Numerical prediction of the low-velocity impact damage and compression after impact strength of composite laminates

Published in:
IOP Conference Series: Materials Science and Engineering

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2015 the authors. Published under licence by IOP Publishing Ltd.
This is an open access document licensed under the terms of the Creative Commons Attribution 3.0 licence (http://creativecommons.org/licenses/by/3.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Numerical prediction of the low-velocity impact damage and compression after impact strength of composite laminates

This content has been downloaded from IOPscience. Please scroll down to see the full text.

(http://iopscience.iop.org/1757-899X/74/1/012015)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 143.117.192.151
This content was downloaded on 19/03/2015 at 16:24

Please note that terms and conditions apply.
Numerical prediction of the low-velocity impact damage and compression after impact strength of composite laminates

Wei Tan1, Brian G. Falzon1, Louis N. S. Chiu2, Mark Price1

1 School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Ashby Building, Belfast, BT9 5AH, UK.
2 Department of Mechanical and Aerospace Engineering, Monash University, Building 31, Clayton, VIC 3800, Australia.

\texttt{b.falzon@qub.ac.uk}

Abstract. Low-velocity impact damage can drastically reduce the residual mechanical properties of the composite structure even when there is barely visible impact damage. The ability to computationally predict the extent of damage and compression after impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant development time and cost penalties. A three-dimensional damage model, to predict both low-velocity impact damage and compression after impact CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The virtual tests were executed in two steps, one to capture the impact damage and the other to predict the CAI strength. The observed intra-laminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing.

1. Introduction

Composite materials are increasingly used in the aerospace and automotive industries due to their high specific stiffness and strength, nevertheless, the susceptibility to damage from low-velocity impact event (\textit{i.e.} falling tools, runway debris \textit{etc.}) is one of the major design concerns. When subjected to impact loading, the composite structure can be degraded through various failure mechanisms including matrix cracking, fibre breakage and delamination. Impact damage can dramatically reduce the residual mechanical properties of the structure even with barely visible impact damage. It is therefore essential to develop a reliable tool for the prediction of the impact damage process and evaluation of corresponding residual strength.

A limited number of studies on predicting the CAI strength of damaged composite structures are available in the literature. Uda \textit{et al.} [1] investigated failure mechanisms of impact-damaged UT500/Epoxy and AS4/PEEK CFRP laminates subjected to compression fatigue. Ghelli and Minak [2] conducted CAI tests on thin laminates, taking into account sub-laminate buckling under compression. Most of the current work was performed on composites with predefined delaminations or imperfections [3]. A model where both virtual tests (impact and CAI) are performed on composite sandwiches can be found in Davies \textit{et al.} [4]. González \textit{et al.} [5] proposed a 3D FE model with inter-laminar and intra-laminar damage using a rigorous thermodynamic framework for drop-weight...
impact and CAI test simulations and studied the effect of different stacking sequences. The numerical results showed large oscillations compared to experimental data and took 12-15 days to execute, which is very computationally expensive. Rivallant et al. [6] presented a numerical model for impact and CAI using the interface element between neighbouring volume elements to model intra-laminar matrix cracking, cutting the run-time to 12-15 hours.

The present work, based on an extension of a previous model by Falzon et al. [7-10], was used to simulate both impact and CAI. The results of the simulation are compared with experimental data. The observed intra-laminar damage features, as well as residual strength prediction are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing.

2. Materials and Methods

2.1. Composite Damage Model

The degraded damage model captures failure modes in the forms of matrix cracking, fibre breakage and delamination as shown in Figure 1. Details of the damage model may be found in [7-9] which accounts for these damage modes in a laminate subjected to a 3D stress state.

2.2. CAI Test Model

In this context, the test model is the same as in reference [6]. The virtual tests set up in ABAQUS 6.12/Explicit were executed in two steps, one to capture the impact damage and the other to predict the CAI strength. The laminate plate measured 100 mm × 150 mm × 4.16 mm, simply-supported within a ‘picture frame’ with a 75 mm × 125 mm effective test section (Figure 2). The T700/M21 composite plate was impacted with 29.5 J of impact energy using a hemi-spherical, 16 mm diameter, 2 kg impactor.

Once the simulation of the impact process was completed, the CAI simulation was subsequently carried out by constraining the out-of-plane direction of the nodes in contact with the picture frame. The planar displacements were also constrained for all nodes at the bottom of the laminate in contact with the support. Although the CAI test is essentially quasi-static (0.5mm/min), it was simulated by using ABAQUS/Explicit to avoid the severe convergence difficulties encountered with implicit analysis. The loading speed was chosen at 3.75 m/min to reduce the CPU running time. Selective mass scaling (scales only elements whose stable time increment is below the value assigned to a time increment of 1e-07) was also employed in the CAI process to achieve a reasonable run time.

2.3. Material Properties

Material properties were obtained from the literature [6], given by Table 1. The $c_i (i = 1,2,3)$ describe a quadratic constitutive shear stiffness curve obtained using a least square fitting method [11]. $\Gamma_{ii _Mode} (i = 1,2$ and Mode = Tensile, Compressive) denote the intra-laminar fracture toughness in the
longitudinal (11) and transverse (22) directions, and G_I and G_{II} are the inter-laminar fracture toughness for mode I and mode II.

Figure 2. Impact test and CAI setup with the boundary condition.

Table 1. Material Properties of T700/M21 composite.

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Property</th>
<th>Values</th>
<th>Property</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>130 GPa</td>
<td>X^C</td>
<td>1250 MPa</td>
<td>Γ_{22}^C</td>
<td>1.6 N/mm</td>
</tr>
<tr>
<td>$E_2 = E_3$</td>
<td>7.7 GPa</td>
<td>γ_T</td>
<td>60 MPa</td>
<td>$\Gamma_{12,c} = \Gamma_{23,c}$</td>
<td>1.6 N/mm</td>
</tr>
<tr>
<td>$\nu_{12} = \nu_{13}$</td>
<td>0.3</td>
<td>γ_C</td>
<td>290 MPa</td>
<td>G_I</td>
<td>0.5 N/mm</td>
</tr>
<tr>
<td>ν_{23}</td>
<td>0.35</td>
<td>S_{12}</td>
<td>110 MPa</td>
<td>G_{II}</td>
<td>1.6 N/mm</td>
</tr>
<tr>
<td>$G_{12} = G_{13}$</td>
<td>4.8 GPa</td>
<td>Γ_{11}^T</td>
<td>133 N/mm</td>
<td>c_1</td>
<td>37833 MPa</td>
</tr>
<tr>
<td>G_{23}</td>
<td>3.8 GPa</td>
<td>Γ_{11}^C</td>
<td>10 N/mm</td>
<td>c_2</td>
<td>16512 MPa</td>
</tr>
<tr>
<td>X^T</td>
<td>2080 MPa</td>
<td>Γ_{22}^T</td>
<td>0.5 N/mm</td>
<td>c_3</td>
<td>2334.3 MPa</td>
</tr>
</tbody>
</table>

Figure 3. (A) Matrix Damage, and (B) Delamination of 29.5 J
3. Results

3.1. Impact Matrix Damage
The intra-laminar damage model allowed the various forms of intra-laminar failure to be investigated as the impact event progressed. Figure 3 shows the superposition of the matrix cracking throughout the layers. Matrix cracking was found to be the dominant form of intra-laminar failure. Matrix damage mainly occurred in the centre part of the impact area with a symmetric distribution similar to that reported in [12]. It is clearly that the matrix damage propagated from the centre and towards the boundary of “picture frame”. The peanut shaped damage contour for the delamination can be observed in Figure 3 which matches well with the experimental results from C-scans [6], though the size of the damage area is smaller. These could be attributed to the fact that the experimental results are the combination of the matrix damage and delamination.

3.2. Force-Time and Force-Displacement Curves
In Figure 4A, the experimental results of force-time history are not available and the numerical results show the overall impact response. The load oscillation is an artefact of the numerical method due to matrix failure and delamination failure. Upon contact with the laminate, the impactor force increased gradually with some fluctuation before it reached the peak load when impact velocity was zero. From this stage onwards, the force began to drop until it reached zero, during which the impactor rebounded. The force-displacement history of the impactor correlated well with the experimental results shown in Figure 4B. The initial contact response and maximum displacement of the impactor are captured accurately compared to experimental results [6].

3.3. CAI Matrix Damage
The extensive matrix damage of the CAI test under impact energy of 29.5 J is shown in Figure 5. Most matrix damage occurred at the centre line through the indented zone. The CAI test process from (A) to (D) indicated that new matrix damage initiated from the two outer edges, possibly due to free edge effects, and propagated towards the damaged centre of the panel. Sub-laminate buckling is also observed in (E).

3.4. CAI Stress-Displacement Curve
CAI experimental results in terms of the stress-displacement relationship were only available for the 29.5 J impact case [6]. Applied stress versus end displacement curve in Figure 6 shows that good correlation was achieved between the experimental and numerical results, with the ultimate load being predicted to within 9.3% of the experimental results.
Another model (undamaged line) was executed with no impact damage which shows that the damaged panel failed at 40% of the load carried by the pristine panel.

Figure 5. CAI Matrix Damage, (A) 14 ms, (B) 15 ms, (C) 16 ms, (D) 22 ms, (E) Side view.

Figure 6. CAI stress-displacement curve.
4. Conclusions
Through the data obtained from the force-displacement and damage parameters, the impact test successfully demonstrated that the model can capture intra-laminar and inter-laminar damage well – both qualitatively and quantitatively – for the given impact energy. Concerning the CAI simulation, the observed intra-laminar damage features, as well as residual strength were accurately predicted. This was achieved without the need to calibrate the input parameters. The current model has proved to be a reliable and efficient tool to numerically predict the CAI strength.

Future work will focus on extending this computational damage model to capture high energy crush events. This will enable the virtual testing of bird strikes and assessment of crashworthiness of aero-structures.

Acknowledgements
The authors would like to gratefully acknowledge the funding from Queen’s University Belfast/China Scholarship Council (QUB/CSC) PhD Scholarship and the support of High Performance Computing (HPC) systems of QUB. The corresponding author would like to acknowledge the financial support of Bombardier and the Royal Academy of Engineering.

References