A questionnaire study investigating future pharmacists’ use of, and views on cognitive enhancers

Published in:
Pharmacy Education

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 Taylor and Francis. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
The School of Pharmacy Ethics Committee at Queen’s University Belfast (QUB) approved the research (Ref 024PMY2016, 22 Nov 2016). The authors have no conflicts of interest to report. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Title: A questionnaire study investigating future pharmacists’ use of, and views on, cognitive enhancers.

Affiliation of all authors:
Queen's University Belfast
School of Pharmacy
97 Lisburn Road
BT9 7BL, United Kingdom

Author 1 (corresponding author):
Lezley-Anne Hanna
Senior Lecturer (Education)
Terminal degree: PhD
Email: l.hanna@qub.ac.uk
Tel: +44(0)2890972731
Fax: +44(0)2890972155 (not private)

Author 2:
Judith Rainey
Pharmacy Graduate
Terminal degree: MPharm
Email: jrainey13@qub.ac.uk
Tel: unknown

Author 3:
Maurice Hall
Senior Lecturer (Education)
Terminal degree: PhD
Email: m.hall@qub.ac.uk
Tel: +44(0)2890972362
Fax: +44(0)2890972155 (not private)
Abstract

Introduction

This work aimed to ascertain future pharmacists’ use of, and attitudes towards, cognitive enhancers (CEs).

Methods

Following ethical approval, all first and final year pharmacy students at Queen’s University Belfast (QUB) were invited to complete a pre-piloted, non-identifiable, paper-based questionnaire during a compulsory class. Descriptive statistics were undertaken; non-parametric tests were used for comparisons with significance set at p<0.05 *a priori*.

Results

The response rates were 89.3% (Level 1) and 89.0% (Level 4) with 48.0% of respondents reporting they were CE users (largely caffeine). Additionally, 42.4% thought using pharmaceutical CEs for improving academic grades breached their Code of Conduct. Level 4 students were more likely to associate OTC and POM CEs with side effects than Level 1 [OTC statement \(p=0.001\) and POM statement \(p=0.016\)].

Discussion

CE use among future pharmacists seems quite high; Level 1 students appear more naïve about safety concerns. Educational workshops could further explore ethical issues.

Keywords

cognitive enhancers, pharmacy students, questionnaire
Introduction (unidentified/blinded)

Cognitive enhancers (also known as ‘smart drugs’, ‘study aids’ or ‘nootropics’) are used to improve cognitive function, particularly functions such as memory, alertness, creativity and motivation (Smith and Farah, 2011; Ragan et al., 2013). For the purposes of this study, cognitive enhancers (CEs) are substances which provide cognitive enhancement to an otherwise healthy individual who does not have cognitive impairment or a medical need (i.e. this work does not relate to cognitive enhancing medicines for treating cognitive impairment due to a medical condition such as dementia).

Researchers have tried to classify CEs but their efforts have been pampered by the plethora of substances claiming to have cognitive enhancing properties (Nutt et al., 2007; Academy of Medical Sciences, 2008). Commonly recognised CEs are caffeine (found in numerous products including coffee and energy drinks), ephedrine and pseudoephedrine [over-the-counter (OTC) medicines found in cough and cold products], prescription-only medicines (POMs) such as methylphenidate indicated for attention deficit hyperactivity disorder (ADHD) (Ragan et al., 2013; Linssen et al., 2014; Weyandt et al., 2016; Jain et al., 2017) and modafinil indicated for narcolepsy (Turner et al., 2004; Minzenberg and Carter, 2008; Ragan et al., 2013). Alcohol and illegal drugs such as cocaine may also be used for cognitive enhancement purposes (Franke et al., 2011). Much of the existing literature focusses on drugs with past or present medical uses i.e. caffeine, amphetamines, methylphenidate and modafinil, since their effects on cognitive function have been evaluated via randomised controlled trials (Arnold, 2000; Faraone et al., 2004; Turner et al., 2004; Minzenberg and Carter, 2008).

CEs may be used within the university student population to enhance academic performance, such as meeting assignment deadlines and examination revision (Ragan et al., 2013). Typically,
as stress levels among university students increases, the use of CEs appears to increase too (Ragan et al., 2013). In terms of the existing body of literature, results are difficult to decipher due to the variety of study designs, drugs investigated and definitions/categories employed. CE prevalence data largely relates to research conducted among US university students (see for example, Wilens et al., 2008; Smith and Farah, 2011) with fraternity and sorority members showing high rates of use (DeSantis et al., 2010). CE prevalence data in Europe is less comprehensive (studies include: Franke et al., 2011; Castaldi et al., 2012; Eickenhorst et al., 2012; Maier et al., 2013; Singh et al., 2013; Ott and Biller-Andorno, 2014; Maier et al., 2015; Santacroce et al., 2016). Research on CE use in the United Kingdom (UK) university student population is sparse in comparison, although it has been mentioned in the media as a rapidly growing problem. A large-scale questionnaire study of cognitive enhancement (CE) use among students in the UK and Ireland (n=877 students) found lifetime prevalence of CE using modafinil or methylphenidate to be under 10%, with CE users more likely to be male (Singh et al., 2014).

It would perhaps be expected that there would be substantial CE use among pharmacy students, given the high workload and academically challenging Master of Pharmacy (MPharm) degree programme. However, since such students are being trained to be experts in medicines, and future health care professionals bound by a professional code, perhaps safety and ethical concerns may limit CE use (particularly CEs such as amphetamines, methylphenidate and modafinil) among this population. Safety concerns for certain CEs include side-effects of the individual drugs and risks associated with online purchasing (British Medical Association, 2015). Some pharmacy students may consider use of certain CEs for enhancing academic performance to be in opposition to aspects of the ‘Professional Standards’ (General Pharmaceutical Council, 2017) as it may suggest students are not taking appropriate
responsibility for their working practices or respecting others (General Pharmaceutical Council, 2017). However, others may consider CE use to be ethical since it enhances performance and may be necessary when patient safety would otherwise be compromised (for example, when working long hours in a busy pharmacy).

To the best of our knowledge, there has been limited work involving pharmacy students conducted in the UK and none specifically in Northern Ireland. This work adds to the field because it will provide data relating to future pharmacists in the UK. It is important to ascertain pharmacy students’ use and opinions on CEs, given that they are being trained to be experts in medicines. Furthermore, it was anticipated that the findings of this research would inform future teaching of the subject matter within the School and contribute to richer discussions around professionalism, ethics, and the safe and effective use of medicines (including personal use).

Aims and objectives:

The overall aim was to investigate Queen’s University Belfast (QUB) ‘Level 1’ and ‘Level 4’ pharmacy students’ use of, and views on, CEs. NB: ‘Level 1’ students, also known as ‘Year 1’ students, represent students who are enrolled on the first year of the MPharm degree programme. ‘Level 4’ students, also known as ‘Year 4’ students, represent students who are enrolled on the final year of the MPharm degree programme.

The objectives were to:

- investigate students’ personal use of CEs
- obtain students’ views on safety and risks associated with CEs
- establish students’ attitudes towards CE use for enhancing academic and professional performance
• determine whether certain factors (use, gender, and level of study) affected responses

Method

Ethical approval for this study was obtained from QUB School of Pharmacy Ethics Committee (Ref 024PMY2016).

Study participants

All currently enrolled Level 1 and Level 4 MPharm students at QUB were invited to participate in the study. The Level 1 cohort was selected to represent new university students. These students had not undertaken any written MPharm examinations at the time of data collection and none had previously completed a university degree. The Level 4 cohort was selected to represent students at the other end of the spectrum i.e. students who had completed at least three years of the MPharm degree course and were approaching completion and graduation.

Data collection

Data were collected by means of a paper-based, self-completed questionnaire.

Questionnaire development

The questionnaire was developed with reference to the wider literature (General Pharmaceutical Council, 2010; Smith and Farah, 2011; Costaldi et al., 2012; Eickenhorst et al., 2012; Maier et al., 2013; Ragan et al., 2013; Singh et al., 2013; Ott and Biller-Andorno, 2014; Singh et al., 2014; Maier et al., 2015; Jensen et al., 2016). The questionnaire had three sections: Section A (4 questions in total, closed and open-response) related to personal use of CEs and included a question on use of modafinil and methylphenidate for their licensed indications since this may affect the likelihood of using certain substances for cognitive enhancement purposes (Ragan et al., 2013), Section B (2 closed questions with multiple statements measured using a 5-point Likert scale from Strongly Agree, Agree, Neither Agree nor Disagree, Disagree,
Strongly Disagree) focussed on attitudes towards CEs in relation to safety, risk and ethics and Section C (4 questions, largely closed) collected non-identifiable demographic information. Please note that at the time of conducting the study, MPharm students in the UK were bound by a professional code known as the ‘Code of Conduct’ (General Pharmaceutical Council, 2010) which is referred to in several statements within the questionnaire. However, this ‘Code of Conduct’ has since been replaced by ‘Professional Standards’ (General Pharmaceutical Council, 2017).

A cover sheet was prepared which outlined the purpose of the research and explained how the data would be used, included an explanation and examples of CEs and defined ‘off-label’ use, gave a predicted time required to complete the questionnaire and provided assurance that participation was voluntary. Reassurances about anonymity (and that no identifiable information was being collected) were also provided. This was particularly important for the questionnaire study, given the potentially sensitive nature of the topic. The questionnaire was piloted with ten pharmacist postgraduate students at QUB. As a result, an estimated completion time of 8 minutes was added to the cover sheet and minor amendments were made (Question 3 was re-formatted so that it was not split across two pages).

Questionnaire distribution

This took place during in Semester 1 (December 2016). The researcher (Judith Rainey) went to scheduled Level 1 and Level 4 classes, having agreed this in advance with the lecturer in charge. She distributed the questionnaires, and directed the students to read the information on the cover sheet. Students were also asked to place completed questionnaires into a specific receptacle prior to vacating the venue. There was one distribution only (i.e. there was no follow-up) which occurred when the majority of students were anticipated to be present in class, given attendance was compulsory.

Maximising the response rate
We anticipated, based on previous work, that manually distributing paper-based questionnaires to students in a compulsory class would enhance the response rate over online distribution. Other ways to maximise the response rate included having a relatively short questionnaire with questions largely in a closed-question format (Dillman, 2008).

Data analysis

The responses from the completed questionnaires were coded and entered into a customised database developed on SPSS (Version 22) for statistical analysis in January 2017. The analysis of the data largely took the form of descriptive statistics. Comparisons were done on male versus female responses as previous studies revealed gender differences in relation to usage of CEs (Dietz et al., 2013; Kudlow et al., 2013). We also investigated whether personal use of CEs influences responses, as this had been reported in other studies (Ott and Biller-Andorno, 2014). Level 1 and Level 4 responses were compared; it was hypothesised that CE use would be greater among Level 4 than Level 1 students (Emanuel et al., 2013; Kudlow et al., 2013) since they have had more exposure to MPharm assessments and stressors associated with undertaking a university degree. Appropriate statistical tests (Mann-Whitney U-test and Chi-squared) were conducted with significance set at \(p<0.05 \) *a priori*. Therefore, \(p \) values < 0.05 are reported throughout the Results section.
Results

The response rate was 89.6% (198/221); Level 4 had a response rate of 89.0% (97/109) and Level 1 had a response rate of 89.3% (100/112) but one respondent failed to provide details about their level of study. While the majority of respondents completed the questionnaire in its entirety (n=181), seventeen students left a few questions unanswered. The questionnaires from these seventeen students were included in the data analysis. The number of respondents who answered the question has been provided (in addition to the %). For example, stating “137/197 ‘strongly agreed’ or ‘agreed’…” means that 197 provided a response to the statement and of those, 137 ‘strongly agreed’ or ‘agreed’ with it. In terms of statistical significance, only p values < 0.05 are reported throughout the Results section (rather than all p values for all parts).

Demographic information (Section C of the questionnaire)

Of the 198 respondents, 71 (35.9%) were males, 123 (62.1%) females, 3 (1.5%) ‘Preferred not to say’ and 1 (0.5%) did not select any of the three options. There were 97 (49.0%) Level 4 students, 100 (50.5%) Level 1 students and 1 (0.5%) respondent who did not select either option. The mean age of the Level 4 students was 22.8 years and the mean age of the Level 1 students was 19.4 years. Moreover, 162 (81.8%) respondents received the majority of their education inside the European Union (EU) prior to coming to QUB, 28 (14.1%) received it outside the European Union (EU), and 8 respondents (4.0%) did not provide an answer.

Personal use of CEs (Section A of the questionnaire)

The proportion of students who reported using CEs [48.0% (95/198)] was similar to those reporting non-use [52.0% (103/198)].

- Gender split - Males: 42.3% (30/71) were users and 57.7% (41/71) non-users; females: 51.2% (63/123) were users and 48.8% (60/123) non-users
Level split - Level 4: 49.5% (48/97) were users and 50.5% (49/97) non-users; Level 1: 46.0% (46/100) were users and 54.0% (54/100) non-users

None of the respondents reported currently taking (or ever taking) methylphenidate for attention-deficit hyperactivity disorder (ADHD) or modafinil for narcolepsy.

Users were asked about what substances (up to a maximum of five) they used and the results are provided in Figure 1.

Insert Figure 1 here please.

When asked (via an open-response question) when they were likely to use CEs, the majority of users [72.6% (69/95)] reported it was around exam time or when studying. Moreover, 30.5% (29/95) of users stated that they did so on a daily basis. Students were asked (again, via an open-response question) why they opted to use CEs. Reasons provided by users are outlined in Figure 2.

Insert Figure 2 here please.

Reasons why non-users abstained from CEs were also investigated via an open-response question. The most commonly reported reason was that they considered use of CEs unnecessary [53.4% (55/103)]. Other reasons were: lack of awareness of CEs [18.4% (19/103)], perceived lack of effectiveness [13.6% (14/103)], safety concerns [12.6% (13/103)], ethical concerns [8.7% (9/103)] and for other reasons [4.9% (5/103)] such as getting into trouble.

Of the non-users, 9.7% (10/103) stated that they would consider using CEs in the future, 62.1% (64/103) said they would not, and the remainder [28.2% (29/103)] were unsure. Females were
more likely to state that they would not use CEs in the future than males [70.0% (42/60) females versus 53.7% (22/41) males; \(p=0.012 \)].

Attitudes towards safety and risk (part of Section B of the questionnaire)

Respondents were asked about their views on safety and risks associated with CE use (see Table I for responses).

Insert Table I here please

Level 4 students were more likely to associate OTC and POM CEs with side effects than Level 1 [OTC statement \(p=0.001 \) and POM statement \(p=0.016 \)].

Users were significantly more likely to “strongly disagree” or “disagree” that using CEs put students at risk of not developing key skills than non-users [34.0% (32/94) users versus 13.7% (14/102) non-users; \(p=0.003 \)].

Attitudes towards CE use in the context of professionalism and ethics (part of Section B of the questionnaire)

Respondents were asked about their views on ethics associated with CE use (see Table II for responses). It is worth noting the differences in opinion in relation to natural (i.e. non-pharmaceutical) versus pharmaceutical CEs:

- For the statements about CEs being ethical to use, 76.3% (151/198) of respondents ‘Strongly Agreed’ or ‘Agreed’ in relation to natural CEs but this figure decreased to 26.8% (53/198) for the OTC statement and 26.3% (52/198) for the POM statement.

- Similarly, for the statements about CE use breaching the students’ Code of Conduct, only 13.1% (26/198) of respondents ‘Strongly agreed’ or ‘Agreed’ for natural CEs whereas 42.4% (84/198) ‘Strongly Agreed’ or ‘Agreed’ in relation to pharmaceutical CEs.
Finally, for the statements about CE use breaching the pharmacist’s code of ethics, only 15.2% (30/198) ‘Strongly agreed’ or ‘Agreed’ for natural CEs whereas 44.9% (89/198) ‘Strongly Agreed’ or ‘Agreed’ in relation to pharmaceutical CEs.

Insert Table II here please

Level 4 students, in comparison to Level 1 students, were more likely to consider using natural substances as CEs was ethical [85.6% (83/97) Level 4 versus 67.0% (67/100) Level 1; \(p=0.022\)]. Furthermore, they were less likely to think that using natural substances to improve patient safety would breach the pharmacist’s ethical code [64.9% (63/97) Level 4 versus 46.0% (46/100) Level 1; \(p=0.011\)]. However, the reverse was seen with OTC medicines and POMs: Level 1 students were more likely to consider OTC CE use was ethical compared with Level 4 students [34.0% (34/100) Level 1 versus 18.6 % (18/97) Level 4; \(p<0.001\)]. Similarly, Level 1 students were more likely to consider that POM CE use was ethical [33.0% (33/100) Level 1 versus 18.6% (18/97) Level 4; \(p=0.044\)].

CE users, compared with non-users, were more likely to be in disagreement that using natural substances as CEs to improve academic grades was a breach of the Code of Conduct [83.2% (79/95) users versus 45.6% (47/103) non-users; \(p<0.001\)]. CE users were more likely to be in disagreement that using natural CEs to potentially enhance patient safety in practice (for example, to improve concentration during long hours) breached the pharmacist’s ethical code [66.3% (63/95) users versus 44.7% (46/103) non-users; \(p=0.006\)]. Interestingly, there were no significant differences between user and non-user responses about the ethics of using OTC and POM CEs for these reasons (i.e. it was only in relation to natural CEs).
Females, in comparison to males, were more likely to consider that pharmaceutical CE use in academia was similar to doping in sports [48.8% (60/123) females versus 35.2% (25/71) males; \(p=0.037 \)]. Males were more likely to “strongly agree” or “agree” with the statement “Mankind has always used substances to enhance performance; pharmaceutical CEs are just the most recent form of this phenomenon,” [63.4% (45/71) males versus 42.6% (52/122) females; \(p=0.003 \)]. Additionally, males were more likely to ‘strongly agree’ or ‘agree’ with the statement “I do not care if others use substances for cognitive enhancement purposes whilst studying,” [67.6% (48/71) males versus 53.3% (65/122) females; \(p=0.014 \)].
Discussion

This study has revealed interesting findings about pharmacy students’ use of, and views on, CEs. In summary, while one in every two pharmacy students reported using CEs, the most commonly used substance was caffeine. Users were equally likely to be first year as final year students. There was a slightly greater proportion of female than male users (but this was not significant). The main reasons for CE use centred on staying awake and to improve concentration.-In terms of future pharmacists’ views on safety and ethics of CEs, opinions differed depending on whether the CE was a natural substance (i.e. a non-pharmaceutical product) or a pharmaceutical (OTC or POM) product.

In terms of gender, other researchers have reported a higher proportion of male than female users (Dietz et al., 2013; Kudlow et al., 2013; Singh et al., 2014). However, it must be noted that these studies focused more on pharmaceutical CE use rather than CE use in general and our work did reveal that male non-users were more likely to consider trying CEs in the future than female non-users. Furthermore, unlike other published research (Emanuel et al., 2013; Kudlow et al., 2013), non-users were equally likely to be senior as junior students.

Regarding personal use, it was somewhat reassuring to find the majority of users in this current study reported taking “soft enhancers” (Maier et al., 2013) rather than POMs or illicit drugs. Only 3.2% of students reported using POM CEs which is low compared to other studies across the globe involving university students (Mache et al., 2012; Dietz et al., 2013; Singh et al., 2014; Maier et al., 2015; Bennett and Holloway, 2017; Rathbone, 2017), pharmacy students (Bossaer et al., 2013) and medical students (Habibzadeh et al., 2011; Kudlow et al., 2013; Emanuel et al., 2013; Micoulaud-Franchi et al., 2014). Moreover, in line with other studies (Mache et al., 2012; Micoulaud-Franchi et al., 2014), the majority of respondents who used
CEs did so to stay awake and/or enhance concentration during examination preparation or studying. Additionally, some students took them for energy and a minority took CEs for stress and anxiety relief. There are some concerns that millennial students are unable to withstand hard work, social pressure, and are not as resilient as they should be, hence their ‘strawberry generation’ classification. They appear to experience more stress and anxiety than previous generations (Peterson and Brommelsiek, 2017). Perhaps wider skills and personal development, encompassing resilience training, could be valuable.

The majority of respondents had some awareness of safety and risk associated with CE use and many considered the University had a responsibility to inform students about CE safety. Unsurprisingly, users had fewer concerns than non-users. Respondents distinguished being natural and pharmaceutical products and deemed natural substances to be associated with fewer side effects. Similarly, other authors have reported perceptions that non-prescription medicines are safe and “too weak to cause any real harm,” (Roumie and Griffin, 2004), that complementary and alternative medicine (CAM) is a safer alternative to conventional pharmaceutical medicine (Hall et al., 2011) and that plant-based products are ‘natural’ and therefore assumed to be safe (Chouakea and Friedman, 2012). Level 4 students had greater general awareness about potential side-effects of CEs (and ethical concerns) than Level 1 students. This is likely to be because they had gained knowledge about medicines, including OTC and CAM at the time of data collection whereas the Level 1 students had not. In light of these findings, the school should consider explicitly teaching about CEs early in the MPharm programme so that all students are fully cognizant of the risks and safety concerns from the outset. The British Medical Association has produced guidance on the use of CEs which could be useful for MPharm students. It states that there is an uncertain long term risk profile in healthy individuals and that high cognitively performing individuals, and those with higher
IQs, are unlikely to derive any benefit from pharmaceutical CEs. It does not support the use of pharmaceutical CEs and warns that use may be associated with a negative effect on self-control, and give rise to overconfidence (British Medical Association, 2015).

Students seemed to have more ethical concerns about the type of CE rather than the concept of using CEs and held similar views about use when qualified as when a student. Further research should be conducted before conclusions could be reached. Around half of the respondents seemed to be broadly accepting of CEs by agreeing that mankind has always used substances to enhance performance. Moreover, this cohort of students were ambivalent about future pharmacists using CEs being worse than other university students using CEs. Females seemed more concerned about fairness than males, and males were less likely than females to consider pharmaceutical CE use in academia as being similar to doping in sports. Perhaps this is because males are more likely to use doping in sports (Bloodworth et al., 2012) and have a greater acceptance of, and likelihood to partake in, risk-taking behaviours (Harris et al., 2006; Hall et al., 2013; Hall et al., 2015).

Regarding strengths and weaknesses, this was the first study in the UK to explore first and final year pharmacy students’ use and views on CEs, with particular emphasis on natural versus pharmaceutical products. It was a timely due to the increasing level of concern over CE activity among university students in recent years. Secondly, non-response bias was not overly concerning, given the high response rate. The questionnaire could be readily utilised by other schools of pharmacy and healthcare disciplines. However, the opinions were captured at one point in time, data were self-reported, and the findings are not generalisable. It is plausible that pharmacy students did not want to admit to using POMs off-label (or illicit drugs) for cognitive enhancement purposes, although having a non-identifiable questionnaire should have
minimised this reluctance. Furthermore, the timing of data collection could have influenced results. Perhaps if the study had been conducted immediately before the written examinations, prevalence of CE use would have been higher.

Conclusions

Personal use of CEs appears prevalent among these future pharmacists but largely unrelated to seniority on the MPharm degree programme or to gender. The substances used did not seem to be particularly potent, which is reassuring. Reasons for CE use raise questions about time management and organisational skills in these students. Finally, the distinction in views between natural substances and pharmaceutical products is noteworthy and worth further exploration.

Educational recommendations and future research ideas

- As some of our findings may be unique to the UK, to the discipline of pharmacy, and to our school, we invite readers to contextualise these results to their own degree programmes or settings
- This study provides the impetus for QUB to explicitly address the subject area of CEs and to do so at an early stage within the MPharm degree programme. Students should be encouraged and supported to develop key skills and knowledge using risk-free methods and by having a healthy lifestyle
- Workshops and debates could investigate the ethics of using non-pharmaceutical and pharmaceutical CE in greater depth, given the many possible ways to gain an ‘unfair’ advantage over peers within education
- Since the subject area has relevance to many university students, discussions around CE use could become an inter-professional or inter-disciplinary learning opportunity
• It would be worthwhile to explore CE use from undergraduate level to when these students are healthcare professionals

Conflicts of interest

The authors have no conflicts of interest to report. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgements

The authors wish to thank the Level 1 and 4 pharmacy students who participated in the study and the postgraduate pharmacists who piloted the questionnaire.
References

Table I Respondents’ views on CE safety and risk (n=196)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Natural substances (such as caffeine) used for cognitive enhancement purposes are not associated with many side-effects</td>
<td>4 (2.0%)</td>
<td>62 (31.6%)</td>
<td>22 (11.2%)</td>
<td>80 (40.8%)</td>
<td>28 (14.3%)</td>
</tr>
<tr>
<td>b. Over-the-counter medicines (such as ephedrine and pseudoephedrine) used for cognitive enhancement purposes are not associated with many side-effects</td>
<td>25 (12.8%)</td>
<td>88 (44.9%)</td>
<td>57 (29.1%)</td>
<td>25 (12.8%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>c. Prescription-only medicines (such as methylphenidate and modafinil) used for cognitive enhancement purposes are not associated with many side-effects</td>
<td>46 (23.5%)</td>
<td>101 (51.5%)</td>
<td>35 (17.9%)</td>
<td>13 (6.6%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>d. Long-term CE use can lead to dependence</td>
<td>3 (1.5%)</td>
<td>8 (4.1%)</td>
<td>17 (8.7%)</td>
<td>91 (46.4%)</td>
<td>76 (38.8%)</td>
</tr>
<tr>
<td>e. Using CEs puts students at risk of not developing key skills (such as time management)</td>
<td>7 (3.6%)</td>
<td>39 (19.9%)</td>
<td>56 (28.6%)</td>
<td>68 (34.7%)</td>
<td>26 (13.3%)</td>
</tr>
<tr>
<td>f. The University has a responsibility to inform students about CEs and associated risks</td>
<td>6 (3.1%)</td>
<td>17 (8.7%)</td>
<td>48 (24.5%)</td>
<td>91 (46.4%)</td>
<td>34 (17.3%)</td>
</tr>
</tbody>
</table>
Table II. Respondents’ opinions on the ethics of CE use (n=198 for statements a-h and n=197 for statements i-k)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. It is ethical to use a natural substance such as caffeine for cognitive enhancement purposes</td>
<td>1 (0.5%)</td>
<td>5 (2.5%)</td>
<td>41 (20.7%)</td>
<td>98 (49.5%)</td>
<td>53 (26.8%)</td>
</tr>
<tr>
<td>b. It is ethical to use over-the-counter products such as ephedrine or pseudoephedrine off-label for cognitive enhancement purposes</td>
<td>16 (8.1%)</td>
<td>70 (35.4%)</td>
<td>59 (29.8%)</td>
<td>43 (21.7%)</td>
<td>10 (5.1%)</td>
</tr>
<tr>
<td>c. It is ethical to use prescription-only medicines such as methylphenidate or modafinil off-label for cognitive enhancement purposes</td>
<td>36 (18.2%)</td>
<td>72 (36.4%)</td>
<td>38 (19.2%)</td>
<td>42 (21.2%)</td>
<td>10 (5.1%)</td>
</tr>
<tr>
<td>d. Using natural CEs for the purpose of improving assessment grades breaches the Code of Conduct for Pharmacy Students</td>
<td>49 (24.7%)</td>
<td>77 (38.9%)</td>
<td>46 (23.2%)</td>
<td>19 (9.6%)</td>
<td>7 (3.5%)</td>
</tr>
<tr>
<td>e. Using pharmaceutical CEs (over-the-counter medicines or prescription-only medicines) for the purpose of improving assessment grades breaches the Code of Conduct for Pharmacy Students</td>
<td>13 (6.6%)</td>
<td>43 (21.7%)</td>
<td>57 (28.8%)</td>
<td>58 (29.3%)</td>
<td>26 (13.1%)</td>
</tr>
<tr>
<td>f. Using natural CEs for the purpose of improving patient safety in practice (for example, to improve concentration during long working hours) breaches the pharmacist’s ethical code</td>
<td>27 (13.6%)</td>
<td>82 (41.4%)</td>
<td>59 (29.8%)</td>
<td>25 (12.6%)</td>
<td>5 (2.5%)</td>
</tr>
<tr>
<td>g. Using pharmaceutical CEs for the purpose of improving patient safety in practice (for example, to improve concentration during long hours) breaches the pharmacist’s ethical code</td>
<td>8 (4.0%)</td>
<td>43 (21.7%)</td>
<td>57 (28.8%)</td>
<td>64 (32.3%)</td>
<td>25 (12.6%)</td>
</tr>
<tr>
<td>h. Using pharmaceutical CEs in academia is similar to doping in sports</td>
<td>16 (8.1%)</td>
<td>54 (27.3%)</td>
<td>40 (20.2%)</td>
<td>66 (33.3%)</td>
<td>21 (10.6%)</td>
</tr>
<tr>
<td>i. Mankind has always used substances to enhance performance; pharmaceutical CEs are just the most recent form of this phenomenon</td>
<td>2 (1.0%)</td>
<td>21 (10.7%)</td>
<td>74 (37.6%)</td>
<td>82 (41.6%)</td>
<td>17 (8.6%)</td>
</tr>
<tr>
<td>j. I do not care if others use substances for cognitive enhancement purposes whilst studying</td>
<td>13 (6.6%)</td>
<td>35 (17.8%)</td>
<td>33 (16.8%)</td>
<td>83 (42.1%)</td>
<td>32 (16.2%)</td>
</tr>
<tr>
<td>k. It is of greater ethical concern if pharmacy students use pharmaceutical CEs in comparison to other university students</td>
<td>26 (13.2%)</td>
<td>54 (27.4%)</td>
<td>58 (29.4%)</td>
<td>42 (21.3%)</td>
<td>16 (8.1%)</td>
</tr>
</tbody>
</table>
Figure 1 Substances used by respondents for cognitive enhancement (n=95; users could provide up to 5 substances)
Figure 2 Reasons respondents used cognitive enhancers (n=95)