Tethering of Pentamethylcyclopentadienyl and N-Heterocycle Stabilized Carbene Ligands by Intramolecular 1,4-Addition to a Polyfluorophenyl Substituent


Published in:
Organometallics

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 American Chemical Society. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 04. Aug. 2019
Tethering of Pentamethylcyclopentadienyl and N-Heterocycle Stabilized Carbene Ligands by Intramolecular 1,4-Addition to a Polyfluorophenyl Substituent

Hayden P. Thomas, † Andrew C. Marr, ‡ Patrick J. Morgan ‡ and Graham C. Saunders * †

† School of Science, University of Waikato, Hamilton 3240, New Zealand.
‡ School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Belfast BT9 5AG, United Kingdom.

Supporting Information Placeholder

ABSTRACT: On treatment with silver(I) oxide the complex [Cp*RhCl₂[(κ₂-MeNC₆H₄CH₂NC₆F₅P)-PR₂]] undergoes 1,4-addition of rhodium and methylene to the polyfluoraryl ring, which loses aromativity, affording [([κ₅]C₅Me₄CH₂C₆F₄NMe)RhCl].

Metal complexes of chelating tethered τ₅-cyclopentadienyl-NHC ligands are desirable as catalysts for a number of reactions because of their greater stability, activity and regio- and stereo-selectivity compared to complexes of the untethered ligands. Except for two examples of intermolecular functionalization of metal-bound τ₅-cyclopentadienyl ligands, the route to these complexes involves the synthesis of the uncoordinated tethered ligand and subsequent coordination to the metal. Although a number of complexes of similar τ₅-cyclopentadienyl-NHC ligands have been prepared by this route, it is an inconvenient strategy if the synthesis of the desired ligands involves multiple steps, has a low overall yield, and coordination to the metal is compromised by the incompatibility of reagents and functional groups. Linking ligands that are already coordinated to the metal by an intramolecular reaction, as has been demonstrated for a chelating NHC-diphosphine, is an attractive alternative, because intramolecular reactions are faster and cleaner.

We have previously identified intramolecular dehydrofluorinative carbon-carbon coupling as a rapid, high-yielding route to τ₅,C₅F₅-cyclopentadienyl-phosphine complexes of rhodium and iridium. The cationic complexes [Cp*MC[I₂(κ₅PR₂C₆F₅)] and [Cp*MC[I₂(κ₅(PR₂C₆F₅)PR₂)] yielded [([κ₅]C₅Me₄CH₂C₆F₄NMe)RhCl] and [([κ₅]C₅Me₄CH₂C₆F₄PR₂L)MC[I]] (L = Lewis basic ligand or moiety) respectively on treatment with proton sponge. However, our attempts to synthesize complexes of tethered τ₅,C₅-cyclopentadienyl-NHC ligands using this route have been unsuccessful: [Cp*RhCl₂[(κ₂-MeNC₆H₄CH₂NC₆F₅P)PR₂]], 1, and [Cp*RhCl₂[(κ₂-MeNC₆H₄CH₂NC₆F₅P)PR₂][CNMe₃]] were found to undergo no reaction on treatment with proton sponge, even at an elevated temperature for an extended period, and [Cp*RhCl₂[(κ₂-C₅H₄CH₂NC₆H₄NC₆F₅P)PR₂]] afforded [Cp*RhCl₂[(κ₂-C₅H₄CH₂NC₆H₄NC₆F₅P)-N-4-(OH)-2]] on treatment with base. Here we report the formation of a rhodium complex of a τ₅,C₅-cyclopentadienyl-NHC ligand by an intramolecular addition reaction.

Our recent observation of carbon-fluorine bond activation on treatment of [Cp*IrCl₂[(κ₂-MeNC₆H₄CH₂NC₆F₅P)PR₂]] with silver(I) oxide, which decomposes to silver on stirring, prompted us to investigate the reaction of the rhodium analogue, 1. In contrast to the iridium analogue, on addition of silver(I) oxide complex 1 underwent a clean conversion to [([κ₅]C₅Me₄CH₂C₆F₄C₆H₄NC₆Me)RhCl], 2, over 24 hours. Complex 2 was identified by a single-crystal X-ray diffraction study (Figure 1). 1,4-Addition of the rhodium atom and a methylene carbon atom to the pentafluorophenyl group, and its loss of aromativity, is clearly evident: the C(16)–C(21) and C(18)–C(19) distances (1.346(9) and 1.312(9) Å) are consistent with double bonds, whereas the C(16)–C(17), C(17)–C(18), C(19)–C(20) and C(20)–C(21) distances (1.472(9), 1.465(8), 1.48(1) and 1.498(8) Å respectively) are consistent with single bonds, and the atoms C(17) and C(20) are in tetrahedral environments (Y–C–X 100.9(4) to 114.6(4)°).

The NMR spectroscopic and mass spectral data are entirely consistent with the structure of 2 (see the Supporting Information). In particular in the ¹H NMR spectrum there are four cyclopentadienyl methyl resonances at δ 0.74, 1.39, 1.80 and 1.86, and two mutually coupled doublet resonances possessing further coupling at δ 1.38 and 1.76. These data are consistent with those of the tethered ligand of [([κ₅]C₅Me₄CH₂C₆F₄P)PR₂]RhCl(CNPh)]BF₄ and related complexes. Further, the ¹⁹F NMR spectrum displays five distinct fluorine resonances of equal integration at δ -145.60, -149.36, -174.06, -176.81 and -185.71, which are consistent with the resonances of other polyfluorocyclohexa-1,4-diens.
Figure 1. Molecular structure of 2. Thermal ellipsoids represent 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): Cp*-Rh 1.879(6), Rh–Cl 2.3963(14), Rh–C(11) 2.032(6), Rh–C(17) 2.107(6), Cp*–Rh–Cl 122.6(3), Cp*–Rh–C(11) 126.3(3), Cp*–Rh–C(17) 128.3(3), Cl–Rh–C(11) 95.8(2), Cl–Rh–C(17) 89.9(2), C(11)–Rh–C(17) 82.3(2).

Scheme 1. Proposed mechanism of the reaction between 1 and Silver(I) Oxide

Based on the observations and a previously proposed mechanism for similar reactions, it is suggested that the reaction proceeds by abstraction of chloride to generate a cation, which increases the acidity of the pentamethylcyclopentadienyl hydrogen atoms. Subsequent loss of a proton in the presence of base generates a 16 electron complex which may be considered as a zwitterion, or an η4-tetramethylfulvene complex, possessing a nucleophilic methylene carbon atom and a Lewis acidic metal centre. It is possible that there is η coordination of the pentafluorophenyl ring close to the cyclopentadienyl ring, aiding the subsequent addition. A concerted or stepwise 1,4-addition involving nucleophilic attack by the methylene carbon atom and electrophilic attack by the rhodium atom gives the product (Scheme 1).

No intermediates have been observed, but since this is an intramolecular reaction it is expected to be very rapid once the zwitterion is generated. Formation of the zwitterion is expected to be slow because of the different phases of the reactants.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge via the Internet at http://pubs.acs.org

Experimental procedures, characterizing data, spectra and associated figures

Crystallographic data for 2

AUTHOR INFORMATION

Corresponding Author

g.saunders@waikato.ac.nz

Author Contributions

†‡ HPT, ACM, PJM and GCS contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We thank Queen’s University Belfast and the University of Waikato for support.

REFERENCES


