reported deficiencies in doctors’ teamwork skills, decision-making skills and clinical skills; such as difficulties in reaching a diagnosis in critically ill patients and prioritizing effectively (Nikendei et al., 2007; Nikendei et al., 2008; Norgaad et al., 2004). Although the students have clinical placements on real emergency wards, their role during emergencies is often as passive observers. For example observing a “cardiac arrest team” treating a patient. This could explain the deficiencies reported in this study. Clinical decision-making was perceived as a difficult task. We can infer that a lack of opportunities to practice decision-making skills during the medical curriculum could have influenced these perceived difficulties. McGregor et al (2012) reported similar data using WRS in an undergraduate setting.

We did not find a clear correlation between cognitive load scores and students performances. These results do not confirm that the extraneous cognitive load scores associated to WRS are too high in an undergraduate setting. However, at least two factors call for caution here. Firstly, there was a considerable variation in intrinsic cognitive loads as well as in performance scores, indicating that the perceived complexity of the task varied considerably across students. Secondly, the participants in the current study were final year medical students. Previous research indicates that having undergraduate students learn in an authentic simulated workplace environment can result in elevated stress and extraneous cognitive load.

Our results showed that ward training is a valuable and realistic tool, supporting important reflective processes and providing relevant feedback for final year students. Well-designed clinical scenarios, prioritization tasks, team work and feedback given during debriefing sessions were factors that supported students learning and its
presence contributed to increase task fidelity. Qualitative data supports that, immersing final year medical students in a highly authentic clinical environment, can potentially improve their clinical skills on the management of critical patients.

Although distractions and ambient noise added complexity to the task and could impair learning, our qualitative data indicates that students felt that these elements should be included in the simulation. Those extraneous stimuli reflect what actually happens in real clinical practice.

Some limitations of our study include a limited number of participants in a single center, a single short intervention and no long-term to follow up. Therefore, we have to be cautious about generalizing the results of this study to other contexts. More research is needed to explore the long-term effects of WRS training on ward round skills, and also how emotions experienced by students on WRS could maximize or impair learning.

Conclusions

WRS can offer meaningful learning opportunities for final year medical students to improve their clinical ward craft skills. WRS seems to be a good teaching method to strengthen those skills, as the extraneous cognitive load associated to the exercises is not too high to impair learning. Based on the findings of this study, we would recommend the incorporation of Ward Based Simulation learning activities into medical curricula. WRS not only provides the opportunity to develop technical and non-technical skills, but also clinical decision making skills that are more contextual particularly in emergency situations. As for WRS, well-designed clinical scenarios and the inclusion of relevant tasks, have the potential to enhance students’ learning,
whereas distractions make simulation close to the real clinical practice although it is not clear if those could hinder students’ learning.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Notes on contributors

Claudia Behrens, M.D., M.Med, is Director of Simulation Center at Universidad Católica del Norte, Chile. Her special interest is learning in simulation.

Diana Dolmans, PhD, is Professor at the School of Health Professions Education (SHE) Maastricht University in The Netherlands. Her special interest relates to teaching and learning in innovative learning environments.

Jimmie Leppink, PhD, is a postdoctoral researcher at the School of Health Professions Education (SHE), Maastricht University, The Netherlands. His research focuses on adaptive approaches to learning and assessment, cognitive load theory and measurement, and multi-level analysis of educational data.

Gerard Gormley, M.D FRCGP, is a senior lecturer in the Centre for Medical Education, Queen’s University, Belfast, Northern Ireland. He has a special interest in complexity in simulation based learning and social cultural processes in summative clinical assessments.

Erik Driessen, PhD, is Professor of Medical Education at the School of Health Professions Education (SHE) Maastricht University in the Netherlands. His area of expertise lies in evaluation and assessment. More specifically, topics such as learning and assessment in the workplace, mentoring, and the use of portfolios for learning and assessment.

Practice Points

- The existence of well-designed clinical scenarios, prioritization tasks and teamwork in the simulation design on WRS are factors that enhance the learning process.
- Feedback is the most valuable element for students and there is an imperative to include this form of simulation into the curriculum.
- Distractions and noise interfere with performance. However, they add realism to the situation in order to reflect real clinical practice.
- WRS can offer meaningful learning opportunities for final-year medical students to improve their clinical ward skills without compromising patients’ safety.
Glossary term:

Ward round simulation: A specific type of simulation that involves complex clinical scenarios situated in a simulated clinical ward where a health care students visit patients for the purpose of making decisions concerning patient care. This involves multiple elements such as managing more than one patient, interacting with relatives and other healthcare professionals, and dealing with multiple competing tasks activities where interruptions and distractions happen.

References

References

<table>
<thead>
<tr>
<th>Score (1-5)</th>
</tr>
</thead>
</table>
| Task management | 3.29 ± 1.26
| Clinical Skills | 3.29 ± 1.02
| Acutely ill patients | 3.16 ± 1.30
| Prescribing techniques | 3.02 ± 1.05
| Written documentation | 2.82 ± 1.16
| Response to interruptions | 3.70 ± 0.83
| Communication with patients/relatives | 3.93 ± 0.93
| Communication with colleagues | 4.48 ± 0.73
| Health and safety | 3.05 ± 1.24
| Professionalism | 3.57 ± 0.93
| Overall PgWRE score | 3.43 ± 0.72

Values expressed as mean ± SD
TABLE 2: Summary of qualitative results

<table>
<thead>
<tr>
<th>Factors that support students’ learning</th>
<th>Results summary</th>
<th>Illusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Relevant clinical cases and tasks</td>
<td>Students rated that the simulated patients were realistic and reflected the kind of patients that they will face in emergency wards. Besides, the series of task, documentation, note taking and communication are seen as duties that they must do in real clinical practice.</td>
<td>“The simulation will help us become better doctors.”</td>
</tr>
<tr>
<td>2. Prioritization</td>
<td>Having to make decisions on how to prioritize was completely new for students, and they had not received previous training on prioritization. They recognized that the exercise was the first time that they were forced to make these types of decisions. They found this stressful.</td>
<td>“I had specific tasks that I had to do, but we had to prioritize them.”</td>
</tr>
<tr>
<td>3. Team working</td>
<td>The students found the presence of the nurse a key realistic feature in the simulation scenario. The nurse helped them to manage the patients in a best way and gave them “clues” when they felt lost. They felt that teamwork developed very well.</td>
<td>“It was a lot of teamwork!...shock...”</td>
</tr>
<tr>
<td>4. Feedback</td>
<td>Students highlighted feedback received during debriefing. This was not only related to technical skills but also non-technical skills. This exercise gave them the opportunity to discuss aspects such as patients’ management, communication, team working, time management and prioritization and realize their weaknesses in these matters.</td>
<td>“I really appreciated the feedback, no one is perfect and the more you communicate, the more you can see your mistakes.”</td>
</tr>
<tr>
<td>5. Decision-making</td>
<td>Students realized that were not fully prepared for making clinical decisions on how to manage patients with life-threatening conditions. This point represents the most important challenge for students and they demand more exercises in order to acquire this skill.</td>
<td>“It was a critical moment for our decision-making. The outcome of that moment is crucial and the response of the doctor is really important.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factors that could impair students’ learning</th>
<th>Results summary</th>
<th>Illusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Distractions</td>
<td>Two sources of distractions were identified. A phone call from other nurse asking about a test lab result of in-patients and the visit of the daughter of patient with myocardial problems who asked them information about his evolution. Although they considered that both facts distracted them and did not know how to deal with these, they are necessary because it makes simulation close to real life.</td>
<td>“The phone call interrupted our focus, but we are learning to deal with distractions.”</td>
</tr>
<tr>
<td>2. Noise</td>
<td>Students felt that the noise was disruptive because sometimes they lost the focus on critically ill patients because the patient with renal colic was screaming or monitoring alarms were ringing. However, they think that this kind of training is necessary as this occurs in real emergency wards.</td>
<td></td>
</tr>
</tbody>
</table>

*S = Student number

Task management
Candidate has a good overview and prioritizes appropriately. Candidate conducts all essential tasks and clinical procedures. Delivers an appropriate handover.

<table>
<thead>
<tr>
<th>Very poor performance</th>
<th>Outstanding performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Clinical skills
Candidate demonstrates effective history taking skills. Candidate demonstrates appropriate examination techniques and initiates appropriate interventions. Candidate interprets results and makes informed decisions.

<table>
<thead>
<tr>
<th>Very poor performance</th>
<th>Outstanding performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Accurately ill patients
Candidate recognizes and systematically assesses the patient using ABCDE approach. Candidate manages the acutely ill patient appropriately and demonstrates good time management skills, recognizing when to get help from a senior colleague.

<table>
<thead>
<tr>
<th>Very poor performance</th>
<th>Outstanding performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Prescribing technique
Candidate demonstrates a safe and appropriate prescribing technique.

<table>
<thead>
<tr>
<th>Very poor performance</th>
<th>Outstanding performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Written documentation
Candidate completes written tasks appropriately.

<table>
<thead>
<tr>
<th>Very poor performance</th>
<th>Outstanding performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Response to interruptions
Candidate responds appropriately to interruptions and follows up. Candidate responds appropriately and reacts to nursing observations.

<table>
<thead>
<tr>
<th>Very poor performance</th>
<th>Outstanding performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Communication
Candidate demonstrates good interpersonal skills and uses appropriate language. Candidate responds appropriately to each patients’ care requirement, answering questions and keeping patients informed. Candidate communicates effectively with colleagues.
Very poor performance	**Outstanding performance**
Relationship with patients/relatives
1 | 2 | 3 | 4 | 5 | N/A
Working with colleges
1 | 2 | 3 | 4 | 5 | N/A

Health and safety
Candidate prevents cross infections and demonstrates safe medical practice during the ward simulation exercise. Safe medical practice can be defined as patient safety, safe disposal of sharps, appropriate use of PPE and maintain patient dignity.

Very poor performance	**Outstanding performance**
1 | 2 | 3 | 4 | 5 | N/A

Professionalism
Candidate acts in a manner becoming of their actual grade of practice, is polite, considerate and honest. Candidate treats patients with dignity, respecting patients’ privacy and right to confidentiality.

Very poor performance	**Outstanding performance**
1 | 2 | 3 | 4 | 5 | N/A

What behaviors does the candidate exhibit during the exercise?

What are the candidate strengths?

What areas does the candidate need to improve?

Overall global judgment of performance:

Very poor performance	**Outstanding performance**
1 | 2 | 3 | 4 | 5 | N/A

My overall global judgment of this candidate is (please circle):

PASS | FAIL

Autopercepción de la carga cognitiva asociada a los ejercicios de simulación

Estimado estudiante,

Las siguientes 8 preguntas están referidas a la actividad que acaba de finalizar. Por favor tómese un tiempo para leer cuidadosamente cada una de las preguntas y responda cada una de ellas con una escala de 0 a 10 indicando “0” si no está de acuerdo en absoluto y “10” completamente de acuerdo:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>El contenido de esta actividad fue muy complejo</td>
</tr>
<tr>
<td>(2)</td>
<td>Los problemas presentados en esta actividad fueron muy complejos</td>
</tr>
<tr>
<td>(3)</td>
<td>En esta actividad, se mencionaron términos muy complejos</td>
</tr>
<tr>
<td>(4)</td>
<td>La complejidad de esta actividad me requirió un gran esfuerzo mental</td>
</tr>
<tr>
<td>(5)</td>
<td>Las explicaciones e instrucciones para esta actividad fueron muy poco claras</td>
</tr>
<tr>
<td>(6)</td>
<td>Las explicaciones e instrucciones para esta actividad fueron en un lenguaje poco claro</td>
</tr>
<tr>
<td>(7)</td>
<td>Las explicaciones e instrucciones para esta actividad fueron, en términos del aprendizaje, muy inefectivas</td>
</tr>
<tr>
<td>(8)</td>
<td>Me demandó un gran esfuerzo mental las explicaciones e instrucciones poco claras e inefectivas para esta actividad</td>
</tr>
</tbody>
</table>

Cognitive Load Questionnaire (English version) by Leppink and Van den Heuvel 2015

All of the following eight questions refer to the activity that just finished. Please take your time to read each of the questions carefully and respond to each of the questions on the presented scale from 0 to 10, in which ‘0’ indicates not at all the case and ‘10’ indicates completely the case:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>The content of this activity was very complex</td>
</tr>
<tr>
<td>[2]</td>
<td>The problems covered in this activity was/were very complex</td>
</tr>
<tr>
<td>[3]</td>
<td>In this activity, very complex terms were mentioned</td>
</tr>
<tr>
<td>[4]</td>
<td>I invested a very high mental effort in the complexity of this activity</td>
</tr>
<tr>
<td>[5]</td>
<td>The explanations and instructions in this activity were very unclear</td>
</tr>
<tr>
<td>[6]</td>
<td>The explanations and instructions in this activity were full of unclear language</td>
</tr>
<tr>
<td>[7]</td>
<td>The explanations and instructions in this activity were, in terms of learning, very ineffective</td>
</tr>
<tr>
<td>[8]</td>
<td>I invested a very high mental effort in unclear and ineffective explanations and instructions in this activity</td>
</tr>
</tbody>
</table>
Appendix C: interview questions

The following questions will be asked during the individual interviews. Additional questions might be asked during the meetings as new themes might emerge.

1. From your perspective, which competencies did you achieve in this activity? Which competencies were not acquired? Why?

2. During the exercise, as you had to deal with several disturbances, in which elements did you focus for achieving competencies?

3. From your perspective, are there any superfluous elements in the simulation that interfered in your learning? If so, which and why?

4. From your point of view, are there any elements, of any kind, that do not contribute to your learning?

5. From your point of view, are there any elements, of any kind, that enhance your learning experience?

6. Can you remember elements from the physical environment that interfered with the case? How did these elements help/distract you?

7. Can you remember any social interactions during the simulation that interfered with the evolution of the case? How did it help/distract you?