Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del

Published in:
New England Journal of Medicine

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright © 2017 Massachusetts Medical Society. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del

Jennifer L. Taylor-Cousar, M.D., Anne Munck, M.D., Edward F. McKone, M.D., Cornelis K. van der Ent, M.D., Ph.D., Alexander Moeller, M.D., Christopher Simard, M.D., Linda T. Wang, M.D., Edward P. Ingenito, M.D., Ph.D., Charlotte McKee, M.D., Yimeng Lu, Ph.D., Julie Lekstrom-Himes, M.D., and J. Stuart Elborn, M.D.

ABSTRACT

BACKGROUND
Combination treatment with the cystic fibrosis transmembrane conductance regulator (CFTR) modulators tezacaftor (VX-661) and ivacaftor (VX-770) was designed to target the underlying cause of disease in patients with cystic fibrosis.

METHODS
In this phase 3, randomized, double-blind, multicenter, placebo-controlled, parallel-group trial, we evaluated combination therapy with tezacaftor and ivacaftor in patients 12 years of age or older who had cystic fibrosis and were homozygous for the CFTR Phe508del mutation. Patients were randomly assigned in a 1:1 ratio to receive either 100 mg of tezacaftor once daily and 150 mg of ivacaftor twice daily or matched placebo for 24 weeks. The primary end point was the absolute change in the percentage of the predicted forced expiratory volume in 1 second (FEV1) through week 24 (calculated in percentage points); relative change in the percentage of the predicted FEV1 through week 24 (calculated as a percentage) was a key secondary end point.

RESULTS
Of the 510 patients who underwent randomization, 509 received tezacaftor–ivacaftor or placebo, and 475 completed 24 weeks of the trial regimen. The mean FEV1 at baseline was 60.0% of the predicted value. The effects on the absolute and relative changes in the percentage of the predicted FEV1 in favor of tezacaftor–ivacaftor over placebo were 4.0 percentage points and 6.8%, respectively (P<0.001 for both comparisons). The rate of pulmonary exacerbation was 35% lower in the tezacaftor–ivacaftor group than in the placebo group (P = 0.005). The incidence of adverse events was similar in the two groups. Most adverse events were of mild severity (41.8% of patients overall) or moderate severity (40.9% overall), and serious adverse events were less frequent with tezacaftor–ivacaftor (12.4%) than with placebo (18.2%). A total of 2.9% of patients discontinued the assigned regimen owing to adverse events. Fewer patients in the tezacaftor–ivacaftor group than in the placebo group had respiratory adverse events, none of which led to discontinuation.

CONCLUSIONS
The combination of tezacaftor and ivacaftor was efficacious and safe in patients 12 years of age or older who had cystic fibrosis and were homozygous for the CFTR Phe508del mutation. (Funded by Vertex Pharmaceuticals; EVOLVE ClinicalTrials.gov number, NCT02347657.)
Cystic fibrosis is caused by a reduced quantity or function of cystic fibrosis transmembrane conductance regulator (CFTR) protein, owing to mutations in CFTR. A loss of chloride secretion causes impaction of mucus in the airways, gastrointestinal tract, and exocrine organs, with important clinical consequences that include progressive loss of lung function, nutritional deficits, pulmonary exacerbations, and respiratory failure.1–2 Cystic fibrosis affects more than 80,000 persons worldwide. Phe508del is the most prevalent CFTR mutation worldwide; approximately 46% of patients with cystic fibrosis in the United States are homozygous for this allele, as are 49% of those in Canada and 40% of those in Europe.3–6 The Phe508del mutation leads to greatly reduced CFTR protein activity owing to impaired processing and trafficking of CFTR to the epithelial-cell surface, as well as impaired function of the small quantity of the protein that is produced and trafficked to epithelial membranes.7–9

CFTR modulators are a family of new compounds that target specific defects caused by mutations in CFTR and thereby treat the underlying cause of cystic fibrosis. Ivacaftor, a CFTR potentiator and the first approved CFTR modulator, increases the probability of channel opening (i.e., the fraction of time that the channels are open) of normal and mutant CFTR protein in vitro.10 The drug has been approved for use in patients with a broad range of CFTR gating and other mutations that produce some CFTR protein on the epithelial-cell surface.11–16 In long-term registry studies, ivacaftor has reduced mortality and rates of lung transplantation and other complications of cystic fibrosis among patients with gating mutations.17 Lumacaftor, a CFTR corrector, improves processing and trafficking of CFTR protein18 and, in combination with ivacaftor, is approved for use in patients who are homozygous for the Phe508del CFTR mutation on the basis of randomized clinical trials that have shown improved lung function and nutritional status and a reduced frequency of exacerbations.19–22

Ivacaftor and the combination therapy lumacaftor–ivacaftor have both been associated with a rate of progressive decline in lung function that is lower than the rate observed among untreated, matched, control registry patients, which shows that effective CFTR modulators may modify the course of disease.19,23 However, not all patients who are homozygous for the Phe508del mutation can receive lumacaftor–ivacaftor because of its respiratory side-effect profile.24–26 In addition, strong cytochrome P-450-3A induction by lumacaftor causes prohibitive drug–drug interactions in some patients and limits the use of lumacaftor–ivacaftor in patients with ivacaftor-responsive mutations.27 Therefore, new CFTR modulator treatments for the population of patients who are homozygous for the Phe508del mutation are needed.

Tezacaftor is an investigational CFTR corrector that, in combination with ivacaftor, has shown efficacy in preclinical studies28 and has shown enhanced CFTR function and improved lung function in a phase 2 clinical trial involving patients who were homozygous for the Phe508del mutation or heterozygous for the Phe508del and G551D mutations.29 Here, we report the findings of a phase 3 trial that evaluated the efficacy and safety of tezacaftor in combination with ivacaftor in patients with cystic fibrosis who were homozygous for the Phe508del mutation.

METHODS

TRIAL DESIGN AND OVERSIGHT

This phase 3, randomized, double-blind, multicenter, placebo-controlled, parallel-group trial (VX14-661-106, also called EVOLVE) involved patients 12 years of age or older with cystic fibrosis who were homozygous for the Phe508del CFTR mutation. The trial was conducted at 91 sites in the United States, Canada, and Europe from January 30, 2015, to January 20, 2017. Combination therapy with tezacaftor and ivacaftor (VX-661 and VX-770, respectively; Vertex Pharmaceuticals) or placebo was administered for 24 weeks. The primary objective was to evaluate the efficacy of tezacaftor–ivacaftor as compared with placebo, and the safety of tezacaftor–ivacaftor was a secondary objective. The trial protocol (available with the full text of this article at NEJM.org) and informed-consent forms were approved by an independent ethics committee or institutional review board for each trial site. All the enrolled patients, or their parent or legal guardian, provided written informed consent; when appropriate, assent was obtained from the patients. Safety was monitored by an independent data and safety monitoring committee that comprised members of the Cystic Fibrosis Foundation Data Safety Monitoring Board.
Patients were randomly assigned in a 1:1 ratio to receive either a combination of 100 mg of tezacaftor once daily and 150 mg of ivacaftor twice daily (administered as a fixed-dose combination tablet containing 100 mg of tezacaftor and 150 mg of ivacaftor in the morning and a tablet containing 150 mg of ivacaftor in the evening) or matched placebo for 24 weeks. The tezacaftor–ivacaftor dose regimen was selected on the basis of the results of a phase 2 dose-escalation study.29 Randomization was stratified according to age (<18 years vs. ≥18 years), sex, and the percentage of the predicted forced expiratory volume in 1 second (FEV1) (<70% vs. ≥70%) at screening. At trial completion, patients were given the option to enroll in a 96-week open-label extension study (VX14-661-110; ClinicalTrials.gov number, NCT02565914); patients began the extension study immediately after completion of the 24-week trial.

The trial sponsor (Vertex Pharmaceuticals) designed the protocol in collaboration with the authors. Data were collected by local site investigators (see the Supplementary Appendix, available at NEJM.org) and analyzed by the sponsor. All the authors had full access to the trial data after the data were unblinded. The manuscript was written with the assistance of medical writers, with funding by the sponsor; all the authors provided critical review and input. Final decisions regarding the content of the submitted manuscript were made by the first and last authors. All the authors made the decision to submit the manuscript for publication. The authors vouch for the accuracy and completeness of the data and for the fidelity of the trial to the protocol. Confidentiality agreements were in place between the sponsor and all the investigators participating in the trial.

TRIAL PARTICIPANTS

Patients 12 years of age or older who had a confirmed diagnosis of cystic fibrosis and two Phe508del alleles, a percentage of the predicted FEV1 between 40% and 90% at screening, and stable disease, as judged by the investigator, were eligible for inclusion. The full inclusion and exclusion criteria are provided in the Supplementary Appendix. At screening, all the patients underwent CFTR genotype confirmation. Values for the percentage of predicted FEV1 that were outside the range of 40 to 90% were permitted at baseline.

ASSESSMENTS

The primary end point was the absolute change in the percentage of the predicted FEV1 from baseline through week 24, including assessments at day 15 and weeks 4, 8, 12, 16, and 24. Key secondary end points were the relative change in the percentage of the predicted FEV1 from baseline through week 24, the number of pulmonary exacerbations through week 24, the absolute change from baseline in the body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) at the week 24 visit, and the absolute change in the respiratory domain score on the Cystic Fibrosis Questionnaire–Revised (CFQ-R; scores are on a scale from 0 to 100, with higher scores indicating a higher patient-reported quality of life with regard to respiratory status) from baseline through week 24. Further details regarding the calculation of the absolute and relative changes in the percentages of the predicted FEV1 are provided in the Supplementary Appendix.

The safety assessment was based on adverse events, clinical laboratory values, electrocardiograms, vital signs, pulse oximetry, and spirometry. The time to the first pulmonary exacerbation, the absolute change in the sweat chloride concentration (an in vivo marker of CFTR function) from baseline through week 24, and the absolute change from baseline in the BMI-for-age z score at the week 24 visit (in patients <20 years of age at screening) were also assessed as secondary end points. Assessments were carried out at all trial visits (except for the assessments of the sweat chloride concentration and CFQ-R score), including a safety follow-up visit that occurred 4 weeks (within a window of ±7 days) after the receipt of the last dose of tezacaftor–ivacaftor or placebo in patients who elected not to enroll in the extension study (see the Study Assessments section and Fig. S1 in the Supplementary Appendix).

STATISTICAL ANALYSIS

Efficacy analyses included all the patients who had undergone randomization, who had received at least one dose of tezacaftor–ivacaftor or placebo, and who were homozygous for the Phe508del mutation. The primary analysis — the evaluation of the difference in the absolute change from baseline in the percentage of the predicted FEV1 through week 24 between the tezacaftor–ivacaftor
group and the placebo group — was based on a mixed-effects model for repeated measures. The percentage of the predicted FEV\textsubscript{1} was calculated with the use of the standards of Wang et al.30 (for female patients 12 to 15 years of age and male patients 12 to 17 years of age) or Hankinson et al.31 (for female patients ≥16 years of age and male patients ≥18 years of age). The standard that was used for individual patients was changed from that of Wang et al. to that of Hankinson et al. if they had a birthday during the trial that moved them from the younger age group to the older age group.

The key secondary efficacy end points, which were measured at scheduled time points through week 24, were analyzed by means of a mixed-effects model for repeated measures and (for the number of pulmonary exacerbations) a negative binomial regression analysis. A fixed-sequence hierarchical testing procedure was used to control the overall type I error at a level of 0.05 for the multiple hypothesis tests, including the primary and key secondary efficacy end points (see the Methods section in the Supplementary Appendix). The time to the first pulmonary exacerbation was compared between the trial groups as a secondary end point with the use of a Cox regression model that included trial group, sex, age at screening (<18 years vs. ≥18 years), and the baseline percentage of the predicted FEV\textsubscript{1} as covariates. Safety analyses included all the patients who had received at least one dose of tezacaftor–ivacaftor or placebo, including those with ineligible genotypes; these analyses were based on data from the period from the first dose of trial regimen to the earliest of the following: the safety follow-up visit, 28 days after last dose of trial regimen for patients who did not have a safety follow-up visit, or the day immediately before the first dose received in the VX14-661-110 extension study for patients who enrolled in that study.

Results

Population of Patients

A total of 510 patients were enrolled and underwent randomization; 509 patients received at least one dose of tezacaftor–ivacaftor (251 patients) or placebo (258 patients) (Fig. S2 in the Supplementary Appendix). One patient who had been randomly assigned to the placebo group did not receive any placebo because of a pulmonary exacerbation before the day 1 visit. Five patients underwent randomization (3 patients to the tezacaftor–ivacaftor group and 2 to the placebo group) and received the assigned trial regimen but had an ineligible or unconfirmed CFTR genotype so were excluded from the efficacy analyses but not the safety analyses. Overall, 475 patients (235 [93.6%] in the tezacaftor–ivacaftor group and 240 [93.0%] in the placebo group) completed 24 weeks of the trial. A total of 15 patients (2.9%) discontinued owing to adverse events (7 [2.8%] patients in the tezacaftor–ivacaftor group and 8 [3.1%] in the placebo group). Sex, age, concomitant medication use, geographic region (North America vs. Europe), *Pseudomonas aeruginosa* infection, and percentage of the predicted FEV\textsubscript{1} were well balanced between the two groups (Table 1, and Table S1 in the Supplementary Appendix).

The overall mean (±SD) percentage of the predicted FEV\textsubscript{1} in the trial population was 60.0±15.2%. A total of 461 patients (90.6% of those who received at least one dose of tezacaftor–ivacaftor or placebo) enrolled in the treatment cohort of the open-label extension study, including 231 patients who had been in the tezacaftor–ivacaftor group and 230 who had been in the placebo group.

Clinical Efficacy

A total of 504 patients (248 in the tezacaftor–ivacaftor group and 256 in the placebo group) were included in the efficacy analyses. The use of tezacaftor–ivacaftor led to a significantly greater absolute change from baseline in the percentage of the predicted FEV\textsubscript{1} than placebo (least-squares mean difference through 24 weeks, 4.0 percentage points; 95% confidence interval [CI], 3.1 to 4.8; P<0.001) (Table 2). The mean absolute change from baseline through week 24 was 3.4 percentage points in the tezacaftor–ivacaftor group, as compared with −0.6 percentage points in the placebo group. In the tezacaftor–ivacaftor group, an increased percentage of the predicted FEV\textsubscript{1} was observed at the first assessment (on day 15) and was maintained at all trial visits through week 24 (Fig. 1). The difference was consistent across all the prespecified subgroup analyses (Fig. S3 in the Supplementary Appendix). The least-squares mean difference between groups in the relative change from baseline in the percentage of the predicted FEV\textsubscript{1} through week 24 was 6.8% (95% CI, 5.3 to 8.3; P<0.001) (Table 2). Absolute and relative changes in FEV\textsubscript{1} from baseline through...
Patients who received tezacaftor–ivacaftor had an annualized estimated event rate of pulmonary exacerbations that was significantly lower than the rate among those who received placebo (0.64 vs. 0.99 events per year; rate ratio, 0.65 [representing a 35% lower rate]; 95% CI, 0.48 to 0.88; P = 0.005) (Table 2). The rate of pulmonary exacerbations that led to hospitalization or treatment with intravenous antibiotic agents (or both) was also lower in the tezacaftor–ivacaftor group than in the placebo group (0.29 vs. 0.54 events per year; rate ratio, 0.53; 95% CI, 0.34 to 0.82). The risk of pulmonary exacerbation at 24 weeks was 35% in the placebo group and 25% in the tezacaftor–ivacaftor group, and on the basis of the Cox regression model, the hazard ratio for pulmonary exacerbation in the tezacaftor–ivacaftor group, as compared with the placebo group, was 0.64 (95% CI, 0.46 to 0.88) (Fig. 2A).

No significant difference in the BMI at week 24 was noted between the tezacaftor–ivacaftor group and the placebo group (Table 2 and Fig. 2B). Therefore, the testing hierarchy for statistical significance was broken at this end point. The mean BMI was increased from baseline in both the tezacaftor–ivacaftor group and the placebo group at week 24 (least-squares mean increase, 0.18 [95% CI, 0.08 to 0.28] and 0.12 [95% CI, 0.03 to 0.22], respectively).

The least-squares mean difference between groups in the CFQ-R respiratory domain score through week 24 was 5.1 points (95% CI, 3.2 to 7.0), favoring tezacaftor–ivacaftor (Table 2 and Fig. 2C). In an additional analysis, the percent-
Table 2. Primary and Secondary Efficacy End Points.*

<table>
<thead>
<tr>
<th>End Point</th>
<th>Placebo Group (N = 256)</th>
<th>Tezacaftor–Ivacaftor Group (N = 248)</th>
<th>Difference (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary end point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute change from baseline in percentage of predicted FEV$_1$</td>
<td>−0.6 (−1.3 to 0.0)</td>
<td>3.4 (2.7 to 4.0)</td>
<td>4.0 (3.1 to 4.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>through wk 24 (95% CI) — percentage points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative change from baseline in percentage of predicted FEV$_1$</td>
<td>−0.5 (−1.7 to 0.6)</td>
<td>6.3 (5.1 to 7.4)</td>
<td>6.8 (5.3 to 8.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>through wk 24 (95% CI) — %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary exacerbation through wk 24 — no. of events (annualized estimated event rate)</td>
<td>122 (0.99)</td>
<td>78 (0.64)</td>
<td>0.65 (0.48 to 0.88)†</td>
<td>0.005</td>
</tr>
<tr>
<td>Absolute change from baseline in BMI at wk 24 (95% CI)</td>
<td>0.12 (0.03 to 0.22)</td>
<td>0.18 (0.08 to 0.28)</td>
<td>0.06 (−0.08 to 0.19)</td>
<td>0.41</td>
</tr>
<tr>
<td>Absolute change from baseline in CFQ-R respiratory domain score through wk 24 (95% CI)</td>
<td>−0.1 (−1.6 to 1.4)</td>
<td>5.0 (3.5 to 6.5)</td>
<td>5.1 (3.2 to 7.0)</td>
<td>—</td>
</tr>
<tr>
<td>Key secondary end points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute change from baseline in BMI-for-age z score from baseline at wk 24 (95% CI)†</td>
<td>−0.02 (−0.10 to 0.06)</td>
<td>−0.06 (−0.14 to 0.02)</td>
<td>−0.04 (−0.15 to 0.07)</td>
<td>—</td>
</tr>
<tr>
<td>Absolute change from baseline in sweat chloride concentration through wk 24 (95% CI)‡</td>
<td>0.2 (−0.8 to 1.2)</td>
<td>−9.9 (−10.9 to −8.9)</td>
<td>−10.1 (−11.4 to −8.8)</td>
<td>—</td>
</tr>
<tr>
<td>Other secondary end points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data are least-squares means with 95% confidence intervals, except for the number of patients with pulmonary exacerbations through week 24, for which the number of events and the annualized estimated event rate are shown. The difference is the least-squares mean difference between the tezacaftor–ivacaftor group and the placebo group on the basis of the mixed-effects model for repeated measures, except for the number of pulmonary exacerbations, for which the rate ratio is shown. P values are for the between-group comparisons in all cases.

† The between-group difference is expressed as a rate ratio. The analysis was based on a negative binomial regression model (48 weeks per year was used to calculate the event rate).

‡ Data included only patients who were younger than 20 years of age at baseline (76 patients in the placebo group and 80 in the tezacaftor–ivacaftor group).
age of patients who had an increase in the CFQ-R respiratory domain score of at least 4 points (i.e., the minimal important difference in this age group) was greater in the tezacaftor–ivacaftor group than in the placebo group (51.1% vs. 35.7%; odds ratio, 2.17; 95% CI, 1.47 to 3.21). The use of tezacaftor–ivacaftor resulted in a reduction (indicating improvement in CFTR function) in the sweat chloride concentration, with a between-group difference of −10.1 mmol per liter (95% CI, −11.4 to −8.8) (Table 2 and Fig. 2D).

SAFETY

A total of 472 of 509 patients (92.7%) reported having at least one adverse event, including 90.4% of the patients in the tezacaftor–ivacaftor group and 95.0% of those in the placebo group. Most events were of mild severity (in 41.8% of patients overall) or moderate severity (in 40.9%), and there were few grade 3 or 4 events (Table 3). The safety profile of tezacaftor–ivacaftor was consistent across subgroups that were defined according to age, sex, baseline percentage of the predicted FEV1, and geographic region (Table S3 in the Supplementary Appendix). Serious adverse events were reported in 31 patients (12.4%) in the tezacaftor–ivacaftor group and in 47 (18.2%) in the placebo group (Table S4 in the Supplementary Appendix).

No deaths occurred during the trial. Seven patients (2.8%) in the tezacaftor–ivacaftor group and eight (3.1%) in the placebo group discontinued the trial regimen owing to adverse events. Adverse events interrupted the trial regimen in two patients (0.8%) in the tezacaftor–ivacaftor group and in eight (3.1%) in the placebo group (Table S5 in the Supplementary Appendix).

The most commonly observed adverse events (>10% incidence in either trial group) were infective pulmonary exacerbation, cough, headache, nasopharyngitis, increased sputum production, pyrexia, hemoptysis, oropharyngeal pain, and fatigue. The commonly observed adverse events occurred more frequently in the placebo group than in the tezacaftor–ivacaftor group (Table 3; adverse events with an incidence of ≥5% in either group are shown in Table S6 in the Supplementary Appendix). Adverse events with both an incidence of at least 5% in either group and an incidence that was at least 1 percentage point higher in the tezacaftor–ivacaftor group than in the placebo group were headache, nausea, and nasopharyngitis. Fewer patients in the tezacaftor–ivacaftor group than in the placebo group had prespecified respiratory events of special interest (33 patients [13.1%] vs. 41 patients [15.9%]), a trend that was consistent across subgroups defined according to the baseline percentage of the predicted FEV1 (Tables S7 and S8 in the Supplementary Appendix). There were no discontinuations of the trial regimen that were due to respiratory events. The incidence of respiratory events was not greater at the initiation of tezacaftor–ivacaftor than at the initiation of placebo. In the subgroup of patients younger than 18 years of age at screening, no acute bronchoconstriction or decline in the mean postdose FEV1 was noted at 2 hours or 4 hours after the administration of tezacaftor–ivacaftor (Table S9 in the Supplementary Appendix).

The incidence of abnormal findings on liver-function tests was low and similar in the two groups (Table S10 in the Supplementary Appendix). No major differences in electrocardiogram findings, results on pulse oximetry, or vital signs were observed between the groups.

DISCUSSION

In this phase 3 trial involving patients with cystic fibrosis who were homozygous for the Phe508del mutation, tezacaftor–ivacaftor resulted in significant improvements in lung function that were consistent in all the prespecified subgroups. Tezacaftor–ivacaftor also resulted in a significantly lower rate of pulmonary exacerbations than pla-
Figure 2. Proportion of Patients Free from Exacerbation Events and Changes in Body-Mass Index (BMI), Cystic Fibrosis Questionnaire–Revised (CFQ-R) Respiratory Domain Score, and Sweat Chloride Concentration.

Panel A shows the proportion of patients who were free from events of pulmonary exacerbation. Panel B shows the absolute changes from baseline in the BMI (the weight in kilograms divided by the square of the height in meters). Panel C shows the absolute change from baseline in the respiratory domain score on the CFQ-R; scores range from 0 to 100, with higher scores indicating a higher patient-reported quality of life with regard to respiratory status. Panel D shows the sweat chloride concentration; a reduction indicates improvement in CFTR function. The data in Panels B, C, and D are least-squares means, and I bars indicate 95% confidence intervals; the dashed line in Panels C and D indicates no change from baseline.
Tezacaftor–Ivacaftor in Phe508del Cystic Fibrosis

The use of tezacaftor–ivacaftor was associated with a low rate of discontinuation due to adverse events, and no new risks attributable to tezacaftor–ivacaftor were identified. The rate of respiratory adverse events was not higher in the tezacaftor–ivacaftor group than in the placebo group, which shows that the safety profile for tezacaftor–ivacaftor is better than that reported for lumacaftor–ivacaftor.

Despite advances in standard-of-care therapy, patients with cystic fibrosis continue to lose lung function at a rate of approximately 1 to 3% per year. The majority of patients with cystic fibrosis die from their lung disease, and the median predicted survival is 39 years. This trial showed a significant effect of tezacaftor–ivacaftor versus placebo in the absolute change from baseline in the percentage of the predicted FEV₁ through 24 weeks, the primary end point of the trial. This effect was rapid in onset, was sustained throughout the trial, and was observed in all the prespecified subgroups.

Tezacaftor–ivacaftor was associated with a significantly lower frequency of pulmonary exacerbations than placebo, as well as a longer time to the first exacerbation and a lower rate of ex-

<table>
<thead>
<tr>
<th>Event</th>
<th>Placebo Group (N = 258)</th>
<th>Tezacaftor–Ivacaftor Group (N = 251)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse event</td>
<td>245 (95.0)</td>
<td>227 (90.4)</td>
</tr>
<tr>
<td>Adverse event related to trial regimen*</td>
<td>66 (25.6)</td>
<td>64 (25.5)</td>
</tr>
<tr>
<td>Adverse event, according to maximum severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>99 (38.4)</td>
<td>114 (45.4)</td>
</tr>
<tr>
<td>Moderate</td>
<td>117 (45.3)</td>
<td>91 (36.3)</td>
</tr>
<tr>
<td>Severe</td>
<td>29 (11.2)</td>
<td>21 (8.4)</td>
</tr>
<tr>
<td>Life-threatening†</td>
<td>0</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Grade 3 or 4 adverse event</td>
<td>29 (11.2)</td>
<td>22 (8.8)</td>
</tr>
<tr>
<td>Serious adverse event</td>
<td>47 (18.2)</td>
<td>31 (12.4)</td>
</tr>
<tr>
<td>Serious adverse event related to the trial regimen*</td>
<td>3 (1.2)</td>
<td>5 (2.0)</td>
</tr>
<tr>
<td>Adverse event leading to discontinuation</td>
<td>8 (3.1)</td>
<td>7 (2.8)</td>
</tr>
<tr>
<td>Adverse event leading to death</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Most common adverse event‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infective pulmonary exacerbation of cystic fibrosis</td>
<td>96 (37.2)</td>
<td>75 (29.9)</td>
</tr>
<tr>
<td>Cough</td>
<td>84 (32.6)</td>
<td>66 (26.3)</td>
</tr>
<tr>
<td>Headache</td>
<td>37 (14.3)</td>
<td>44 (17.5)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>39 (15.1)</td>
<td>42 (16.7)</td>
</tr>
<tr>
<td>Increased sputum production</td>
<td>42 (16.3)</td>
<td>36 (14.3)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>32 (12.4)</td>
<td>28 (11.2)</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>35 (13.6)</td>
<td>26 (10.4)</td>
</tr>
<tr>
<td>Oropharyngeal pain</td>
<td>29 (11.2)</td>
<td>22 (8.8)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>31 (12.0)</td>
<td>16 (6.4)</td>
</tr>
</tbody>
</table>

* The determination of relatedness to the trial regimen was made by the investigators.
† One patient in the tezacaftor–ivacaftor group had a life-threatening serious adverse event of hemoptysis.
‡ The most common adverse events were those that occurred in more than 10% of the patients in either trial group.
accerations that led to hospitalization or the use of intravenous antibiotics. Pulmonary exacerbations in patients with cystic fibrosis are associated with an accelerated decline in lung function, a worsening quality of life, an increased health care burden, and early death,16-18 and a reduction in the frequency of exacerbations is therefore a key goal of therapy.

No significant effect on BMI (or on BMI-for-age z scores) was observed at week 24. This finding is in contrast to the increase in BMI that was seen in studies of ivacaftor involving children and adults and in one of the two pivotal studies of lumacaftor–ivacaftor.11,14,21 However, modest increases in BMI were observed in both the tezacaftor–ivacaftor group and the placebo group in the present trial. The mean BMI in the two trial groups was in the normal healthy range39 (18.5 to 25.0) at baseline, and patients were encouraged (per the trial protocol) to follow the standard high-fat diet during the trial period. These factors may have obscured the effects of tezacaftor–ivacaftor on nutritional outcomes. The use of tezacaftor–ivacaftor led to an improvement in the respiratory domain scores on the CFQ-R (assessed after the testing hierarchy was broken), including assessments of cough, sputum production, and difficulty breathing — findings that indicate that tezacaftor–ivacaftor resulted in improved quality of life in these patients. In addition, the use of tezacaftor–ivacaftor led to a rapid and sustained reduction (indicating improvement) in the sweat chloride concentration, a pharmacodynamic marker of CFTR function.

The incidence of adverse events was similar in the tezacaftor–ivacaftor group and the placebo group. Adverse events led to the discontinuation of the trial regimen in few patients, and no new safety signals were seen. In contrast to treatment with lumacaftor–ivacaftor in phase 3 and phase 4 trials,20,21,24-26 tezacaftor–ivacaftor was not associated with an increased incidence of respiratory events or an acute postdose decline in the percentage of the predicted FEV1.

In conclusion, this 24-week trial showed the efficacy and safety of tezacaftor–ivacaftor in patients 12 years of age or older who had cystic fibrosis and were homozygous for the CFTR Phe508del mutation. The improved safety profile of combination therapy with tezacaftor–ivacaftor, as compared with currently available therapy, in addition to its effect on multiple efficacy end points, supports its use in a broad range of patients with cystic fibrosis.

Supported by Vertex Pharmaceuticals.

Dr. Taylor-Cousar reports receiving fees for serving on advisory boards from Gilead, Novartis, Genentech, Proteostasis, and Vertex Pharmaceuticals; consulting fees from Vertex Pharmaceuticals; and grants paid to her institution from Bayer, Gilead, Celsaayx, and Vertex Pharmaceuticals; Dr. Munck, receiving fees for serving on an advisory board from Vertex Pharmaceuticals and Novartis and lecture fees from Mayoly Spindler; Dr. McKone, receiving grant support, lecture fees, and travel support from Gilead, fees for serving on an advisory board and travel support from Novartis, grant support, fees for serving on an advisory board, and consulting fees from Vertex Pharmaceuticals; lecture fees and fees for serving on an advisory board from PTC Therapeutics, and fees for serving on an advisory board from Proteostasis; Dr. van der Ent, receiving grant support from Vertex Pharmaceuticals and Gilead; and Gabriela pagos, grant support and fees for serving on an advisory board paid to his institution from ProQR, and lecture fees paid to his institution from Teva Pharmaceuticals; Dr. Moeller, receiving consulting fees from Vertex Pharmaceuticals and Novartis and fees for serving on an advisory board from Gilead; Drs. Si-mard, Wang, Ingenito, McKee, and Lekstrom-Himes, being employed by and holding equity in Vertex Pharmaceuticals; and Dr. Elborn receiving grant support from Novartis and grant support and fees for serving on an advisory board for ProQR. No other potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank the patients and their families, the trial coordinators, and the investigators for their roles in the trial; Steven Rowe, M.D., M.S.P.H., Jane Davies, M.D., M.B., Ch.B., and Neil Ahluwalia, M.D., for contributions to leadership of the overall clinical trial program; Leah Eardley, M.D., of Vertex Pharmaceuticals, for editorial coordination and assistance; and Jeremy Kennard, Ph.D., Dena McWain, B.A., and Joshua Safran, B.A., of Ashfield Healthcare Communications, for medical writing and editorial assistance with an earlier version of the manuscript, funded by Vertex Pharmaceuticals.

REFERENCES

