The tumbling rotational state of 1I/‘Oumuamua

Published in:
Nature Astronomy

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen’s University Belfast Research Portal

Publisher rights
© 2018 The Authors. This is an open access article published under a Creative Commons Attribution-NonCommercial-ShareAlike License (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the author and source are cited and new creations are licensed under the identical terms.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
1I/ʻOumuamua is tumbling

Wesley C. Fraser\(^1\), Petr Pravec\(^2\), Alan Fitzsimmons\(^1\), Pedro Lacerda\(^1\), Michele T. Bannister\(^1\), Colin Snodgrass\(^3\), Igor Smolić\(^4\)

\(^1\)Astrophysics Research Centre, Queen’s University Belfast, Belfast, BT7 1NN, United Kingdom

\(^2\)Astronomical Institute, Academy of Sciences of the Czech Republic, Fričova 1, CZ-25165 Ondřejov, Czech Republic

\(^3\)Planetary and Space Sciences, School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK

\(^4\)Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia

The discovery\(^1\) of 1I/2017 U1 (ʻOumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour, within a range that is broadly consistent with local small bodies such as the P/D type asteroids, Jupiter Trojans, and dynamically excited Kuiper Belt Objects\(^2–6\). 1I/ʻOumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1\(^1,4,5\). Rotation period estimates are inconsistent and varied, with reported values between 6.9 and 8.3 hours\(^4–6\). Here we analyse all reliable optical photometry reported to date. No single rotation period can explain the exhibited brightness variations. Rather, 1I/ʻOumuamua appears to be in an excited rotational state undergoing Non-Principal Axis (NPA) rotation, or tumbling. A satisfactory solution has apparent lightcurve frequencies of 0.135 and 0.126 hr\(^{-1}\) and implies a longest-to-shortest
axis ratio of \(\gtrsim 5 : 1 \), though the available data are insufficient to uniquely constrain the true frequencies and shape. Assuming a body that responds to NPA rotation in a similar manner to Solar System asteroids and comets, the timescale to damp 1I/ʻOumuamua’s tumbling is at least a billion years. 1I/ʻOumuamua was likely set tumbling within its parent planetary system, and will remain tumbling well after it has left ours.

Models of uniform rotation about a single spin axis moderately match 1I/ʻOumuamua’s observed brightness variations within a few nights\(^{1,4–7}\). These models are inadequate for the 6-night span of collated photometry we consider here (see Methods), with no single rotation period adequately matching the full set of data (see Figure. 1). We find that models which consider linear increases or decreases in the spin period fare no better, producing equally inadequate matches.

A tumbling model\(^9\) with NPA rotation and free precession does provide an adequate description of the photometry (see Figure 1). The relative sparseness of the data prevents determination of a unique set of frequencies; possible frequencies include 0.31, 0.26, 0.23, 0.16, 0.14, 0.12, 0.10, and 0.009 hr\(^{-1}\). We have discounted values which are clearly commensurate with the Earth’s rotation, although there is the possibility that one may be real. It is clear that tumbling provides a reasonable explanation for the peculiar brightness variations of 1I/ʻOumuamua, which cannot be explained by simple single-axis rotation. Unfortunately, given the finite set of observations due to the limited observability of the object, it is unlikely that a unique solution will ever be determined for this object.

The most complete lightcurve previously published\(^1\) has an amplitude of \(\sim 2.5 \) magnitudes,
from which they suggested a minimum axial ratio of $a/c \sim 10:1$. Observing at non-zero phase angles α, however, can enhance the lightcurve amplitude by up to 0.018 magnitude/degree for carbonaceous surfaces10 and $\sim 3\%$/degree for S and similar type asteroids11, due to the combined effects of optical scattering law, global shape and spin-pole inclination to the line of sight. As this early lightcurve was observed at $\alpha \simeq 20^\circ$, the true conservative lower limit to the axial ratio from observations is $a/c \gtrsim 5$. We caution, however, that the optical surface scattering properties of interstellar objects are unknown at present.

NPA rotation of small asteroids with slow rotation periods is a well known phenomena9. This tumbling can be brought about by collisions12, tidal torques in planetary close encounters13, cometary activity14, or the YORP effect15. It is eventually damped by internal friction and stress-strain forces removing the excess of rotational energy above that of the basic rotational state around the body’s principal axis. The timescale to return to principal axis rotation depends on the body’s internal rigidity and anelasticity, its initial rotation rate, density, size and shape16–18. As it is possible that 1I/ʻOumuamua is either an icy comet-like body or more similar to organic-rich asteroids in the outer asteroid belt, we have estimated the timescale to return to principle axis rotation for both possibilities (see Methods). We find that a rigid, organic-rich body with the observed apparent elongation and size11 will take 3×10^{10} to 3×10^{12} years to stop tumbling. We note that recent theories18,19 do suggest that the timescales may be a factor of 7–9 shorter than the estimates that use the classical formula15. For icy bodies, the damping timescale is an order of magnitude lower. It is unlikely, however, to be this short for 1I/ʻOumuamua, which must possess some rigidity to support its highly elongated shape. A large fraction of Solar System asteroids smaller than
∼ 200 meters are tumblers, even among the very fast rotators that have tensile strength, e.g. 2000 WL107 and 2008 TC3. Their tumbling suggests that they have a higher rigidity than larger and more weakly structured asteroids, which results in long damping timescales. 1I/'Oumuamua may have a similarly prolonged damping timescale, which could be much longer than the age of the universe.

What induced the current tumbling of 1I/'Oumuamua? As the YORP effect scales with incident stellar flux, and cometary activity only occurs within close proximity of a star, both should be negligible in interstellar space. The space density of interstellar objects similar in size or larger than 1I/'Oumuamua is estimated as \(n \sim 0.1 \text{ au}^{-3} \) and they should have a typical local standard of rest encounter velocity of \(v \sim 25 \text{ km/s} \). The collisional lifetime for an interstellar object of effective radius \(R \) is \(\sim (nR^2v)^{-1} \sim 10^{19} \text{ years} \). With a lack of other mechanisms available, it is clear that the tumbling of 1I/'Oumuamua probably commenced in its home planetary system.

Colour variations have been detected for 1I/'Oumuamua, with reported optical spectral slopes (see Methods) spanning \(0 \lesssim S' \lesssim 25\%/100 \text{ nm} \) within the six-day span available. Large colour variations cannot explain the unusual lightcurve behaviour of our multi-band dataset, as even when considering only observations made in \(r' \), a single rotation period cannot be found. The observed colour variations appear to be correlated with the rotation of 1I/'Oumuamua (see Figure 2). The colour measurements imply that the body is largely a nearly-neutral reflector with spectral slope \(S' \sim 5\%/100 \text{ nm} \), and has a large red region that becomes visible after the two brightest phases in the first two nights of the photometry sequence. This colour variation is of a magnitude similar to
the colour variations seen on some Kuiper Belt Objects. It should be noted that the observed colours are progressively more neutral with date observed. It is tempting to attribute this to a trend of the surface of 1I/‘Oumuamua progressively evolving to a more neutral colour with time, as is observed amongst the Jupiter Family Comets and Centaurs. This however, would require 1I/‘Oumuamua’s transition from red to neutral to occur entirely within the six-day duration of the observations, 42–48 days after perihelion, in an unlikely serendipity of timing.
Methods

Optical photometry. This was compiled from Bannister et al., Jewitt et al., Knight et al., and Meech et al. Where available, observations were corrected to the r’ filter in the Sloan Digital Sky Survey (SDSS) photometric system, using colours reported in those references, or using the temporally closest (g-r) colours, assuming linear reflectance spectra through the optical range,
which is consistent with reported spectra. Spectral slopes (percent increase in reflectivity per 100 nm increase in wavelength normalized to 550 nm) were estimated from reported colours and spectra assuming a linear spectrum through the optical range.

Lightcurve modelling. Simple rotation periods were searched for using phase dispersion minimization. The tumbling lightcurve was modelled following the technique of Pravec et al. (2005): a 2-dimensional 2nd order Fourier series was used to model the observed brightness variations, and satisfactory solutions were searched for in the 2-dimensional frequency space. A number of possible combinations of frequencies were found to fit the lightcurve data; one of those providing a plausible fit is presented in Fig. 1. Note, however, that due to the limited coverage of the lightcurve with the available data (missing observations from the longitudes of Asia/Australia in particular) the solution is not “anchored” at uncovered times between the observational runs, allowing the fitted model to possibly under- or over-estimate the brightness variation at those times. Without additional data breaking the commensurability of the observations with Earth’s rotation, this problem cannot be solved. With the limited data, no Fourier series of order higher than 2 could be used. While the 2nd-order Fourier series describes the lightcurve data well at most rotational phases, some lightcurve minima are not accurately modelled, with the fit either underestimating or overestimating the depth. Additional data might enable use of a 3rd order Fourier series which would improve the model fit to the lightcurve minima.

Damping Timescales. To estimate the damping timescales τ_D, we used the formulation used previously in the study of small Solar system bodies.
\[\tau_D \simeq \frac{\mu Q}{\rho K_3^2 R^2 \omega^3} \]

where \(\mu \) is the rigidity of the object, \(Q \) is the anelasticity or damping constant, \(\rho \) is the bulk density and \(\omega \) is the angular velocity of rotation. For 1I/\'Oumuamua we take \(\omega = 7.4 \) hours from our analysis. \(K_3 \) is a scaling coefficient that depends on the oblateness of the body \(p = (a - b)/a \) where \(a \) and \(b \) are the semi-major and semi-minor axes of the body; \(K_3 \approx 0.1 p^2 \). The lightcurve of Meech et al. along with an assumed geometric albedo of 0.04 implies projected radii 200 \(\times \) 20 m ignoring amplitude-phase angle effects (see main text), hence we use this to estimate a maximum obliquity of \(p \approx 0.9 \) and \(K_3 \approx 0.09 \).

For an icy (or initially icy) comet-like body we assume \(\rho \approx 1000 \text{ kg m}^{-3} \). The internal rigidity is unknown, but we assume that \(\mu \approx 4 \times 10^9 \text{ N m}^{-2} \) as assumed for previously assumed for small bodies with weak strength55. The mean radius is given by \(R \approx \sqrt{ab} \approx 60 \text{ m} \). Then a range of viable values of \(100 \leq Q \leq 1000 \) in turn implies \(3 \times 10^9 \leq \tau_D \leq 3 \times 10^{10} \) years. However there is the possibility that 1I/\'Oumuamua is instead a rocky object similar to C-type asteroids as found predominantly in the outer main-belt. In this case we can assume \(\rho \approx 2000 \text{ kg m}^{-3} \) and a rigidity a factor of 10 higher. At the same time the geometric albedo could be high at \(\approx 0.08 \), implying a corresponding reduction in \(R \). This then predicts \(3 \times 10^{10} \leq \tau_D \leq 3 \times 10^{11} \) years.

Full Acknowledgements W.F., A.F., and M.T.B. acknowledge support from STFC grant ST/P0003094/1, and M.T.B. also from STFC grant ST/L000709/1. The work by P.P. was supported by the Grant Agency of the Czech Republic, Grant 17-00774S. C.S. is supported by a STFC Ernest Rutherford
fellowship.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to W. C. Fraser. (email: wes.fraser@qub.ac.uk).
Note to editor: a csv format table of photometry corrected for geometry, light travel time, and colour will accompany the final submission. Also note the caption describing the table will be stated in a supplemental pdf.
Figure 1 The geometry-reduced and colour-corrected r'-band photometry of 1I/Oumuamua cannot be well described by a model of simple rotation; the dashed line depicts the best nominal period of 6.831 hours. The tumbling model lightcurve (solid line), however, is an adequate representation (see Methods for comments on the quality of the model fit to the lightcurve minima). Data sources\cite{1,4,5,7} are indicated by common symbols and the first letter of their lead-author name.

Figure 2 Photometry of 1I/Oumuamua from night 1 (MJD 58051; red) phased to night 2 (MJD 58052; black). Spectral slopes reported over this time argue for a body that is mainly a neutral reflector, with a red region.