PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS

Published in:
Journal of Medical Genetics

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 The Authors.
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
ORIGINAL ARTICLE

PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS

Cancer genetics

OPEN ACCESS

Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/jmedgenet-2016-103839).

For numbered affiliations see end of article.

Correspondence to Professor Melissa C. Southey, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Victoria 3010, Australia; msouthey@unimelb.edu.au

Received 29 March 2016

Revised 1 June 2016

Accepted 21 June 2016

Published Online First 5 September 2016

Cancer genetics

CrossMark

Breast cancer risk (42 671 cases and 42 164 controls), as well as c.1343T>G and c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and CHEK2 and PALB2. We genotyped 10 rare mutations using the custom iCOGS array: PALB2 and CHEK2 and ATM.

Background The rarity of mutations in BRCA2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study.

Methods We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 14 580 controls) cancer risk, for each variant.

Results For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1343T>G OR 11.0 (95% CI 5.49 to 22.5), c.3113G>A OR 4.21 (95% CI 1.91 to 9.25), c.7271T>G OR 11.0 (95% CI 5.49 to 22.5), c.1343T>G OR 3.03 (95% CI 1.80 to 5.08), c.349A>G OR 2.26 (95% CI 1.53 to 3.30), c.538C>T OR 1.33 (95% CI 1.05 to 1.67), c.715G>A OR 1.33 (95% CI 1.05 to 1.67), c.1312G>T OR 2.21 (95% CI 1.06 to 4.63) and c.1343T>G OR 3.03 (95% CI 1.80 to 5.08) for African men and c.7271T>G OR 11.0 (95% CI 5.49 to 22.5), c.3113G>A OR 4.21 (95% CI 1.91 to 9.25), c.7271T>G OR 11.0 (95% CI 5.49 to 22.5), c.1343T>G OR 3.03 (95% CI 1.80 to 5.08), c.349A>G OR 2.26 (95% CI 1.53 to 3.30), c.538C>T OR 1.33 (95% CI 1.05 to 1.67), c.715G>A OR 1.33 (95% CI 1.05 to 1.67), c.1312G>T OR 2.21 (95% CI 1.06 to 4.63), p=0.0097) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63), p=0.030) for European women.
Cancer genetics

men. No evidence of association with ovarian cancer was found for any of these variants.

Conclusions This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.

INTRODUCTION

The rapid introduction of massive parallel sequencing (MPS) into clinical genetics services is enabling the screening of multiple breast cancer susceptibility genes in one assay at reduced cost for women who are at increased risk of breast (and other) cancer. These gene panels now typically include the so-called ‘moderate-risk’ breast cancer susceptibility genes, including PALB2, CHEK2 and ATM. However, mutations in these genes are individually extremely rare and limited data are available with which to accurately estimate the risk of cancer associated with them.

Estimation of the age-specific cumulative risk (penetrance) of breast cancer associated with specific mutations in these three genes has been limited to those that have been observed more frequently, such as PALB2 c.1592delT (a Finnish founder mutation), PALB2 c.3113G>A and ATM c.7271T>G. These mutations have been estimated to be associated with a 40% (95% CI 17% to 77%), 91% (95% CI 44% to 100%) and 52% (95% CI 28% to 80%) cumulative risk of breast cancer to the age of 70 years, respectively. These findings, based on segregation analyses in families of population-based case series, indicate that at least some mutations in these ‘moderate-risk’ genes are associated with a breast cancer risk comparable to that of the average pathogenic mutation in BRCA2: 45% (95% CI 31% to 56%). However, such estimates are imprecise and, moreover, may be confounded by modifying genetic variants or other familial risk factors.

Case-control studies provide an alternative approach to estimating cancer risks associated with specific variants. This design can estimate the relative risk directly, without making assumptions about the modifying effects of other risk factors. However, because these variants are rare, such studies need to be extremely large to provide precise estimates.

The clearest evidence for association, and the most precise breast cancer risk estimates, for rare variants in PALB2, CHEK2 and ATM relate to protein truncating and splice-junction variants. However, studies based on mutation screening in case-control studies, combined with stratification of variants by their evolutionary likelihood suggest that at least some evolutionarily unlikely missense substitutions are associated with a similar risk to those conferred by truncating mutations. For example, Tavtigian et al. estimated an OR of 2.85 (95% CI 0.83 to 8.86) for evolutionarily unlikely missense substitutions in the 3’ third of ATM, which is comparable to that for truncating variants. Specifically, ATM c.7271C>G has been associated with a more substantial breast cancer risk in several studies. Le Calvez-Kelm et al. estimated that the ORs associated with rare mutations in CHEK2 from similarly designed studies were 6.18 (95% CI 1.76 to 21.8) for rare protein-truncating and splice-junction variants and 8.75 (95% CI 1.06 to 72.2) for evolutionarily unlikely missense substitutions.

It is plausible that monoallelic mutations in PALB2, CHEK2 and ATM could be associated with increased risk of cancers other than breast cancer, as has been observed for BRCA1 and BRCA2 and both ovarian and prostate cancers. However, with the exception of pancreatic cancer in PALB2 carriers, there is little evidence to support or refute the existence of such associations, although a few individually striking pedigrees have been observed.

In this study we selected rare genetic variants on the basis that they had been observed in breast cancer candidate gene case-control screening projects involving PALB2, CHEK2 or ATM. These included three rare variants in PALB2: the protein truncating variants c.1592delT (p.Leu531Cysfs) and c.3113 G>A (p.Trp1038*) and the missense variant c.2816T>G (p. Leu939Trp), six rare missense variants in CHEK2: c.349A>G (p.Arg117Gly) and c.1036C>T (p.Arg346Cys) predicted to be deleterious on the basis of evolutionary conservation, c.538C>T (p.Arg180Cys), c.715G>A (p.Glu239Lys), c.1312G>T (p.Asp438Tyr) and c.1343T>G (p.Ile448Ser) and ATM c.7271T>G (p.Val2424Gly). We assessed the association of these variants with breast, ovarian and prostate risk by case-control analyses in three large consortia participating in the Collaborative Oncological Gene-environment Study.

METHODS

Participants

Participants were drawn from studies participating in three consortia as follows:

The Breast Cancer Association Consortium (BCAC), involving a total of 48 studies: 37 of women from populations with predominantly European ancestry (42 671 cases and 42 164 controls), 9 of Asian women (5795 cases and 6624 controls) and 2 of African-American women (1046 cases and 932 controls). All cases had invasive breast cancer. The majority of studies were population-based or hospital-based case-control studies, but some studies of European women oversampled cases with a family history or with bilateral disease (see online supplementary table S1). Overall, 79% of BCAC cases with known Estrogen Receptor (ER) status (23% missing) are ER-positive. The proportion of cases selected by family history that are ER-positive is 78% (38% missing).

The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) involving a total of 26 studies: 25 included men with European ancestry (22 301 cases and 22 320 controls) and 3 included African-American men (623 cases and 569 controls). The majority of studies were population-based or hospital-based case-control studies (see online supplementary table S2).

The Ovarian Cancer Association Consortium (OCAC), involving a total of 46 studies. Some studies were case-only and their data were combined with case-control studies from the same geographical region (leaving 36 study groupings). Of these groupings, 33 included women from populations with predominantly European ancestry (16 287 cases (14 542 with invasive disease) and 23 491 controls), 25 included Asian women (813 cases (720 with invasive disease) and 1574 controls), 17 included African-American women (186 cases (150 with invasive disease) and 1574 controls) and 29 included women of other ethnic origin (893 cases (709 with invasive disease) and 864 controls). The majority of studies were population-based or hospital-based case-control studies (see online supplementary table S3).

Details regarding sample quality control have been published previously. All study participants gave informed consent and all studies were approved by the corresponding local ethics committees (see online supplementary tables S1–S3).

Genotyping

Three \(\text{PALB2}\) variants c.2323C>T (p.Gln775*), c.3116delA (p.Asn1039Ilefs) and c.3549C>G (p.Tyr1183*) were unable to be designed for measurement on the custom Illumina iSelect genotyping array and were not considered further (table 1). Genotyping was conducted using a custom Illumina Infinium array in four centres, as part of a multiconsortia collaboration to estimate ORs for carriers versus non-carriers, adjusting for cancer risk was assessed using unconditional logistic regression. The association of each variant with breast, prostate and ovarian cancer risk sets was included in a plate of control DNAs that was generated from the rare variant probes, manually confirmed with reference to the positive control sample. Two per cent of samples were provided in duplicate by all studies and 270 HapMap2 samples were genotyped in all four genotyping centres. Subjects with an overall call rate <95% were excluded. Plates with call rates <90% were excluded on a variant-by-variant basis. Cluster plots generated for all of the 10 rare variants were manually checked to confirm automated calls (see online supplementary figure S1).

Statistical methods

The association of each variant with breast, prostate and ovarian cancer risk was assessed using unconditional logistic regression to estimate ORs for carriers versus non-carriers, adjusting for study (categorical). \(p\) Values were determined by the likelihood ratio test comparing models with and without carrier status as a covariate. We also applied conditional logistic regression, defining risk sets by study, and found that this made no difference to the OR estimates, \(CI\) or \(p\) values to two significant figures; since model convergence was a problem for this latter regression analysis, all subsequent analyses were based on unconditional logistic regression. For the main analyses of breast cancer risk in European women, we also included as covariates the first six principal components, together with a seventh component specific to one study (Leuven Multidisciplinary Breast Centre (LMBC)) for which there was substantial inflation not accounted for by the components derived from the analysis of all studies. Addition of further principal components did not reduce inflation further.

RESULTS

\(\text{PALB2}\)

In BCAC, \(\text{PALB2}\) c.1592delT (Leu531Cysfs) was only observed in 35 cases and 6 controls, all from four studies from Sweden and Finland (Helsinki Breast Cancer Study (HEBCS), Kuopio Breast Cancer Project (KBCP), Oulu Breast Cancer Study (OBCS) and Karolinska Mammography Project for Risk Prediction Breast Cancer (pKARMA); see online supplementary table S1).

Table 1 Rare genetic variants included in the iCOGS array.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Variant*</th>
<th>Amino acid*</th>
<th>dbSNP rs</th>
<th>OR (95% CI)</th>
<th>Penetrance† (95% CI)</th>
<th>Align-GVGD</th>
<th>Reference(s)</th>
<th>Designed†</th>
<th>Genotyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PALB2})</td>
<td>c.1592delT</td>
<td>p.Leu531Cysfs</td>
<td>rs180177102</td>
<td>3.94 (1.5-12.1)$</td>
<td>40% (17-77)</td>
<td>na</td>
<td>4, 5, 10</td>
<td>Yes Yes</td>
<td></td>
</tr>
<tr>
<td>c.2323C>T</td>
<td>p.Gln775*</td>
<td>rs180177111</td>
<td>na</td>
<td>25, 26</td>
<td>No No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.2816T>G</td>
<td>p.Leu939Trp</td>
<td>rs45478192</td>
<td>C55</td>
<td>20</td>
<td>Yes Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.3113G>A</td>
<td>p.Trp1038*</td>
<td>rs180177132</td>
<td>95% (44-100)</td>
<td>na</td>
<td>2, 6, 20</td>
<td>Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.3116delA</td>
<td>p.Asn1039Ilefs</td>
<td>rs180177133</td>
<td>na</td>
<td>2 No No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.3549C>G</td>
<td>p.Tyr1183*</td>
<td>rs180177102</td>
<td>na</td>
<td>2 No No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CHEK2})</td>
<td>c.349A>G</td>
<td>p.Arg117Gly</td>
<td>rs28909982</td>
<td>8.75 (1.06-72.2)**</td>
<td>C65</td>
<td>11</td>
<td>Yes Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.538C>T</td>
<td>p.Arg180Cys</td>
<td>rs77130927</td>
<td>2.47 (0.45-13.49)**</td>
<td>C65</td>
<td>11</td>
<td>Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.715G>A</td>
<td>p.Glu239Lys</td>
<td>rs121908702</td>
<td>1.82 (0.62-5.34)$</td>
<td>C65</td>
<td>11</td>
<td>Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1036C>T</td>
<td>p.Arg346Cys</td>
<td>rs180177132</td>
<td>8.75 (1.06-72.2)**</td>
<td>C65</td>
<td>11</td>
<td>Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1312G>T</td>
<td>p.Asp438Tyr</td>
<td>rs180177132</td>
<td>2.47 (0.45-13.49)**</td>
<td>C65</td>
<td>11</td>
<td>Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1343T>G</td>
<td>p.Ile448Ser</td>
<td>rs17886163</td>
<td>1.82 (0.62-5.34)$</td>
<td>C65</td>
<td>11</td>
<td>Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{ATM})</td>
<td>c.7271T>G</td>
<td>p.Val2424Gly</td>
<td>rs28909421</td>
<td>52% (28–80)</td>
<td>C65</td>
<td>7, 13, 23, 27</td>
<td>Yes Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Human Genome Variation Society (HGVS); reference sequences \(\text{PALB2}\), NM_024675.3, NP_078951.2; \(\text{CHEK2}\), NM_007194.3, NP_009125.1; \(\text{ATM}\), NM_000051.3, NP_000042.3.

†Age-specific cumulative risk of breast cancer to age 70 years.\(^{7}\)

‡Able to be designed for measurement on the custom Illumina iSelect genotyping array.\(^{21,22}\)

§Breast cancer cases unselected for family history of breast cancer.\(^{7}\)

¶OR estimated in a combined group of C65 CHEK2 variants.\(^{11}\)

||**OR estimated in a combined group of C25 CHEK2 variants.\(^{11}\)**

‡‡OR estimated in a combined group of C15 CHEK2 variants.\(^{11}\)

††OR estimated in a combined group of C45 CHEK2 variants.\(^{11}\)

na, not available.
Table 2: Summary results from Breast Cancer Association Consortium studies of white Europeans (42,671 invasive breast cancer cases and 42,164 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency* Controls</th>
<th>Frequency* Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
<th>OR† (95% CI)</th>
<th>LRT p Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1592delT (p.Leu531Cysfs)</td>
<td>0.00014</td>
<td>0.00082</td>
<td>4.52 (1.90 to 10.8)</td>
<td>7.1×10⁻⁸</td>
<td>3.44 (1.39 to 8.52)</td>
<td>0.003</td>
</tr>
<tr>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00342</td>
<td>0.00352</td>
<td>1.05 (0.83 to 1.32)</td>
<td>0.70</td>
<td>1.03 (0.80 to 1.32)</td>
<td>0.82</td>
</tr>
<tr>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00219</td>
<td>0.00101</td>
<td>5.93 (2.77 to 12.7)</td>
<td>6.9×10⁻⁸</td>
<td>4.21 (1.84 to 9.60)</td>
<td>1.2×10⁻⁴</td>
</tr>
<tr>
<td>CHEK2‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00043</td>
<td>0.00103</td>
<td>2.26 (1.29 to 3.95)</td>
<td>0.003</td>
<td>2.03 (1.10 to 3.73)</td>
<td>0.020</td>
</tr>
<tr>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00337</td>
<td>0.00370</td>
<td>1.33 (1.05 to 1.67)</td>
<td>0.016</td>
<td>1.34 (1.06 to 1.70)</td>
<td>0.015</td>
</tr>
<tr>
<td>c.715G>A (p.Glu239lys)</td>
<td>0.00021</td>
<td>0.00035</td>
<td>1.70 (0.73 to 3.93)</td>
<td>0.210</td>
<td>1.47 (0.60 to 3.64)</td>
<td>0.40</td>
</tr>
<tr>
<td>c.1036C>T (p.Arg343Gly)</td>
<td>0.00005</td>
<td>0.00021</td>
<td>5.06 (1.09 to 23.5)</td>
<td>0.017</td>
<td>3.39 (0.68 to 16.9)</td>
<td>0.11</td>
</tr>
<tr>
<td>c.1312G>T (p.Asp438Tyr)</td>
<td>0.00078</td>
<td>0.00082</td>
<td>1.03 (0.62 to 1.71)</td>
<td>0.910</td>
<td>0.87 (0.49 to 1.52)</td>
<td>0.62</td>
</tr>
<tr>
<td>c.1343T>G (p.Ile448Ser)†</td>
<td>0.00002</td>
<td>0 –</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ATM†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.7217T>G (p.Val2424Gly)</td>
<td>0.00002</td>
<td>0.00028</td>
<td>11.6 (1.50 to 89.9)</td>
<td>0.0012</td>
<td>11.0 (1.42 to 85.7)</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

*Proportion of subjects carrying the variant.
†Excluding women from five studies that selected all cases based on family history or bilateral disease and the subset of selected cases from other studies (based on 34,488 unselected cases and 34,059 controls).
‡CHEK2 c.1343T>G (p.Ile448Ser) was only observed in one control and no cases of white European origin.
§PALB2 c.3113G>A (p.Trp1038*) only observed in Finland and Sweden.
LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.

Table 3: Summary results from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome studies for white European men* (22,301 prostate cancer cases and 22,320 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency† Controls</th>
<th>Frequency† Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1592delT (p.Leu531Cysfs)</td>
<td>0.00021</td>
<td>0.00031</td>
<td>2.06 (0.59 to 7.11)</td>
<td>0.24</td>
</tr>
<tr>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00045</td>
<td>0.00090</td>
<td>0.95 (0.69 to 1.29)</td>
<td>0.73</td>
</tr>
<tr>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00004</td>
<td>0.00017</td>
<td>0.49 (0.18 to 1.36)</td>
<td>0.16</td>
</tr>
<tr>
<td>CHEK2‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00063</td>
<td>0.00081</td>
<td>1.46 (0.71 to 3.02)</td>
<td>0.30</td>
</tr>
<tr>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00034</td>
<td>0.00029</td>
<td>1.0 (0.73 to 1.44)</td>
<td>0.90</td>
</tr>
<tr>
<td>c.715G>A (p.Glu239lys)</td>
<td>0.00018</td>
<td>0.00027</td>
<td>1.47 (0.41 to 5.35)</td>
<td>0.55</td>
</tr>
<tr>
<td>c.1036C>T (p.Arg343Gly)</td>
<td>0.00018</td>
<td>0.00022</td>
<td>1.07 (0.28 to 4.07)</td>
<td>0.93</td>
</tr>
<tr>
<td>c.1312G>T (p.Asp438Tyr)</td>
<td>0.00049</td>
<td>0.00013</td>
<td>2.21 (1.06 to 4.63)</td>
<td>0.03</td>
</tr>
<tr>
<td>c.1343T>G (p.Ile448Ser)</td>
<td>0.00005</td>
<td>0.00009</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>c.1343T>G (Africans§)</td>
<td>0.019</td>
<td>0.057</td>
<td>3.03 (1.53 to 6.03)</td>
<td>0.0019</td>
</tr>
<tr>
<td>ATM†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.7217T>G (p.Val2424Gly)</td>
<td>0.00004</td>
<td>0.00027</td>
<td>4.37 (0.52 to 36.4)</td>
<td>0.17</td>
</tr>
</tbody>
</table>

*For white European men, unless otherwise indicated.
†Proportion of subjects carrying the variant.
‡CHEK2 c.1343T>G (p.Ile448Ser) was the only CHEK2 variant observed in African men and was identified in two cases and no controls of white European origin.
§Based on data from 623 and 569 African-American cases and controls, respectively.
LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.

Table S1), giving strong evidence of association with breast cancer risk (p=7.1×10⁻⁸); the OR estimate was 4.32 (95% CI 1.90 to 10.8) based on all studies and 3.44 (95% CI 1.39 to 8.52) based on unselected cases and controls (table 2). We also found evidence of heterogeneity by ER status (p=0.0023), the association being stronger for ER-negative disease (OR 6.49 (95% CI 2.17 to 19.4) versus 2.24 (95% CI 1.05 to 7.24) for ER-positive disease).

PALB2 c.3113G>A (p.Trp1038*) was identified in 44 cases and 8 controls from nine BCAC studies. Only one carrier of the variant was of non-European origin. Strong evidence of association with breast cancer risk was observed (p=6.9×10⁻⁸), with an estimated OR of 5.93 (95% CI 2.77 to 12.7) based on all studies and 4.21 (95% CI 1.85 to 9.61) based on unselected cases and controls. There was no evidence of a differential association by ER status (p=0.15).

Based on unselected cases, the estimated OR associated with carrying either of these PALB2 variants (c.1592delT or c.3113G>A) was 3.85 (95% CI 2.09 to 7.09). PALB2 c.2816T>G (p.Leu939Trp) was identified in 150 cases and 145 controls and there was no evidence of association with risk of breast cancer. There was no evidence of association with risk of prostate or ovarian cancer for any of the three PALB2 variants (see tables 3 and 4).
CHEK2
c.349A>G (p.Arg117Gly) was identified in 44 cases and 18 controls in studies participating in BCAC; all of these women were of European origin. We found evidence of association with breast cancer (p=0.003), with little change in the OR after excluding selected cases (OR 2.03 (95% CI 1.10 to 3.73)).

CHEK2 c.538C>T (p.Arg180Cys) was identified in 158 breast cancer cases and 142 controls in studies of white Europeans. Evidence of association with breast cancer risk (p=0.016) was observed, with an unbiased OR estimate of 1.34 (95% CI 1.06 to 1.70). A consistent OR estimate was observed for Asian women, based on 45 case and 45 control carriers (OR 1.16 (95% CI 0.75 to 1.76)).

CHEK2 c.715G>A (p.Glu239Lys) mutations were identified in 15 cases and 9 controls, all European women participating in BCAC and no evidence of association with risk of breast cancer was observed (p=0.21).

CHEK2 c.1036C>T (p.Arg346Cys) was identified in nine cases from seven studies and two controls from two different studies in BCAC (neither control carrier was from a study that had case carriers), all of European origin. We found evidence of association with breast cancer risk (p=0.017) with reduced OR estimate of 3.39 (95% CI 0.68 to 16.9) after excluding selected cases.

None of the above four CHEK2 variants (CHEK2 c.349A>G (p.Arg117Gly); c.538C>T (p.Arg180Cys); c.715G>A (p.Glu239Lys) and c.1036C>T (p.Arg346Cys)) were consistent with each other and with estimates based on segregation analysis. We found no evidence of association with breast cancer for PALB2 c.3113G<A (p.Trp1038*), with p=0.0034). There was no evidence that these CHEK2 variants were associated with risk of ovarian cancer (table 4).

ATM
ATM c.7271T>G (p.Val2424Gly) was identified in 12 cases and 1 control in studies participating in BCAC, all of European origin, giving evidence of association with breast cancer risk (p=0.0012). The OR estimate based on unselected studies was 11.0 (95% CI 1.42 to 85.7). There was no evidence of association of this variant with prostate or ovarian cancer risk (see tables 3 and 4).

DISCUSSION
The present report adds to an accumulating body of evidence that at least some rare variants in so-called ‘moderate-risk’ genes are associated with an increased risk of breast cancer that is of clinical relevance.

These findings are presented at a time when detailed information about variants in these genes is becoming more readily available via the translation of diagnostic genetic testing from Sanger sequencing-based testing platforms to MPS platforms that test panels of genes in single assays. The vast majority of information about PALB2, CHEK2 and ATM, variants generated from these new testing platforms is not being used in clinical genetics services due to lack of reliable estimates of the cancer risk associated with individual variants, or groups of variants, in each gene. Previous analyses have been largely based on selected families, relying on data on the segregation of the variant. The present study is far by the largest to take a case-control approach. Consistent with previous reports,5 6 9 11–13 PALB2 c.3113G>A (p.Trp1038*), PALB2 c.1592delT (p.Leu531Cyfs) and ATM c.7271T>G (p.Val2424Gly) were found to be associated with substantially increased risk of breast cancer all with associated relative risk estimates of 3.44 or greater.

The estimates for the two loss-of-function PALB2 variants (c.1592delT and c.3113G<A) were consistent with each other and with estimates based on segregation analysis.5 6 9 We found no evidence of association with breast cancer for PALB2 c.2816T>G (p.Leu939Trp), with an upper 95% confidence limit excluding an OR >1.5 which is notable given the

Table 4 Summary results from the Ovarian Cancer Association Consortium studies for white European women (14 542 invasive ovarian cancer cases and 23 491 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency* Controls</th>
<th>Frequency* Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1592delT (p.Leu531Cyfs)</td>
<td>0.00004</td>
<td>0.00012</td>
<td>2.50 (0.21 to 29.1)</td>
<td>0.45</td>
</tr>
<tr>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00413</td>
<td>0.00399</td>
<td>0.96 (0.69 to 1.34)</td>
<td>0.81</td>
</tr>
<tr>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00034</td>
<td>0.00031</td>
<td>1.34 (0.36 to 4.97)</td>
<td>0.66</td>
</tr>
<tr>
<td>CHEK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00038</td>
<td>0.00031</td>
<td>1.07 (0.32 to 3.60)</td>
<td>0.92</td>
</tr>
<tr>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00128</td>
<td>0.00160</td>
<td>1.49 (0.83 to 2.67)</td>
<td>0.18</td>
</tr>
<tr>
<td>c.715G>A (p.Glu239Lys)</td>
<td>0.00021</td>
<td>0.00037</td>
<td>1.47 (0.42 to 5.22)</td>
<td>0.54</td>
</tr>
<tr>
<td>c.1036C>T (p.Arg346Cys)</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>c.1312G>T (p.Asp438Tyr)</td>
<td>0.00081</td>
<td>0.00074</td>
<td>0.92 (0.42 to 1.99)</td>
<td>0.83</td>
</tr>
<tr>
<td>c.1343T>G (p.Ile448Ser)</td>
<td>0.00009</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ATM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.7271T>G (p.Val2424Gly)</td>
<td>0</td>
<td>0.00012</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Proportion of subjects carrying the variant.
†c.1036C>T (p.Arg346Cys) was not observed in any sample.

LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.

© 2018 BMJ Publishing Group Ltd. All rights reserved. For permission to reuse any of this content visit http://group.bmj.com/group/rights-licensing/permission.

Downloaded from http://jmg.bmj.com/ on March 13, 2018 - Published by group.bmj.com
Align-Grantham Variation Granthan Deviation (Align-GVGD) score and the observed impact on protein function.30

The estimate for \textit{ATM} c.7271T>G (p.Val2424Gly) was also consistent with that found by segregation analysis.7, 13 The substantial increased risk of breast cancer associated with \textit{ATM} c.7271T>G (p.Val2424Gly) could be due to the reduction in kinase activity (with near-normal protein levels) observed for \textit{ATM} p.Val2424Gly,13 thus this variant is likely to be acting as a dominant negative mutation.32

In contrast, we found no evidence of an association with risk of prostate or ovarian cancer with any of these three variants: however, the confidence limits were wide; based on the upper 95\% confidence limit we could exclude an OR of >1.4 for prostate cancer for the loss-of-function \textit{PALB2} c.3113G>A and 1.9 for c.1592delT and c.3113G>A combined.

We analysed six rare missense variants in \textit{CHEK2}. Two of these (\textit{CHEK2} c.349A>G (p.Arg117Gly; rs28909982) and c.1036C>T (p.Arg346Cys)) had evidence of a significant impact on the protein based on in silico prediction. We proposed these variants for inclusion in the iCOGS design as they had been identified in 3/1242 cases and 1/1089 controls and 3/1242 cases and 0/1089 controls, respectively, in a population-based case-control mutation screening study of \textit{CHEK2}.11 In that study, Le Calvez-Kelm \textit{et al}, estimated an OR of 8.75 (95\% CI 1.06 to 72.2) for variants with an Align-GVGD score C65 (based on nine cases and one control). The current analysis provides confirmatory evidence of this association in a much larger sample (OR 2.18 (95\% CI 1.23 to 3.85)) including 40 unselected case and 18 control carriers. The evidence that \textit{CHEK2} is a breast cancer susceptibility gene is largely based on studies of protein truncating variants, in particular \textit{CHEK2} 1100delC.33 Reports of the association of the missense variant I157T, (C15) and breast cancer risk have been conflicting but a large meta-analysis involving 15 985 breast cancer cases and 18 609 controls estimated a modest OR of 1.58 (95\% CI 1.42 to 1.78).14 We also found evidence (p=0.015) of an association for c.538C>T (Align-GVGD C25); OR 1.34 (95\% CI 1.06 to 1.70), a risk comparable to I157T.

The p values reported above have not been adjusted for multiple testing. This was not considered appropriate for the associations with breast cancer risk of \textit{PALB2} c.1592delT, c.3113G>A and \textit{ATM} c.7271T>G because these associations had previously been reported; our aim was to more precisely estimate the associated relative risks. All three associations with breast cancer risk reported for \textit{CHEK2} variants remained statistically significant after adjusting for the other tests conducted in relation to breast cancer risk, but not after correcting for all tests for all cancers. Nevertheless, the findings for \textit{CHEK2} c.349A>G and c.1036C>T confirmed those reported previously, although collectively. The association observed with \textit{CHEK2} c.538C>T requires independent replication.

Do this approach and new data have an impact on clinical recommendations for women and families carrying these rare genetic variants? Although age-specific cumulative risks for cancer are more informative for genetic counselling and clinical management of carriers, our study provides information that is relevant to clinical recommendations. As discussed in Easton \textit{et al},15 a relative risk of 4 would place a woman in a ‘high-risk’ category (in the absence of any other risk factor) and a relative risk between 2 and 4 would place a woman in this category if other risk factors are present. Thus, several of the variants included in this report (\textit{PALB2} c.1592delT; c.3113G>A \textit{ATM} c.7271T>G) would place the carrier in a high-risk group, especially if other risk factors, such as a family history, are present. The high level of breast cancer risk associated with \textit{PALB2} c.1592delT and c.3113G>A reported here is consistent with the penetrance estimate reported for a group of loss-of-function mutations in \textit{PALB2}29 and has an advantage in terms of clinical utility that the estimates in this study have been made at a mutation-specific level. Therefore, this work provides important information for risk reduction recommendations (such as prophylactic mastectomy and potentially salpingo-oophorectomy) for carriers of these variants. However, further prospective research is required to characterise these risks and to understand the potential of other risk-reducing strategies such as salpingo-oophorectomy and chemoprevention.

The consistency of the relative risk estimates with those derived through family based studies supports the hypothesis that these variants combine multiplicatively with other genetic loci and familial risk factors; this information is critical for deriving comprehensive risk models. Even with very large sample sizes such as those studied here, however, it is still only possible to derive individual risk estimates for a limited set of variants, and even for these variants the estimates are still imprecise. This internationally collaborative approach also has limited capacity to improve risk estimates for rare variants that are only observed in specific populations. Inevitably, therefore, risk models will depend on combining data across multiple variants, using improved in silico predictions and potentially biochemical/functional evidence to synthesise these estimates efficiently. It will also be necessary develop counselling and patient management strategies that can accommodate a multifactorial approach to variant classification.
Cancer genetics

111Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
112Roswell Park Cancer Institute, Buffalo, New York, USA
113Molecular Diagnostics Laboratory, IRPP, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Athens, Greece
114Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
115Division of Breast Cancer Research, Institute of Cancer Research, London, UK
116Centre d’innovation Genome Quebec et University McGill Montreal Quebec, Canada
117McGill University, Montreal, Quebec, Canada
118Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Quebec Research Center, Laval University, Quebec, Canada
119The Institute of Cancer Research, London, SM2 5NG, UK
120Royal Mard Ges NV Foundation Trust, Fulham, London, SW3 6LJ, UK
121University of Warwick, Coventry, UK
122Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
123Department of Medical Biochemistry and Genetics, University of Turku, and Tyks Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
124Institute of Biomedical TechnologyBioMediTech, University of Tampere, Tampere, Finland
125Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
126Department of Human Genetics University of Utah, Salt Lake City, UT, USA and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
127Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
128Surgical Oncology (Un-Oncology): S4, University of Cambridge, Box 279, Addenbrooke’s Hospital, Hills Road, Cambridge, UK and Cancer Research UK Cambridge Research Institute, U K Shing Centre, Cambridge, UK
129Professor of Social Medicine, University of Bristol, Cambyle Hall, 39 Whately Road, Bristol BS8 2PS
130Nuffield Department of Surgical Sciences, Old Road Campus Research Building (off Roosevelt Drive), University of Oxford, Headington, Oxford, OX3 7DQ
131Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 2SR, UK
132Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
133Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
134International Epidemiology Institute, 1455 Research Blvd., Suite 550, Rockville, MD 20850
135Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
136Department of Urology, University Hospital Ulm, Germany
137Institute of Human Genetics University Hospital Ulm, Germany
138Brigham and Women’s Hospital/Dana-Farber Cancer Institute, 45 Francis Street-ASB II-2, Boston, MA 02115
139Washington University, St Louis, Missouri
140International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
141Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine
142Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, Florida, USA
143Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University – Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
144Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and Schools of Life Science and Public Health, Queensland University of Technology, Brisbane, Australia
145Department of Genetics, Portuguese Oncology Institute, Porto, Portugal and Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
146University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
147University Hospital Erlangen, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, German
148Vesalius Research Center, VIB, Leuven, Belgium
149Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Belgium
150Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
151Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
152Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
153Department of Epidemiology, University of Washington, Seattle, WA, USA
154German Cancer Research Center, Division of Cancer Epidemiology, Heidelberg, Germany
155Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
156Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY
157Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
158Department of Pathology, Kapiolani Medical Center for Women and Children, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, USA
159Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
160Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
161Department of Gynecology and Obstetrics, Friedrich Schiller University, Jena University Hospital, Jena, Germany
162Clinics of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
163Department of Pathology, Helsinki University Central Hospital, Helsinki, 00029 HUS, Finland
164University of Pittsburgh Department of Obstetrics, Gynecology and Reproductive Sciences and Ovarian Cancer Center of Excellence Pittsburgh PA USA
165University of Pittsburgh Department of Epidemiology, University of Pittsburgh Graduate School of Public Health and Womens Cancer Research Program, Magee- Womens Research Institute and University of Pittsburgh Cancer Institute Pittsburgh PA USA
166The University of Texas School of Public Health, Houston, TX, USA
167Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
168Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/ Evang., Huysens-Stiftung/ Knapschaft GmbH, Essen, Germany
169Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt-Kliniken Wiesbaden, Wiesbaden, Germany
170Tuebingen University Hospital, Department of Women’s Health, Tuebingen, Germany
171Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
172Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
173Department of Gynecologic and Obstetric Oncology, Oncology Division, Weill Cornell Medical College, New York, NY, USA
174International Hereditary Cancer Center, Department of Genetics and Pathology, Roswell Park Cancer Institute, Buffalo, NY
175Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
176Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
177Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
178Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
179Department of Statistical Science, Duke University, Durham, North Carolina, USA
180Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
181Cancer Prevention, Detection & Control Research Program, Duke Cancer Institute, Durham, North Carolina, USA
182Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
183Hamming Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School
184Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
185Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ, USA
186Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
187Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
188Centre for Cancer Biomarkers, Department of Clinical Sciences, University of Bergen, Bergen, Norway

Downloaded from http://jmg.bmj.com/ on March 13, 2018 - Published by group.bmj.com
Acknowledgements The authors thank the following for their contributions to this study: Qin Wang (BCAC), Leslie McGuffog, and Ken Olfitt (CIMBA), Andrew Lee, and Ed Dicks and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie Laboisse and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, staff of the Copenhagen DNA laboratory, and Sharon A Windebank, Christopher A Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility. The authors also thank the following for their support to The Institute of Cancer Genetics, Pomeranian Medical University, Szczecin, Poland.

Department of Gynecology and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland.

Gyn Clinic, Rigshospitalet, University of Copenhagen, Denmark.

Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark.

Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA.

Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada.

International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.

Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland.

Gyn Clinic, Rigshospitalet, University of Copenhagen, Denmark.

Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark.

Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA.

Department of Oncology, University of Copenhagen, Denmark.

Department of OncoLogy, University of Cambridge, Stavanger Research Laboratory, Cambridge, UK.

Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia.

Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Beatson Institute for Cancer Research, Glasgow, UK.

The Cancer Research UK Clinical Trials Unit, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow, G12 0YN.

Department of Gynaecological Oncology, Glasgow Royal Infirmary.

Department of Health Research and Policy - Epidemiology, Stanford University.

School of Medicine, Stanford CA, USA.

Epidemiology Center, College of Medicine, University of South Florida, Tampa, Florida, USA.

Public Health Ontario, Toronto, Canada.

Women’s College Research Institute, University of Toronto, Toronto, Ontario, Canada.

Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.

Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA.

Women’s Cancer, Institute for Women’s Health, UCL, London, United Kingdom.

Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA.

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.

Department of Pathology and Laboratory Diagnostics, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.

Department of Medicine, The University of Melbourne, Australia.

The Royal Melbourne Hospital, Victoria 3050, Australia.

Cancer Epidemiology Centre, Cancer Council Victoria, Victoria, Australia.

References

Cancer genetics

PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS