A serendipitous all sky survey for bright objects in the outer solar system

Published in:
Astronomical Journal

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
A SERENDIPITOUS ALL SKY SURVEY FOR BRIGHT OBJECTS IN THE OUTER SOLAR SYSTEM

M. E. Brown1, M. T. Bannister2,3, B. P. Schmidt3, A. J. Drake3, S. G. Djorgovski1, M. J. Graham1, A. Mahabal1, C. Donalek1, S. Larson4, E. Christensen4, E. Beshore4, and R. McNaught3

1 California Institute of Technology, Pasadena, CA, USA
2 University of Victoria, Victoria, BC, Canada
3 The Australian National University, Canberra, Australia
4 The University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ, USA

Received 2014 September 16; accepted 2014 December 8; published 2015 January 19

ABSTRACT

We use seven year’s worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintest having $V = 19.8 \pm 0.1$, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for $V < 19.1$ ($V < 18.6$ in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.

Key words: Kuiper belt; general – planets and satellites: detection – planets and satellites: formation

1. INTRODUCTION

The last decade has seen the discovery of most of the brightest objects in the outer solar system (Trujillo & Brown 2003; Brown 2008; Schwamb et al. 2009). The wide-field surveys for these brightest objects appear moderately complete in both the northern and southern skies, with only the generally avoided galactic plane and ecliptic poles left to survey completely. All surveys miss some fraction of objects ostensibly in their survey regions, however, due to temporal gaps, detector gaps, stellar blending, and numerous other difficulties. Survey efficiencies have been estimated to be between 70% and 90% (Schwamb et al. 2010; Sheppard et al. 2011; Rabinowitz et al. 2012), leaving the possibility that bright objects in the outer solar system have escaped detection.

While each of the bright objects in the Kuiper belt has yielded an important boon of scientific information about the origin and evolution of the Kuiper belt and its objects (Brown 2008), mounting a dedicated survey to find this small number of remaining bright objects would be prohibitive. We note, however, that each of the bright objects discovered over the past decade serendipitously appeared in multiple other survey images. These serendipitous detections have been reported to the Minor Planet Center in sources from the Skymorph data of CCD images from the Palomar 48 inch Schmidt back to the original POSS I photographic plates of the 1950s and many in between. The objects were unrecognized at the time of their original imaging owing to the fact that even at opposition these objects move at speeds of only a few arcseconds per hour, so they appear identical to stationary stars in the images. Only by comparing the images with archival images of the same location taken at a different time is it recognized that the bright outer solar system object appears as a one-time transient.

The large number of serendipitous images of bright outer solar system objects raises the possibility that a fully serendipitous archival survey could be attempted to find new objects. An ideal data set for such a survey would be one which covers large areas of the sky with high enough temporal coverage that multiple detection of an object in the Kuiper belt could be made.

Over the past decade, surveys for NEOs have come closest to achieving this ideal. In these surveys multiple images are obtained to search for moving objects, but these images are obtained over a time period too short to detect the motion of slowly moving objects in the outer solar system. Objects in the outer solar system appear simply as stationary transients.

Here we describe a serendipitous all sky survey for bright objects in the outer solar system using archival data from the Catalina Sky Survey (CSS) in the northern hemisphere and its sister survey, the Siding Spring Survey (SSS), in the southern hemisphere.

2. THE CSS, SSS, AND CRTS SURVEYS

The CSS (Larson et al. 2003) operates on the 0.7 m Catalina Schmidt telescope at the Catalina Observatory in Arizona and covers 8.1 square degrees per field to a limiting magnitude of $V \sim 19.5$. The CSS has covered approximately 19,700 square degrees of sky between decl. of -25 and $+70$ at galactic latitudes greater than $10°$. The SSS operates on the 0.5 m Uppsala Schmidt telescope at Siding Spring Observatory in Australia and covers 4.2 square degrees per field to a limiting magnitude of approximately 19.0. The SSS has covered approximately 14,100 square degrees of sky from decl. ± 80 to 0. Accounting for overlap of the two surveys, the total amount of sky covered is approximately 29,700 square degrees.

In both surveys, most fields have been observed multiple times per season over many years. Figure 1 shows the field coverage with the gray scale indicating the number of seasons each field has been observed at least four times. The overall
3. THE SLOWLY MOVING OBJECT SEARCH

3.1. Creation of the Transient List

The cadence of the NEO surveys has allowed them to detect objects out to the orbit of Uranus. We will thus define our heliocentric radius of interest to be 25 AU and beyond. An object in a circular prograde orbit at 25 AU has a maximum retrograde motion at opposition of 4.9 arcsec hr⁻¹. Motions higher than this would likely be detected in the NEO surveys.

In typical operations, both the CSS and SSS take four images per field per night over a time interval of about 30 minutes. As our first step in our analysis, we require the detection of four transient candidates on a single night within a diameter defined by 4.9 arcsec times the maximum time interval. Note that we perform no other filtering here. The four detections are not required to show linear motion (as they would not for the slowest moving objects) or have similar measured magnitudes (which they might not at the magnitude limit of the survey). When four detections within an appropriate diameter are found, they are collected as a single transient with the average position, magnitude, and observation time of the four individual candidate transients.

Some fraction of the CSS and SSS transients recur at the same location. These transients are presumably some type of astrophysical source which has brightness variations sufficiently large that the source does not appear in the deep catalog but the object occasional becomes bright enough to appear in individual images. To remove these clear non-solar system sources, we search for all transients that have a transient detected on a different night within 4 arcsec of the same location. Our final transient list, 1.2 million sources in the CSS fields and 2.3 million sources in the SSS fields, will contain all outer solar system objects within the geometric and brightness limits of the survey, true astrophysical transients which appear only once at their location, and image artifacts, which will be the overwhelming majority of the list.

Figure 2 shows the locations of each of these transients. Significant structure can be seen in the transient locations. In the SSS, in particular, transients occur frequently on the field edges, suggesting inconsistent astrometric solutions in these areas (which will lead stationary stars to occasionally be classified as transients in large numbers). Similar effects can be seen for the CSS data in the far north. Other regions of clear artifact can be seen. In addition, the higher density of transients in the SSS is clear. The SSS contains 163 transients per square degree compared to 61 in the CSS. This larger number of southern transients will make the SSS moving object search comparatively more difficult.

Nonetheless, real known Kuiper belt objects are also present in the data. As an example, Figure 3 shows the orbit of Makemake—the brightest known KBO after Pluto—as well as the transients that are detected in this region of the sky. Of these 789 transients, 53 are detections of Makemake itself. The other known bright KBOs likewise have many detections.

3.2. The Keplerian Filter

All objects in the outer solar system move on well-defined Keplerian orbits. We use this fact to look for collections of transients which define any physically possible Keplerian orbit. Three points in the sky at different times are required to define an orbit, but because the three points contain nine parameters..
Figure 2. (a) Locations of transients in the CSS. To allow viewability only every 20th transient is shown. Geometry is as in Figure 1(a). (b) The locations of transients in the SSS. Every 20th transient is shown. Geometry is as in Figure 1(b).

while an orbit is defined by only seven parameters, the three points overconstrain the orbit. Thus arbitrary sets of three points will not be able to be fit to a Keplerian orbit.

Fitting of orbits is a complex nonlinear problem. Attempting to fit all combinations of three points in the transient list ($\sim 10^{38}$ attempted fits for CSS and $\sim 10^{19}$ for SSS) is computationally prohibitive, so we seek methods to minimize the number of orbital computations required. First, we will consider only combinations of transients with pairs of transients separated by no more than 120 days. This constraint is nearly, though not precisely, equivalent to requiring three transients observed over a single opposition season. As a short hand, however, we will refer to this constraint as requiring three transients over a single opposition.

If we confine ourselves to a single opposition season, we can also confine ourselves to a significantly smaller area of the sky. A stationary object at 25 AU would have a 5° parallax over a six month season. We conservatively allow motions up to $5°$ for our 120 day maximum separation. This single season spatial and temporal filtering brings the number of potential orbital triplets that need to be checked down to 160 billion for CSS and 18 trillion for SSS. While this initial filter cuts the number of orbits to be fit significantly, even this number would be computational prohibitive for full Keplerian orbital fitting.

We apply one more filter which is appropriate for these distant objects observed over a modestly short time interval. As shown in Bernstein & Khushalani (2000), motions of distant objects in the solar system can be approximated over a short time period as moving linearly through the solar system perpendicular to the earth-object vector. This sky plane approximation is defined by only six parameters: the motion vector in the plane of the sky, the distance to the object, and the position of the object at a single point in time. For each triplet of transients, we perform a least-squares fit for these six parameters. We then use the fitted parameters to calculate the predicted positions of the object at the times of observation and the residuals from this prediction.

To test the accuracy of this approximation, we examined the positions of real KBOs over single oppositions. As an example, if three observations are made of Makemake—at opposition, one month before, and one month after—the resulting linear approximation to the orbit predicts the position of Makemake to within 25 arcsec for the four months surrounding opposition. The approximation is the worst for the the nearest and most eccentric objects. But similar observations of the positions of 2005 EB299, for example—with an eccentricity of 0.51 and a semimajor axis of 52 AU, and currently near perihelion at 25.7 AU—predict the position to within 45 arcsec for the same period. For our Keplerian filter we conservatively require that the maximum residual between the linear sky-plane fit and the data be 50 arcsec or less. In addition, we require that the heliocentric distance retrieved from the sky-plane approximation be larger than 10 AU and that the orbital energy be within a factor of 1.5 of the maximum for a bound object at that distance. Experimentation with synthetic orbits suggests that these limits will detect real objects beyond 25 AU in nearly all combinations of three observations in an opposition season. After applying this filter, we have 140 million triplets remaining in the CSS data and 3 billion in the SSS.

The final step in the Keplerian filter is full orbital fitting. We use the code of Bernstein & Khushalani (2000) which efficiently calculates orbits including planetary perturbations for outer solar system objects. When the orbits of real KBOs are fit by this code, we obtain sub-arcsecond residuals. Again, to be conservative, we require that the orbit of a transient triplet, when fit by this code, yield residuals smaller than only 5 arcsec. In addition we require that the retrieved heliocentric
distance of the object be larger than 15 AU. We put no other orbital constraints on the fit.

Full Keplerian filtering yields 4.8 million triplets in the CSS data and 235 million triplets in the SSS data which can be fit to Keplerian orbits.

3.3. Further Filtering

Keplerian filtering yields impressive results. For the CSS, for example, out of 10^{15} possible combinations of three transients observed across the whole sky over a seven-year period, only one out of every 2 trillion could possibly be fit to single-season Keplerian orbits for objects in the solar system beyond 25 AU. Nonetheless, these triplets are predominantly not real objects, but rather chance alignments of astrophysical transients or noise, so further filtering is needed.

There are many potential methods we could use to further filter the transients. We could, for example, require that all transients in a triplet have the same magnitude within limits, or if there be additional observed transients which also fit the same orbit by again running the full orbit fitting routine and retain any orbit be required to have four, rather than three, observations during an opposition season reduces the false positive rate in this data set to zero.

The simplest requirement to implement is that an orbit be found quadruplets through the Bernstein & Khushalani (2000) orbit fitting routine and retain any orbit. We pass 4×10^5 quadruplets of transients through the Bernstein & Khushalani (2000) orbit fitting routine and retain any orbit for which the calculated χ^2 of the fit is below 10. We find 1192 good quadruplet fits to Keplerian orbits in the CSS data and 5515 in the SSS data. These numbers are sufficiently small that we now examine the results in detail.

4. RESULTS

4.1. CSS

Examining the locations of CSS quadruplets we see that the majority are tightly clumped into a few distinct locations in the sky (Figure 4). For each quadruplet we examine if other quadruplets fit the same orbit by again running the full orbit fit through the (Bernstein & Khushalani 2000) routine. In this manner we find that the 1192 CSS quadruplets define 8 distinct objects (Table 1). Each of these recovered objects is, in fact, a known bright object in the outer solar system. Requiring only four detections within an opposition season reduces the false positive rate in this data set to zero.

While we have no rigorous method of assessing the detection efficiency of this survey, we estimate the efficiency by examining the detections of the brightest known objects. Table 2 shows the brightest known objects in the solar system beyond 25 AU (with the exception of Uranus and Neptune, which saturate in our survey). Looking at the initial unfiltered list of transients, we determine how many times each object was detected as a transient in a survey, and, furthermore, how many separate oppositions were linked. Our algorithm was 100% efficient at recovering known objects when four or more detections were available in an opposition.

All known outer solar system objects brighter than $V = 19.1$ were detected with only two exceptions. Pluto is in a region of the galactic plane which was never observed. Quaoar was in the survey region for only the first season when only two images were obtained. In later seasons Quaoar moved into the galactic avoidance zone. Nereid, an irregular satellite of Neptune which does not follow a heliocentric Keplerian orbit, was detected 14 times and recovered during an opposition season when its orbit was indistinguishable from a heliocentric orbit. The bright outer solar system objects with $V \leq 19.1$ were all not just detected, they were observed and would have been detected

\begin{table}[h]
\centering
\caption{Measured Properties of the Detected Objects}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Linked & V & a & e & i & Distance \\
Detections & mag & (AU) & & (deg) & (AU) \\
\hline
51 & 17.06 ± 0.02 & 45.50 ± 0.003 & 0.160509 ± 0.00007 & 29.002 ± 0.001 & 51.867 ± 0.001 \\
47 & 17.37 ± 0.01 & 43.10 ± 0.002 & 0.195129 ± 0.00009 & 28.205 ± 0.001 & 51.217 ± 0.001 \\
33 & 18.95 ± 0.08 & 39.27 ± 0.002 & 0.22397 ± 0.00005 & 20.567 ± 0.001 & 47.706 ± 0.001 \\
28 & 18.53 ± 0.01 & 67.82 ± 0.02 & 0.4384 ± 0.0002 & 43.992 ± 0.001 & 96.895 ± 0.006 \\
8 & 19.5 ± 0.1 & 43.21 ± 0.03 & 0.118 ± 0.002 & 25.855 ± 0.001 & 41.186 ± 0.004 \\
4 & 19.2 ± 1 & 31 ± 16 & 0.4 ± 0.5 & 2.34 ± 0.06 & 30.37 ± 0.06 \\
4 & 19.3 ± 0.1 & 39.74 ± 0.03 & 0.29 ± 0.01 & 15.49 ± 0.01 & 28.7 ± 0.01 \\
4 & 19.8 ± 0.1 & 39.7 ± 0.4 & 0.30 ± 0.01 & 16.33 ± 0.02 & 28.15 ± 0.02 \\
\hline
\end{tabular}
\end{table}

Figure 4. Eight objects detected in our survey. Each of the objects is found to be a previously discovered object in the outer solar system. The geometry is as in Figure 1(a).
The Brightest known Objects in the Outer Solar System

<table>
<thead>
<tr>
<th>Name</th>
<th>(V \text{ mag}) (avg)</th>
<th>Distance (AU)</th>
<th>(a) (AU)</th>
<th>(e)</th>
<th>Inc (deg)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluto</td>
<td>14.0</td>
<td>31.6</td>
<td>39.4</td>
<td>0.25</td>
<td>17.2</td>
<td>not in survey region</td>
</tr>
<tr>
<td>Makemake</td>
<td>16.9</td>
<td>52.1</td>
<td>45.45</td>
<td>0.16</td>
<td>29.0</td>
<td>53 detections, 8 oppositions linked</td>
</tr>
<tr>
<td>Haumea</td>
<td>17.3</td>
<td>51.1</td>
<td>43.17</td>
<td>0.19</td>
<td>28.2</td>
<td>49 detections, 6 oppositions linked</td>
</tr>
<tr>
<td>Eris</td>
<td>18.7</td>
<td>96.7</td>
<td>67.71</td>
<td>0.44</td>
<td>48.2</td>
<td>39 detections, 6 oppositions linked</td>
</tr>
<tr>
<td>Nereid</td>
<td>18.8</td>
<td>30.0</td>
<td>30.1</td>
<td>0.01</td>
<td>1.76</td>
<td>14 detections, 1 opposition linked</td>
</tr>
<tr>
<td>Quaoar</td>
<td>18.9</td>
<td>43.2</td>
<td>43.58</td>
<td>0.04</td>
<td>8.0</td>
<td>not in survey region</td>
</tr>
<tr>
<td>Orcus</td>
<td>19.1</td>
<td>47.8</td>
<td>39.41</td>
<td>0.22</td>
<td>20.6</td>
<td>37 detections, 5 oppositions linked</td>
</tr>
<tr>
<td>TX300</td>
<td>19.6</td>
<td>41.5</td>
<td>43.10</td>
<td>0.12</td>
<td>25.9</td>
<td>17 detections, 2 oppositions linked</td>
</tr>
<tr>
<td>Ixion</td>
<td>19.6</td>
<td>41.7</td>
<td>39.59</td>
<td>0.24</td>
<td>19.6</td>
<td>no detections: low galactic latitude</td>
</tr>
<tr>
<td>20000 Varuna</td>
<td>19.7</td>
<td>35.9</td>
<td>46.90</td>
<td>0.24</td>
<td>38.1</td>
<td>not in survey area</td>
</tr>
<tr>
<td>Huya</td>
<td>19.7</td>
<td>28.8</td>
<td>39.77</td>
<td>0.28</td>
<td>15.5</td>
<td>19 detections, 1 opposition linked</td>
</tr>
<tr>
<td>OP32</td>
<td>19.9</td>
<td>41.4</td>
<td>43.03</td>
<td>0.11</td>
<td>27.2</td>
<td>1 detection</td>
</tr>
<tr>
<td>EK139</td>
<td>20.0</td>
<td>39.9</td>
<td>70.26</td>
<td>0.54</td>
<td>29.4</td>
<td>1 detection in SSS</td>
</tr>
<tr>
<td>V192</td>
<td>20.0</td>
<td>36.5</td>
<td>39.29</td>
<td>0.07</td>
<td>14.8</td>
<td>6 detections, max of 3 in single opposition</td>
</tr>
<tr>
<td>RM43</td>
<td>20.0</td>
<td>35.3</td>
<td>90.35</td>
<td>0.61</td>
<td>28.7</td>
<td>7 detections, max of 3 in single opposition</td>
</tr>
<tr>
<td>GV9</td>
<td>20.1</td>
<td>39.1</td>
<td>42.17</td>
<td>0.08</td>
<td>22.0</td>
<td>too far south for CSS; no detections in SSS</td>
</tr>
<tr>
<td>RR43</td>
<td>20.1</td>
<td>38.6</td>
<td>43.13</td>
<td>0.14</td>
<td>28.5</td>
<td>6 detections, max of 3 in single opposition</td>
</tr>
<tr>
<td>WR106</td>
<td>20.1</td>
<td>43.4</td>
<td>42.91</td>
<td>0.05</td>
<td>17.2</td>
<td>2 detections</td>
</tr>
<tr>
<td>TC36</td>
<td>20.1</td>
<td>30.8</td>
<td>39.31</td>
<td>0.22</td>
<td>8.4</td>
<td>5 detections, max of 2 in single opposition</td>
</tr>
<tr>
<td>RN43</td>
<td>20.1</td>
<td>40.7</td>
<td>41.37</td>
<td>0.02</td>
<td>19.3</td>
<td>4 detections, max of 2 in single opposition</td>
</tr>
<tr>
<td>UK126</td>
<td>20.1</td>
<td>45.5</td>
<td>73.06</td>
<td>0.49</td>
<td>23.4</td>
<td>4 detections, max of 1 in single opposition</td>
</tr>
<tr>
<td>UX25</td>
<td>20.2</td>
<td>41.8</td>
<td>42.55</td>
<td>0.14</td>
<td>19.5</td>
<td>7 detections, max of 3 in single opposition</td>
</tr>
<tr>
<td>JJ43</td>
<td>20.2</td>
<td>41.8</td>
<td>48.21</td>
<td>0.16</td>
<td>12.1</td>
<td>too far south for CSS; no detections in SSS</td>
</tr>
<tr>
<td>AW197</td>
<td>20.3</td>
<td>46.6</td>
<td>47.54</td>
<td>0.13</td>
<td>24.3</td>
<td>2 detections</td>
</tr>
<tr>
<td>Varda</td>
<td>20.3</td>
<td>47.9</td>
<td>45.85</td>
<td>0.14</td>
<td>21.5</td>
<td>1 detection</td>
</tr>
<tr>
<td>WR95</td>
<td>20.4</td>
<td>28.4</td>
<td>39.22</td>
<td>0.29</td>
<td>16.4</td>
<td>12 detections, 1 opposition linked</td>
</tr>
<tr>
<td>QU182</td>
<td>20.4</td>
<td>47.9</td>
<td>110.28</td>
<td>0.67</td>
<td>14.0</td>
<td>0 detections</td>
</tr>
<tr>
<td>NT33</td>
<td>20.4</td>
<td>38.1</td>
<td>43.41</td>
<td>0.15</td>
<td>31.2</td>
<td>not in survey region</td>
</tr>
<tr>
<td>UQ513</td>
<td>20.4</td>
<td>48.8</td>
<td>43.22</td>
<td>0.15</td>
<td>25.7</td>
<td>no detections</td>
</tr>
<tr>
<td>UX10</td>
<td>20.5</td>
<td>38.9</td>
<td>39.08</td>
<td>0.04</td>
<td>9.5</td>
<td>3 detections, max of 1 in single opposition</td>
</tr>
<tr>
<td>KX14</td>
<td>20.5</td>
<td>39.5</td>
<td>38.74</td>
<td>0.04</td>
<td>0.4</td>
<td>no detections</td>
</tr>
<tr>
<td>AZ84</td>
<td>20.5</td>
<td>45.4</td>
<td>39.40</td>
<td>0.18</td>
<td>13.6</td>
<td>no detections</td>
</tr>
</tbody>
</table>

It is clear that objects of this magnitude will occasionally be missed not because of algorithmic inefficiencies but simply because they will not always be detected even when they are in the observed field.

Between \(19.5 < V < 20.1\) many objects were detected three or fewer times per opposition season but only 2002 VE95 (with a measured magnitude of \(V = 19.8\)) has a single four-detection opposition. Even with just this single opposition season in which 2002 VE95 is detected, the algorithm correctly identifies 2002 VE95 in the data.

We conclude that the detection efficiency must be nearly 100% for \(V \lesssim 19.1\) for regions well covered in the survey and it must begin dropping around \(V \sim 19.4\) until it reaches zero by \(V \sim 20\). While the precise shape of the efficiency cannot be defined, the general shape and behavior appears clear.

4.2. SSS

A total of 5515 Keplerian-fitting quadruplets are found in the SSS survey. None of these quadruplets can be linked to another quadruplet, thus it appears that these are likely all false positives. With the significantly higher number density of detected transients in the SSS fields, requiring four detections is insufficient for removing all of the false positives. Clearly, since none of the quadruplets can be linked, adding that requirement that an object be linked four times in each of two opposition seasons reduces the false positive rate to zero. But
we also find that a less stringent requirement—that we link the object five times in one opposition rather than just four times—is also sufficient to drop the false positive rate to zero. It is possible, of course, that 1 or more of the 5515 quadruplets is a real object that is sufficiently faint to only have 4 detections and which is removed by the more stringent filtering. This possibility demonstrates that the addition of a more stringent detection criterion lowers our true detection threshold in this part of the survey. With no effective way to perform followup observations of candidates, such a lowering of the detection threshold is necessary in order to remove false positives.

Determining an efficiency for the SSS is more difficult with a lack of detections of real objects, but we make an estimate based on the experience with the CSS. First, the SSS images are about 0.5 mag less deep than CSS images. Second, the requirement of five detections raises the detection threshold. While a five detection requirement would have detected the \(V \sim 19.4 \) objects in the CSS, all fainter objects would have been missed. We thus estimate that our detection efficiency is nearly 100% for \(V \lesssim 18.6 \) and begins to drop by \(V \sim 18.9 \). We have no reliable method of determining where the efficiency drop to zero but we suspect it happens quickly faintward of \(V = 18.9 \).

5. DISCUSSION

No new bright outer solar system objects were detected in this all sky survey to an approximate limit of \(V = 19.4 \) in the northern survey and an estimated limit of \(V = 18.9 \) in the southern survey. If any bright objects remain to be discovered in the outer solar system they must be at extreme ecliptic latitudes or close to the galactic plane. No bright objects in the outer solar system have been discovered with inclinations higher than the 44° inclination of Eris, so we do not anticipate any undiscovered objects at the ecliptic poles.

We estimate the probability that any bright objects remain to be discovered. The sky density of bright objects appears approximately uniform within 30° of the ecliptic, while no bright objects have been found at higher latitudes (Schwamb et al. 2014). Our survey covered 80% of the sky within 30° of the ecliptic. The uncovered 20% is located within 20° of the galactic plane. The survey of Sheppard et al. (2011) covered approximately one third of the galactic plane below ecliptic latitudes of 30° to a depth of approximately \(R = 21 \) with a completeness of approximately 75%. There are six known objects brighter than \(V \sim 19 \), four of which were in our survey region and one recovered in the galactic survey.

From these surveys, we estimate that the probability that there is one or more remaining objects in the outer solar system brighter than \(V \sim 19 \). To do so we construct Monte Carlo models of KBO populations with a varying sky densities. Selecting the simulation which are compatible with the detections of the two data sets, we find that the probability that there is one additional object yet to be detected is 32%. The probability that there are two or more is 10%. For all regions except for the galactic plane, these limits extend to very distant objects; a body at 10,000 AU, for example, would still move ~10 arcsec in a month at opposition and would be detected in our analysis.

Schwamb et al. (2014) estimate that surveys of the outer solar system have been approximately 70% complete to \(R = 19.5 \). This survey suggests that at the brightest end the surveys to date have been even more efficient and that the most likely scenario is that no new bright objects remain to be discovered.

In addition to demonstrating the only modest probability of the existence of additional bright objects in the outer solar system, this survey demonstrates the relative ease of detecting slowly moving solar system objects in transient surveys.

This search for moving objects in the CRTS catalog has been supported by grant NNX09AB49 G from the NASA Planetary Astronomy program. The CRTS survey was supported by the NSF grants AST-0909182, AST-1313422, and AST-1413600. The CSS survey is funded by the National Aeronautics and Space Administration under Grant No. NNG05GJ22 G issued through the Science Mission Directorate Near-earth Objects Observations Program. This serendipitous survey was conceived during a serendipitous conversation at the LSST “All Hands” meeting between MEB and MJG.

REFERENCES