Sum frequency generation spectroscopy of tetraalkylphosphonium ionic liquids at the air–liquid interface
Chariz Peñalber-Johnstone, Gabriela Adamová, Natalia V. Plechkova, Maryam Bahrami, Tahereh Ghaed-Sharaf, Mohammad Hadi Ghatee, Kenneth R. Seddon, and Steven Baldelli

Citation: The Journal of Chemical Physics 148, 193841 (2018); doi: 10.1063/1.5009674
View online: https://doi.org/10.1063/1.5009674
View Table of Contents: http://aip.scitation.org/toc/jcp/148/19
Published by the American Institute of Physics

Articles you may be interested in
Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination
The Journal of Chemical Physics 148, 134701 (2018); 10.1063/1.5021553

Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts
Review of Scientific Instruments 89, 045104 (2018); 10.1063/1.5021641

A Highly Sensitive Femtosecond Time-Resolved Sum Frequency Generation Vibrational Spectroscopy System with Simultaneous Measurement of Multiple Polarization Combinations
Chinese Journal of Chemical Physics 30, 671 (2017); 10.1063/1674-0068/30/cjcp1706114

Molecular dynamics study of structure and vibrational spectra at zwitterionic lipid/aqueous KCl, NaCl, and CaCl₂ solution interfaces
The Journal of Chemical Physics 148, 222801 (2018); 10.1063/1.5006543

Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering
The Journal of Chemical Physics 148, 222835 (2018); 10.1063/1.5023343

Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz
The Journal of Chemical Physics 148, 104702 (2018); 10.1063/1.5016629
Sum frequency generation spectroscopy of tetraalkylphosphonium ionic liquids at the air–liquid interface

Chariz Peñalber-Johnstone, Gabriela Adamová, Natalia V. Plechkova, Maryam Bahrami, Tahereh Ghaed-Sharaf, Mohammad Hadi Ghatee, and Steven Baldelli

1Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
2QUILL Research Centre, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
3Department of Chemistry, Shiraz University, Shiraz 71946, Iran

(Received 18 October 2017; accepted 8 March 2018; published online 5 April 2018)

Sum frequency generation (SFG) spectroscopy is a nonlinear vibrational spectroscopic technique used in the study of interfaces, due to its unique ability to distinguish surface molecules that have preferential ordering compared to the isotropic bulk. Here, a series of alkyltrioctylphosphonium chloride ionic liquids, systematically varied by cation structure, were characterized at the air-liquid interface by SFG. The effect on surface structure resulting from molecular variation (i.e., addition of cyano- and methoxy-functional groups) of the cation alkyl chain was investigated. SFG spectra in the C−H stretching region (2750–3100 cm⁻¹) for [P₈₈₈₈][Cl], where n = 4, 5, 8, 10, 12, or 14, showed characteristic changes as the alkyl chain length was increased. Spectral profiles for n = 4, 5, 8, or 10 appeared similar; however, when the fourth alkyl chain was sufficiently long (as in the case of n = 12 or n = 14), abrupt changes occurred in the spectra. Molecular dynamics (MD) simulation of a slab of each ionic liquid (with n = 8, 10, or 12) confirmed gauche defects, with enhancement for the long alkyl chain and an abrupt increase of gauche occurrence from n = 8 to n = 10. A comparison of the tilt angle distribution from the simulation and the SFG analysis show a broad distribution of angles. Using experimental SFG spectra in conjunction with MD simulations, a comprehensive molecular picture at the surface of this unique class of liquids is presented. Published by AIP Publishing. https://doi.org/10.1063/1.5009674

INTRODUCTION

Phosphonium ionic liquids, although not as well studied as 1,3-dialkylimidazolium salts, offer important advantages in applications such as its low cost of preparation,1 high thermal stability,2,3 better lubrication and anti-wear ability,4 and low potential for interaction with various solutes. The latter is advantageous because unlike their 1,3-dialkylimidazolium analogues, tetraalklyphosphonium ionic liquids lack acidic protons or aromatic rings and are thus good for applications requiring relatively inert reaction media.

Over the past several years, the literature reports on the synthesis and basic physicochemical properties of phosphonium ionic liquids have grown.1,5–11 However fundamental studies on the extent of structuring present in quaternary phosphonium ionic liquids remain quite limited.12 The more recent accounts of the behavior of these salts include solvation,13,14 transport and thermal properties,15,16 and solubility and phase behavior.17 Consequently, the unique qualities of this class of materials known so far have found value in several applications such as in extractions,18,19 separations,20 catalysis,21 synthesis of new materials,22,23 electrochemistry,24,25 and lubrication.26

An important surface study on phosphonium-based ionic liquid has recently been conducted by Licence et al. using X-ray photoelectron spectroscopy.27 In these investigations, the authors conclude that the surface of the ionic liquid–vacuum interface is complicated and that the alkyl chains effectively shield the charge P⁺ core from the vacuum and counter charges. The surface is highly dominated by the hydrocarbon chains.

Following recent reports of their successful preparation and extensive characterization involving various physicochemical properties,6,7 this current study provides a fundamental view of the surface molecular structure of these liquid salts through a nonlinear, surface-sensitive, vibrational spectroscopic technique, sum frequency generation (SFG) spectroscopy. The compounds studied (see Fig. 1) include a series of six alkyltrioctylphosphonium chlorides, in which the fourth alkyl chain is systematically varied from n = 4, 5, 8, 10, 12, or 14 and is referred to as the “fourth alkyl chain” throughout this manuscript. Tetraoctylphosphonium chloride, [P₈₈₈₈][Cl], represents the symmetrical cation in the sequence, while methyl(diethyl)butylphosphonium bis(trifluoromethyl)sulfonyl) amide, [P₁₂₂₄][NTf₂], represents the lowest symmetry compared to all other cations in the series. For chloride ionic liquids, the results of the simulation on orientational behavior of the –CH₃ terminal group protruding to the vapor is used to explain
FIG. 1. Structures of the ionic liquids investigated, which include a series of six different alkyltrioctylphosphonium chlorides, trioctyl(5-cyanopentyl)phosphonium bromide, trihexyl(3-cyanopropyl)phosphonium bromide, tetradecyl(trihexyl)phosphonium tetracyanoborate, and methyl(diethyl)butylphosphonium bis{(trifluoromethyl)sulfonyl})amide.

the appearance and changes in the SFG spectral peaks as the “4th” alkyl chain length increases from n = 8 to 14. Moreover, this work also investigates the cyano-containing ionic liquids, trioctyl(5-cyanopentyl)phosphonium bromide ([P\(_8\)\(_8\)\(_8\)\(_5\)-CN]Br), trihexyl(3-cyanopropyl)phosphonium bromide ([P\(_6\)\(_6\)\(_6\)\(_3\)-CN]Br), and tetradecyl(trihexyl)phosphonium tetracyanoborate ([P\(_6\)\(_6\)\(_6\)\(_14\)][B(CN\(_4\))]). The ionic liquids chosen in this study are meant to elucidate the roles of 1. cation chain length, 2. anion, 3. cation symmetry, and 4. configuration of chains at the interface.

In order to assign the vibrational resonances observed in the tetraoctylphosphonium chloride, [P\(_8\)\(_8\)\(_8\)\(_8\)][Cl] series, three ionic liquids were further prepared and characterized, specifically tetrabutylphosphonium chloride, [P\(_4\)\(_4\)\(_4\)\(_4\)][Cl], tributyl(4-methoxybutyl)phosphonium chloride, [P\(_4\)\(_4\)\(_4\)\(_4\)-OMe][Cl], and trioctyl(2-methoxyethyl)phosphonium chloride, [P\(_8\)\(_8\)\(_8\)\(_2\)-OMe][Cl]. The “4th” chain in [P\(_4\)\(_4\)\(_4\)\(_4\)][Cl] is longer than the three base (-tributyl) chains; while in [P\(_8\)\(_8\)\(_8\)\(_2\)-OMe][Cl], the “4th” chain is shorter than the three base (-trioctyl) chains. The structures are shown in Fig. 2.

The progression and variation in the sequence of ionic liquids involved in this report allows for the examination of the crucial role that the structure, type, and shape of the cation (and, to a minor degree, the anion) play in the overall surface molecular structure of the liquid salt. This is highly critical to the fundamental understanding of the surface chemistry of phosphonium ionic liquids, which guides further interpretation of physicochemical surface properties relevant to industrial use.

Sum frequency generation (SFG) spectroscopy

SFG is a second-order nonlinear spectroscopic technique which selectively detects surface molecules (present in a non-centrosymmetric environment) with a preferential ordering compared to the isotropic bulk. Therefore, the technique is inherently used as a tool in the study of interfaces (i.e., two-phase systems) in which the symmetry is broken. Several publications discuss the theory behind SFG and can be readily found in the literature.28–31

Experimentally, SFG used here involves two pulsed laser beams: a 532-nm fixed visible and tunable IR (2000-4000 cm\(^{-1}\)) overlapped on the surface to generate a sum frequency beam, so-called because it has a frequency equivalent to the sum of the two incident beams. The electric fields associated with the high-intensity input beams (\(E_{\text{IR}}, E_{\text{vis}}\)) result in a second order nonlinear polarization, \(P^{(2)}\), on the surface. The second-order nonlinear susceptibility tensor, \(\chi^{(2)}\), relates the induced polarization response to the electric fields. Equation (1) shows the intensity of the sum frequency beam, \(I(\omega_{\text{SF}})\), which is proportional to the square of the induced polarization \(P^{(2)}\) as described by

\[
I(\omega_{\text{SF}}) \propto |P^{(2)}|^2 = \chi^{(2)} : E_{\text{vis}}E_{\text{IR}}^2.
\]

\(\chi^{(2)}\) is a function of the infrared wavenumber and contains vibrational information on the molecular response to the optical fields. \(\chi_R\) is composed of the orientationally averaged microscopic contributions, \(\beta\), as seen in the following equation:

\[
\chi^{(2)} = N(\beta).\]

The hyperpolarizability, \(\beta\), represents the average of all possible molecular orientations. This term also contains the Raman polarizability and the IR dipole transition of the molecular system. The terms \(\omega_R, \omega_q,\) and \(I_q\) denote the frequency of the IR beam, frequency of the normal mode, and the damping constant of the \(q\)th vibrational mode, respectively, while \(N\) is the number of molecular modes contributing to the vibration. From Eq. (1) it is clear that the intensity of the SFG signal...
is directly related to the magnitude of $\chi^{(2)}$. In Eq. (3), the expression for the resonant term, $\chi_R^{(2)}$, is shown, suggesting that when the infrared frequency (ω_R) matches the frequency of a vibrational mode (ω_q) of the interfacial molecules, $\omega_R - \omega_q$ is equal to 0 and the magnitude of $\chi^{(2)}$ is significantly enhanced, resulting in an increase in the SFG signal. The amplitude of the mode, A, is proportional to $\chi^{(2)}$,

$$\chi^{(2)}_R = \sum \frac{A}{\omega_R - \omega_q + i\Gamma_q}. \quad (3)$$

Plotting the SF light detected as a function of IR frequency results in a vibrational spectrum. Note that $\chi^{(2)}$ has a magnitude that depends on the polar orientation of the molecule on the surface. Finally, since SFG is nonlinear and coherent spectroscopy, the various Cartesian components of the susceptibility tensor, $\chi^{(2)}$, are probed by varying the polarizations of the incident and output beams, from which the molecular orientation with respect to the surface normal can be measured.29,32,33

EXPERIMENTAL METHOD

Samples

All phosphonium ionic liquids were synthesized and fully characterized by Adamová et al.6,7 except for $[P_{1224}][NTf_2]$ and $[P_{46614}][B(CN)_4]$, which were provided by Cytec Industries (Canada) and Merck, respectively. Ionic liquids $[P_{1444}][Cl], [P_{4444-0Me}][Cl]$, and $[P_{8882-0Me}][Cl]$ were synthesized at the Queen’s University Ionic Liquid Laboratories (QUILL). Detailed characterization included NMR spectroscopy ($^1H, ^13C$, and ^{31}P NMR); mass spectrometry; elemental carbon and hydrogen content; halide and water contents; differential scanning calorimetry (DSC); thermogravimetric analysis (TGA); density; and viscosity measurements.6,7 Moreover, molar volumes as a function of temperature were estimated via a group contribution method as well as thermal expansion coefficients calculated from density data.6,7 A brief summary of synthetic details is provided below. The synthesis of $[P_{8882}][Cl]$ involved chloroalkanes of mid-range volatility, requiring the use of a microwave reactor, while thermal reflux was employed for all remaining alkyltriocylphosphonium chloride samples.7 The salts $[P_{4444}][Cl]$, $[P_{8882-0Me}][Cl]$, and $[P_{4444-0Me}][Cl]$ were prepared by nucleophilic (SN2) addition of tributylphosphine to the appropriate chlorinated alkylating agent. As both the tributylphosphine and triocylphosphine were supplied in 50% (v/v) toluene solution (in order to reduce flammability), the solvent was removed when the reaction was complete. The toluene decreased the reaction rate. Synthetic procedure details are presented in the supplementary material.

Sample preparation prior to SFG measurements

Fully characterized sealed samples were sent directly from the QUILL Research Centre in Belfast and similar preparation procedures for spectroscopic measurements were followed as described in an earlier publication.34 A custom-designed SFG cell35 made of Pyrex® glass, equipped with high-vacuum valves and O-ring fittings, was used to contain all ionic liquid samples. Samples were introduced directly into the SFG vessel and dried in a glass vacuum line equipped with an ionization gauge for measuring pressure, a turbo-molecular pump backed by a mechanical pump, and liquid nitrogen traps. Kalrez® O-rings were utilized as well as Teflon® stop-cocks to ensure non-reactivity of samples with materials used for vacuum sealing. Samples were dried until a desired pressure of $\leq 5 \times 10^{-5}$ Torr was reached with occasional heating ($\leq 60 ^\circ C$) with a heat gun to hasten the drying process. The samples were known to be thermally stable at the heating temperature used.

Specifically for $[P_{1224}][NTf_2]$, a more constant heating at less than 60 °C using an insulated heating tape was required, as the sample tended to solidify at room temperature when it was directly in contact with atmospheric moisture. When sufficiently dry, however, $[P_{1224}][NTf_2]$ remained liquid at room temperature. Moreover, $[P_{4444}][Cl]$ has a melting point between 62 and 66 °C such that drying in the vacuum line was done with heating above the melting temperature and all SFG measurements were done at $\sim 70 ^\circ C$. Once the desired pressure was reached, the SFG cell containing samples while attached to the vacuum line was buck-filled with ultra-high purity nitrogen gas to a slight overpressure. SFG measurements then followed. For $[P_{8882-0Me}][Cl]$, temperature-dependent data were recorded in addition to room-temperature measurements: this sample was initially dried in the glass vacuum line prior to external cooling (to 0 °C using an ice bath) and heating (up to 50 °C using a Variac®-controlled heating tape).

SFG spectroscopy system

The SFG spectrometer setup has been described in earlier publications.34,36,37 A fundamental 1064-nm output beam from a picosecond pulsed Nd:YAG (EKSPLOA) was used to pump an optical parametric generator/amplifier (OPG/OPA, LaserVision) system. From the OPG/OPA system, a fixed visible (532-nm) and a frequency tunable IR (2000-4000 cm$^{-1}$) beam were generated. Using a co-propagating geometry, the two beams were overlapped at the liquid surface at an angle of 50° (visible) or 60° (IR) from the surface normal. The resulting SFG signal was then collected using a gated integrator and controlled using the LabVIEW software.

Data collection and analysis

Data were collected at an average of 5 scans per polarization combination. A scan rate of 1 cm$^{-1}$ s$^{-1}$ using 20 laser shots per point was used. The SFG signal from a clean gold substrate was taken before any sample measurement, which was used to normalize each spectrum to correct for deviations (i.e., absorption by the bulk and the fluctuations in the IR beam due to the changing efficiency of the OPG/OPA system). To calibrate the tunable IR wavenumber, spectra from a 0.038 mm thick polystyrene film were used as reference. Moreover, to make a reliable comparison of spectra between samples, the SFG intensity of each spectrum was
normalized against the intensity of the CH$_3$ symmetric stretch peak in ssp (s-polarized SFG beam, s-polarized visible beam, and p-polarized IR beam) of a standard solution of hexadecanol in water. Finally, spectra were fitted using the Origin 7.0 Professional nonlinear curve fitting software, using Eq. (3) as a fitting function. Four different polarization combinations were taken for all ionic liquid samples, namely, ssp, ppp, sps, and pss.

Molecular dynamics simulation

Details of cation-anion and cation-cation structures in the surface region of [P$_8$$_8$$_8$$_n$][Cl] (where $n = 8$, 10, or 12) ionic liquids, using atomistic classical molecular dynamics (MD) simulation, are presented to support the SFG spectral observations. The simulation details and procedures are provided in the supplementary material.

A single ion-pair of each ionic liquid, optimized via the density functional theory (DFT) calculation, was replicated to obtain a large-size cubic simulation box (Table S1 of the supplementary material) containing 1200 ion-pairs of each ionic liquid (122 400, 122 960, and 136 800 atoms). All alkyl chains were in their most stable (all-trans, gauche-free) conformation. For each liquid system ([P$_8$$_8$$_8$$_n$][Cl], [P$_8$$_8$$_8$$_{10}$][Cl], and [P$_8$$_8$$_8$$_{12}$][Cl]), simulation studies of the liquid/vacuum interface were performed at 400 K and ambient pressure using Gromacs package (4.5.5) with the Optimized Potential for Liquid Simulation All-Atom (OPLS-AA) force field. After the 25-ns simulation, the final ensemble consisted of a slab of ionic liquids with a thickness of \sim129.5-143.5 Å (P$_8$$_8$$_8$$_8$[Cl]: 129.5 Å, P$_8$$_8$$_8$$_{10}$[Cl]: 136.5 Å, and P$_8$$_8$$_8$$_{12}$[Cl]: 143.5 Å) equilibrated at the middle of box, and the surface normal extended in the Z-direction to 350 Å. The infrequent inhomogeneity of these ion-pair liquid systems with large cation and strong P–Cl interaction is of special concern for a reliable simulation of the surface. Simulations at high temperature (400 K and ambient pressure) ensure that the slow dynamics of these ionic liquids do not lead to artificial results (SFG spectra at 0 °C and 50 °C are indistinguishable; see Fig. S3 of the supplementary material). The simulation results were analyzed for the anion-cation relation, and the trend of structure and orientation of cation in the surface region was determined as a function of the alkyl chain length.

RESULTS AND DISCUSSION

Alkyltrioctylphosphonium chloride series

The sum frequency spectra in the C–H stretching region of 2750-3100 cm$^{-1}$ taken at four different polarization combinations for all alkyltrioctylphosphonium chlorides, [P$_8$$_8$$_8$$_n$][Cl], where $n = 4$, 5, 8, 10, 12, or 14, are displayed in Fig. 3, offset in the same plot. The variation in this select series of samples allows for determining characteristic changes in the vibrational bands; this is seen as the number of carbon atoms in the fourth alkyl substituent is increased or decreased from the perspective of the fully symmetrical cation analog, [P$_8$$_8$$_8$$_8$][Cl]. Vibrational mode assignments used are based on results from a series of tetraalkylammonium and 1,1-dialkylpyrrolidinium ionic liquids previously discussed and summarized in Table I. Peaks for all vibrational modes observed in this study are summarized in Table II.
In the last two alkyltrioctylphosphonium chlorides with dialkylpyrrolidinium ionic liquids used to define spectra of the tetraalkylphosphonium ionic liquids,42 and 14. Moreover, for observed in the spectra which is assigned to the resonance modes for the series with alkyl chains up to 8. For [P\textsubscript{8887}]+, appears too weak. In particular, the symmetrical [P\textsubscript{8888}]Cl series, this feature is absent. Also, this r\textnormal{mode} is only apparent in these two ionic liquids with n = 10, such that d\textnormal{+, r+, d\textsubscript{FR}} and r\textsubscript{FR} modes dominate the spectra. The r\textnormal{mode} is found to be the most intense just as in the [P\textsubscript{8886}][Cl] series for up to n = 10. This shows that variation of the fourth alkyl chain by the addition of a cyano-functional group has little or no effect on the average orientation of the cation chain contributing to the observed vibrational frequency. (Note the similar ionic radii of the anions, \textnormal{Br}− and \textnormal{Cl}−.) For the ppp combination (Fig. S3 of the supplementary material), the vibrational modes appear similar as well when compared to the alkyltrioctylphosphonium chlorides, except for the appearance of two different vibrational modes. All three modes, namely, the r\textnormal{+, d−, and r− modes} are present in both ionic liquids; however, the r\textsubscript{ip} mode split at 2954 cm−1 is only observed for [P\textsubscript{6663}][Br]. On the other hand, the d\textsubscript{FR} mode at 2910 cm−1, which is absent in [P\textsubscript{6663}][Br], is observed in [P\textsubscript{6886}][Br]. Finally, the sps and sps spectra for both ionic liquids appear similarly dominated by the weak d\textnormal{+ mode} and more intense r\textnormal{− mode}. These two ionic liquids illustrate the effect of removing the methyl group contributions to the SFG spectrum on the dissimilar fourth-chain. The results suggest that the three identical chains contribute significantly to the overall SFG signal.

Table I. Vibrational assignments for tetraalkylammonium and 1,1-dialkylpyrrolidinium ionic liquids used to define spectra of the tetraalkylphosphonium ionic liquids.42

<table>
<thead>
<tr>
<th>Vibrational mode</th>
<th>Wavenumber/cm−1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric methyl stretch, r+</td>
<td>2960–2970</td>
</tr>
<tr>
<td>Methyl Fermi resonance, r\textsubscript{FR}+</td>
<td>2931–2942</td>
</tr>
<tr>
<td>Methylene Fermi resonance, d\textsubscript{ip}</td>
<td>2890</td>
</tr>
<tr>
<td>Asymmetric methylene stretch, d−</td>
<td>2910</td>
</tr>
<tr>
<td>Symmetric methyl stretch, r\textnormal{−}</td>
<td>2870–2880</td>
</tr>
<tr>
<td>Symmetric methylene stretch, d\textnormal{−}</td>
<td>2845–2858</td>
</tr>
</tbody>
</table>

Table II. Vibrational modes observed for alkyltrioctylphosphonium chloride ionic liquids.

<table>
<thead>
<tr>
<th>[P\textsubscript{6663}][Cl]</th>
<th>Peak assignment (wavenumber/cm−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 4</td>
<td>d\textnormal{+}</td>
</tr>
<tr>
<td></td>
<td>ssp</td>
</tr>
<tr>
<td>4</td>
<td>2853</td>
</tr>
<tr>
<td>5</td>
<td>2854</td>
</tr>
<tr>
<td>8</td>
<td>2855</td>
</tr>
<tr>
<td>10</td>
<td>2851</td>
</tr>
<tr>
<td>12</td>
<td>2851</td>
</tr>
<tr>
<td>14</td>
<td>2851</td>
</tr>
</tbody>
</table>

Tetraalkylphosphonium salts with other anions

Figure 4 displays the sum frequency spectra of [P\textsubscript{6663-CN}-][Br], [P\textsubscript{6663-CN}][Br], [P\textsubscript{1224}][NTf\textsubscript{2}], and [P\textsubscript{6664}][Br][NTf\textsubscript{2}] at ssp polarization offset in the same plot (ppp, sps, and pss are shown in Fig. S3 of the supplementary material). From this set, changes were expected in the spectral profile as a cyano-group is added to the cation moiety, and due to the substitution of the chloride or bromide anions with more bulky constituents such as bis[(trifluoromethyl)sulfonyl]amide, [NTf\textsubscript{2}]−, and tetracyanoborate [B(CN)\textsubscript{4}]−. Particularly interesting, here, is the addition of the highly unsymmetrical [P\textsubscript{1224}][NTf\textsubscript{2}] to the series. Table III summarizes the peak assignments for this particular set.

[8886-CN][Br] and [P\textsubscript{6663-CN}][Br]

The sps spectra (Fig. 4) for both compounds appear very similar to that of the [P\textsubscript{8886}][Cl] series, where n = 4, 5, 8, or 10, such that d\textnormal{+, r+, d\textsubscript{FR}}, and r\textsubscript{FR} modes are present in both ionic liquids; however, the r\textsubscript{ip} mode split at 2954 cm−1 is only observed for [P\textsubscript{6663-CN}][Br]. On the other hand, the d\textsubscript{FR} mode at 2910 cm−1, which is absent in [P\textsubscript{6663-CN}][Br], is observed in [P\textsubscript{8886-CN}][Br]. Finally, the sps and sps spectra for both ionic liquids appear similarly dominated by the weak d\textnormal{+ mode} and more intense r\textnormal{− mode}. These two ionic liquids illustrate the effect of removing the methyl group contributions to the SFG spectrum on the dissimilar fourth-chain. The results suggest that the three identical chains contribute significantly to the overall SFG signal.

n = 12 or 14, a consistent shift in frequency for the r\textnormal{− mode} was also obvious in both sps and pss spectra.
TABLE III. Vibrational modes observed for tetraalkylphosphonium ionic liquids with various anions.

<table>
<thead>
<tr>
<th>Ionic liquid</th>
<th>d⁺</th>
<th>r⁺</th>
<th>d⁻</th>
<th>d⁺ FR</th>
<th>r⁺ FR</th>
<th>r⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>[P₆₆₆₆.3-CN][Br]</td>
<td>2855</td>
<td>2879</td>
<td>2883</td>
<td>2903</td>
<td>2903</td>
<td>...</td>
</tr>
<tr>
<td>[P₆₆₆₆-CN]Br</td>
<td>2857</td>
<td>2880</td>
<td>2886</td>
<td>2896</td>
<td>2901</td>
<td>2922</td>
</tr>
<tr>
<td>[P₆₆₆₆][B(CN)₄]</td>
<td>2858</td>
<td>2880</td>
<td>2880</td>
<td>2900</td>
<td>2901</td>
<td>2922</td>
</tr>
<tr>
<td>[P₁₂₂₂][NTf₂]</td>
<td>...</td>
<td>2925¹</td>
<td>2901¹</td>
<td>2900</td>
<td>2901</td>
<td>...</td>
</tr>
</tbody>
</table>

¹Ethyl.
²Terminal; methyl attached to P.
³Butyl and methyl.
⁴Butyl.

FIG. 4. Sum frequency spectra of tetraalkylphosphonium ionic liquids with various anions at polarization combination ssp offset at 0.18. The arrow points to the r⁺ mode at ~2901 cm⁻¹ which is due to the terminal methyl group.

[T₄₁₂₂][NTf₂]

Four highly distinct peaks are visible in the ssp spectrum (Fig. 4) for this highly unsymmetrical analog. The peak at 2884 cm⁻¹ assigned to the r⁺/d⁺ FR mode contains contributions from both butyl and ethyl groups attached to the cation (Table III). The peak at 2901 cm⁻¹, which is also an r⁺ mode, is characteristic for the vibration of the terminal methyl attached to phosphorus (as in trimethylphosphine). The peak at 2925 cm⁻¹ is assigned to the r⁻ mode from the ethyl chains, while the peak at 2940 cm⁻¹ is from the r⁺ FR of the butyl chain. For the ppp spectra (Fig. S3 of the supplementary material), the d⁻ mode appears within the noise level, while the r⁻ mode which dominates the spectra is split into two modes, r⁻ ip and r⁻ op, respectively. For the ssp and pss spectra (Fig. S3 of the supplementary material), the r⁻ mode is the most intense, but the d⁻ mode at 2918 cm⁻¹ is only observed in the sps combination. The r⁻ mode also appears to be shifted to higher frequency in both combinations. Consequently, an additional shoulder at 2990 cm⁻¹ absent in the ssp spectra is observed in the pss combination. Thus even the shortest alkyl chain (i.e., methyl) contributes to the surface spectrum and appears to have a significant orientation.

[T₄₁₂₂][NTf₂]

The ssp spectra show five peaks corresponding to four distinct modes (Table III). The peak at 2858 cm⁻¹ corresponds to the d⁺ mode, while the peak at 2880 cm⁻¹ corresponds to the r⁺ mode. Two peaks at 2909 and 2927 cm⁻¹ are both assigned to one vibrational mode, d⁺ FR. The peak at 2939 cm⁻¹ in the ssp pertains to the r⁺ FR mode. Both peaks at 2909 and 2927 cm⁻¹ are also visible in the ppp spectra (Fig. S3 of the supplementary material). In addition, the r⁻ ip mode at 2945 cm⁻¹ and the r⁻ op mode at 2966 cm⁻¹ are observed. Like all others in the [P₈₈₈₈][Cl] series, the sps and pss spectra of this compound are dominated by a weak d⁻ mode and a much more intense r⁻ mode (Fig. S5 of the supplementary material). Interestingly, this ionic liquid appears very similar to [P₈₈₈₈][Cl] and might indicate the minor influence of the anions to the surface of the ionic liquid with large alkylphosphonium cations. Figure S6 of the supplementary material shows a top view snapshot of the MD simulation. Results show that the simulated slab of ionic liquids has alkyl groups which protrude to the vapor phase, as shown in Fig. S7 of the supplementary material.

Tetraalkylphosphonium chlorides containing methoxy-groups

Figure 5 displays ssp SFG spectra of tetraalkylphosphonium chlorides in which one of the four alkyl substituents attached to phosphorus contains a methoxy group, as in 2-methoxyethyl (–C₂H₅-OMe) or 4-methoxybutyl (–C₄H₉-OMe). To emphasize the effect introduced by adding a heteroatom (methoxy) group to the alkyl structure, spectra are overlaid and compared to their corresponding tetraalkylphosphonium chloride analog. Thus, Fig. 5(a) shows overlaid spectra for [P₄₄₄₄][Cl] and [P₄₄₄₄-O₄Me][Cl], while Fig. 5(b) shows those for [P₈₈₈₈-2-O₄Me][Cl] and [P₈₈₈₈][Cl]. Spectra are offset on the same plot in both figures with differences which are discussed in the following sections below.

[S₄₄₄₄][Cl] and [S₄₄₄₄-O₄Me][Cl]

SFG spectra for the fully symmetrical [P₄₄₄₄][Cl], illustrated in Fig. 5, show two peaks in ssp, at 2880 cm⁻¹ assigned to the r⁻ mode and at 2943 cm⁻¹ assigned to the r⁺ FR mode. Additional peaks were observed for [P₄₄₄₄-O₄Me][Cl] in ssp, assigned to the –OCH₃ symmetric mode at 2815 cm⁻¹, the
–OCH$_3$ asymmetric mode at 2913 cm$^{-1}$, and the r^+ mode at 2961 cm$^{-1}$. The r^+ and r^+_{FR} modes occurred slightly shifted to lower frequency for [P$_{4444}$-OMe][Cl] at 2876 cm$^{-1}$ and 2939 cm$^{-1}$, respectively. Figure S2 of the supplementary material displays polarization combinations ppp, sp, and pss. In ppp combination, weak r^+ and d^- modes are observed similar to previous data with the r^+ mode being the most intense. This was true for [P$_{4444}$-OMe][Cl]; however, for [P$_{4444}$][Cl], the r^+ mode appeared particularly weak (see Fig. S3 of the supplementary material). The slight shift to lower frequency observed in the ssp spectra for [P$_{4444}$-OMe][Cl] compared to [P$_{4444}$][Cl] was still observed in the ppp combination. Also, the pronounced split for [P$_{8882}$-OMe][Cl] modes at 2950 cm$^{-1}$ (r^-_{ip}) and at 2964 cm$^{-1}$ (r^-_{op}) was evident. This split was absent for [P$_{4444}$][Cl] with the weak r^+ mode appearing at 2965 cm$^{-1}$. Finally, consistent with the previous dataset, the sp and pss combinations show the single r^+ mode centered at \sim2970 cm$^{-1}$.

[**P$_{8882}$-OMe**][Cl] and [**P$_{8884}$**][Cl]

Recall that the assignments for [P$_{8884}$][Cl] have been discussed in the Results and Discussion Alkyltrioctylphosphonium chloride series section and are summarized in Table II. Briefly, the ssp spectra show vibrations corresponding to the d^+ (\sim2853 cm$^{-1}$), r^+ (\sim2877 cm$^{-1}$), d^-_{FR} (\sim2924 cm$^{-1}$), and r^+_{FR} (\sim2940 cm$^{-1}$) modes (see Fig. S4 of the supplementary material). Apparent in the ssp spectra for [P$_{8882}$-OMe][Cl] [see Fig. 5(b)] is the shift to lower frequency particularly for the r^+ (occurring at 2872 cm$^{-1}$) and r^+_{FR} (occurring at 2933 cm$^{-1}$) modes, compared to those of [P$_{8884}$][Cl]. Consequently, this difference is accompanied by the appearance of three distinct modes in the ssp spectra of [P$_{8882}$-OMe][Cl], namely, the –OCH$_3$ symmetric mode at 2810 cm$^{-1}$, the –OCH$_3$ asymmetric mode at 2908 cm$^{-1}$, and the r^+ mode at 2948 cm$^{-1}$. Figure S5 of the supplementary material displays polarization combinations ppp, sp, and pss. Note that the latter mode was absent for [P$_{8884}$][Cl]. In ppp combination, weak peaks for the r^+ and d^- modes were evident for the two ionic liquids. The shift to lower frequency for all modes in [P$_{8882}$-OMe][Cl] was still observed. For the r^+ mode in ppp, the split at 2942 cm$^{-1}$ (r^-_{ip}) and 2957 cm$^{-1}$ (r^-_{op}) was more pronounced for [P$_{8882}$-OMe][Cl]. Only the r^+ mode dominated the spectra in both sp and pss combinations.

To investigate the effect of temperature on the surface structure, SFG spectra of [P$_{8882}$-OMe][Cl] were measured at 0 °C, RT (20 °C), and 50 °C. At 50 °C, the same modes were observed relative to spectra at RT with similar intensity. However, when cooled to 0 °C, the r^+ mode at ~2948 cm$^{-1}$ disappeared. Overall, no pronounced temperature effect was detected (see Fig. S2 of the supplementary material).

Comparison of MD to SFG—Part I: Surface arrangements

The simulation of these ionic liquids shows that the cation has a surface blocking effect on the chloride anion, which remains buried below the alkyl chains of the cation. In addition, the anion shows a close structural correlation with the central phosphorus atom, both in the surface and in the bulk, as indicated by the simulated atom density profiles in Fig. 6; this is true regardless of the alkyl chain length (Fig. 6). These density profiles represent the local atom density in the liquid bulk and at the interface; the fluctuations are owing to the characteristic of large size bulky species like the cation of these ionic liquids. However, the mass densities (Fig. S5 of the supplementary material) change monotonically at the interface without any fluctuations and show negligibly small systematic fluctuation in the bulk, which on other hand indicates the equilibrium prevailed in the ensembles. The blocking effect increases as the fourth
alkyl chain length increases, in the sequence $[\text{P}_{8888}][\text{Cl}] < [\text{P}_{88810}][\text{Cl}] < [\text{P}_{88812}][\text{Cl}]$. This can be seen clearly as the chloride anion fades out gradually from the top view (Fig. S6 of the supplementary material) as well as the side view (Fig. S7 of the supplementary material) of the surface. Under such circumstances, the chloride anion has very little influence on the vibrational spectra of the cation.

Another issue that can be addressed by the results of simulation is the barrier to the rotation of the cation in the surface region and the preferential orientation of the fourth alkyl chain which protrudes to the vapor. This barrier exists even for the symmetric cation, $[\text{P}_{8888}][\text{Cl}]$, and a long-lived octyl group protruding to the vapor can be identified (in the simulation time period) when the location of all the four octyl group are examined in the surface region. Thus, in the SFG analysis of chain conformation and methyl group orientation, the single chain model is likely valid. In this interpretation, each cation projects one of the alkyl groups toward the gas phase (as opposed to two or three simultaneously). It might be any one of the four weighted by their relative surface energy. This means that the surface analysis is a weighted average of all four chains, not only the 4th chain. Furthermore, however, the variation in the 4th chain clearly influences the surface structure.

Comparison of MD to SFG—Part II: Alkyl chain conformation

The outcome of such preferential single chain orientation is influenced by the alkyl chain length, which can be estimated by the degree of gauche defects locally and on average over the four chains. Figure 7 shows how the average chain vector (from C atom attached to P atom to the terminal carbon atom, C_T) changes with chain length. This is used to explain the trend of SFG spectra when the fourth alkyl chain length increases, particularly for $n = 8, 10, 12$. Since each chain is essentially independent, the SFG signal is the weighted average of these orientations and conformations. The maximum in the curves from C_8 to C_{12} chains suggests the later has a preferred tilt angle. Interestingly, defects are more effective with middle chain carbon atoms, and no highly stable gauche state can be identified when the P atom shares in the nominal torsion. Hence, the all-trans conformer is closely preserved (Fig. 8 and Fig. S8 of the supplementary material).

Furthermore, the statistical analysis based on monitoring the position of all terminal methyl groups during the simulation time shows that the four octyl groups in $[\text{P}_{8888}][\text{Cl}]$ are equally probable to take part in the surface structure, as well as the corresponding terminal methyl group occupying the outermost region of the surface. In the same way, methyl group of the forth alkyl group in $[\text{P}_{88810}][\text{Cl}]$ and $[\text{P}_{88812}][\text{Cl}]$ occupied almost 75% and 95% of the simulation time in the outermost region of interface, respectively. Under this condition the other three methyl groups stay off the outermost of the surface. Thus, this analysis indicates that the assumption of rather independent signal from the methyl group of the fourth alkyl chain is valid. These results from the MD simulations allow for the treatment of the alkyl chains as independent and thus the single chain model for orientation and conformation analysis of the SFG spectra.

The occurrence of the dihedral angle along the alkyl chains was calculated from the results of MD simulation as shown in Fig. 9. Two main features are present in the plots: the all-trans extended conformation with dihedral angle of 180° is predominant, while the gauche conformer with a broad distribution centered at about 65°-70° is also present. The occurrence of the latter increases as the alkyl chain length increases. The simulation results clearly show that an appreciable gap in magnitude exists between the dihedral distribution in $[\text{P}_{8888}][\text{Cl}]$ and those of the longer chains of $[\text{P}_{88810}][\text{Cl}]$ and $[\text{P}_{88812}][\text{Cl}]$. This effect is present also in comparison to the SFG spectra: as n increases, the symmetric CH$_2$ stretching peak diminishes gradually, while that of CH$_2$ increases. Rotation about the C—C bond breaks the inversion symmetry of the methylene groups in the all-trans extended conformation. Overall, these observations follow the trend seen in Fig. 9. As the number of all-trans conformers (at 180°) decreases, the gauche defects similarly increase in population when the chains become...

FIG. 8. The distribution of the dihedral angles along the long alkyl chain of $[\text{P}_{88812}][\text{Cl}]$ at 400 K. The case which includes the phosphorus atom is also shown.
FIG. 9. Comparison of the distribution of simulated dihedral angles of the fourth (protruding) alkyl chain of [P\textsubscript{8}8\textsubscript{8}8\textsubscript{8}]\textsubscript{Cl}, [P\textsubscript{8}8\textsubscript{8}10]\textsubscript{Cl}, and [P\textsubscript{8}8\textsubscript{8}12]\textsubscript{Cl} at 400 K. In the case of [P\textsubscript{8}8\textsubscript{8}8\textsubscript{8}]\textsubscript{Cl}, the effect of temperature was tested also at 298 K. See Fig. S8 of the supplementary material for detailed plots and atom labeling.

longer than 10 carbon atoms or when the alkyl chain length is four carbon atoms longer than an octyl (C\textsubscript{8}) chain.

Quantum chemical calculations for a single ion-pair of each ionic liquid were performed [at the B3LYP/6-31 + g(d) level of theory] to estimate the torsional energy in regard to the gauche defect observed particularly at 65\degree–70\degree by the simulation of the three ionic liquids. As demonstrated and detailed in Fig. S9 of the supplementary material, the energy barrier to reach gauche conformer (occurs at 70\degree) has almost the same value for the three ionic liquids (13.6–13.7 kJ/mol, with respect to all-trans conformer). Therefore, distribution and the probability of the gauche conformer simulated (Figs. 8 and 9 and Fig. S8 of the supplementary material) can be understood by the gas phase quantum chemical calculation and vary between the three ionic liquids slightly as dictated by the feature of the liquid state.

Comparison of MD to SFG—Part III: Orientation

The orientation analysis from SFG data of a single methyl group at the air-liquid interface is presented in Fig. 10. The analysis suggests that the average tilt angle for methyl groups at the surface is between 50\degree and 60\degree and distribution width less than 20\degree. This result seems reasonable since the tetraalkylphosphonium cations are quite complex in their surface arrangement. The two apparent exceptions to this are the symmetric cation [P\textsubscript{8}8\textsubscript{8}12]+, where the SFG analysis is consistent with a larger tilt angle, close to 70\degree and a broader distribution. It might be due to the lack of a distinguishable chain causing the overall distribution to appear broad. This also appears to be true for [P\textsubscript{8}8\textsubscript{8}10]+, where only a 2 carbon difference has little impact on the tilt angles at the surface. However, [P\textsubscript{8}8\textsubscript{8}12]\textsubscript{Cl} Fig. 10 shows a dramatic change in the tilt angle appearing nearly upright in a narrow distribution. It might be that 4 methylene unit differences from the base are enough to change the average methyl orientation at the surface. It should be noted that the C\textsubscript{12} 4th chain shows an apparent preferred chain orientation relative to C\textsubscript{8} and C\textsubscript{10}, Fig. 7. Knowing that the occurrence of the tilt angle at 40\degree corresponds to the maximum in the simulated profile in Fig. 7, this orientation can be attributed to a state of relative stability and is thus of the rather narrow distribution with standard deviation, \(\sigma \approx 10\degree\). Therefore, the simulation helps us to constrain the possible interpretation of the SFG analysis. However, the tilt angle for [P\textsubscript{8}8\textsubscript{8}14]\textsubscript{Cl} increases back to \(\sim 55\degree\), which implies a rather low stability of the tilt angle distribution for 6 methylene groups greater than the base C\textsubscript{8}. It is however notable that the MD simulation methyl group absolute orientations are similar to the average SFG results; however, the distributions by the simulations are significantly broader (see Figs. S1 and S10 of the supplementary material).

The tilt angle (\(\theta\)) and twist angle (\(\phi\)) of the alkyl terminal group (C\textsubscript{1}–C\textsubscript{T}H\textsubscript{3}) in combination with the vector \(\mathbf{R}_z\) (which coincides with the C–C bond) are used to represent the molecular fixed polar coordinate (Fig. 11).
and model the orientation of this ionic liquid SFG-active group. By definition, θ is the angle between the normal of the ensemble (Z) and the R_z vector; ϕ is the angle between the Z projection-vector onto the n_1-n_2 plane and n_1 vector and represents the C_3 rotation. Considering trajectories of all atoms in C_1–C_TH_3 only, within the narrow surface region over the simulation time, the variation of tilt and twist angles for $[P_{8888}]Cl$, $[P_{88810}]Cl$, and $[P_{88812}]Cl$ leads to the maps shown in Figs. 12(a)–12(c), respectively.

For $[P_{8888}]Cl$ [Fig. 12(a)], the highest characteristic probability is seen at $\cos(\theta) = 0.7$ ($\sim 45^\circ$), particularly at three spot points: $\phi = 0^\circ$, 40°, and 75°. More importantly, at about $\cos(\theta) = 0$, probability is inappreciable and featureless; notably the feature is lost completely for $\cos(\theta) < 0$. This implies that the tilt angle of the C_1–C_T bond is centered at 45° and the twisting of the C_TH_3 angle is centered at three angles. Analysis of the other two ionic liquids, $[P_{88810}]Cl$ and $[P_{88812}]Cl$, leads to the same conclusion, although each ionic liquid demonstrates characteristic tilting and twisting profiles. For

![Simulation results for terminal methyl group](image)

FIG. 12. Simulation results on the orientation of the terminal methyl group tilt (θ) and twist (ϕ) angles at the air–ionic liquid interface for $[P_{8888}]Cl$: (a) $n = 8$, (b) $n = 10$, (c) $n = 12$, and (d) average tilt angle (θ) after integration about the twist angle (ϕ).
Detailed discussion

SFG spectra of the alkyltrioctylphosphonium chloride, [P888 n][Cl], ionic liquid series presented in this study (Fig. 3) showed that when the fourth alkyl chain length is sufficiently long (n = 12 and 14), the ionic liquids exhibited increased conformational disorder in the form of gauche defects. This is most directly observed by the increase in the CH3 (sym)/CH3 (sym) peak ratio. Overall the longer chain also resulted in a change in the average tilt orientation of the terminal methyl group. This was evidenced by the appearance of the τ mode in the ssp combination and the τ mode split observed in the ppp combination for [P8 8 8 12][Cl] and [P8 8 8 14][Cl]. This specific τ mode feature in these two ionic liquids was otherwise absent in other members of the [P888 n][Cl] series, where n = 4, 5, 8, and 10. Note that [P8888][Cl] represented the fully symmetrical cation in the series such that a two-carbon difference in the fourth alkyl chain from the fully symmetrical [P88 8 8][Cl] did not create the same effect as the fourth carbon chain length difference from [P88 8 8][Cl]. This observation suggests that the octyl chains are having the major contribution to the surface, while the C10 through C14 impact the surface relative more compared to [P88 8 8][Cl]. The surface is disrupted when the fourth alkyl chain is sufficiently lengthened to at least four carbon atoms, in this case, from [P8888][Cl] to [P88 8 12][Cl] or to [P88 8 14][Cl].

Interpretations of the SFG data alone were ambiguous; the signal could be from multiple chains from one cation projecting toward the surface or from a mixture of single chains from each phosphorus atom center in the ionic liquid. Combined with MD simulations, the SFG results were found to be consistent with the latter. All SFG data showed C—H spectra from each of the four alkyl chains. This is especially apparent in the [P12 2 4][NTf2] (Fig. 4, where the P—CH3 peak is assigned). Similarly, the [P888 n][Cl] ionic liquids with unique terminal groups (–CN in Fig. 4 and –OCH3 in Fig. 5) showed significant C—H spectra; specifically, characteristic –OCH3 group vibrational modes were obvious for [P4 4 4 4–OMe][Cl]. This, in addition to the MD results on the lifetime of each chain at the surface, provides a basic model for describing the alkyl group orientation at the gas-liquid interface. The MD simulations are compatible with the orientation angles determined by SFG measurements, which supports the accuracy of the simulation in interpreting the surface structure of the ionic liquid surface [compare Figs. 10 and 12(d)].

For ionic liquids [P888 5–CN]Br and [P666 5–CN]Br, spectra in the C—H stretching region (Fig. 4) were identical to those of the [P88 8 8 8][Cl] series, where n = 4, 5, 8, or 10. This was accompanied by the absence of characteristic modes for the –C≡N group (spectra investigated but not shown in this report) attached to the cation in 5-cyanopentyl ([P888 5–CN]Br) and 5-cyanopropyl ([P666 5–CN]Br). This was not surprising, as the much weaker C≡N stretching mode compared to the C—H stretching mode could easily be buried, especially in systems where low surface conformational ordering is expected (due to the presence of long trioctyl and trihexyl chains), which is the case for these two. For the C≡N mode to be visible, the rigid requirement of a well-oriented –C≡N or –C≡C≡N group at the surface would have to be satisfied, which in these samples are quite unlikely.

In the case of [P666 6 14][B(CN)4], obvious deviations from the typical [P888 n][Cl] series spectra (n < 12) but similar for n ≥ 12 emerged (Fig. 4). While in the [P888 n][Cl] series (n < 12) the d mode is approximately half the intensity of the r mode, this marked difference is lost in [P666 6 14][B(CN)4]. In the latter salt, the r mode is decreased to about half the intensity (compared to [P888 8][Cl]), resulting in the intensity of the r mode matching the intensity of the d mode. This overall decrease in the r mode intensity suggests that [P666 6 14][B(CN)4] displays more conformational disorder, probably in the form of gauche defects, than [P888 8][Cl]. This is probably due to the presence of a long tetradecyl chain among the trihexyl chains attached to phosphorus, which highly distorts the molecular symmetry. Knowing this, it is important to mention that using previous estimations by Rebelo, Coutinho, and co-workers,2,50 the molecular volume of [P666 6 14]+ at 947 Å3 is equal to that of [P888 8]+. However, the molecular orientation effectively dictates the surface structure more than the molecular size, as the SFG results reveal. Furthermore, the fact is that [B(CN)4]+ is a bulkier anion (molecular volume = 143 Å3)51 compared to CCl4 (molecular volume = 24 Å3),52,53 which may indicate that increased interionic distance between the central phosphorus atom and the anion can be expected in [P666 6 14][B(CN)4] compared to [P888 8][Cl]. This, in addition to the steric constraints from bulky alkyl substituents in the cation, contributes to a more disordered surface structure for ionic liquids with a long chain. However, the anion appears to have little perturbation on the surface structure of these ionic liquids.

Thus, it can be concluded based upon these data that the cation spectra reveal a surface populated by all four alkyl groups attached to the phosphonium cation (Figs. 4 and 5). The appearance of specific features from shorter alkyl chain vs. longer alkyl chain groups distinguishable from each other serves to support this observation. For instance, Fig. 4 shows vibrational modes of the butyl, ethyl, and terminal methyl groups of [P12 2 4][NTf2] which are clearly discernible in the spectra. Specifically, the presence of the unique P—CH3 mode suggests that the chains appear at the surface quite randomly.
(single-chain model), as this mode is not as low energy as the other butyl or ethyl chains. Because of the presence of the terminal methyl group and much shorter chains compared to the rest of the samples studied here, $[P_{1224}]^+$ has significantly less steric encumbrance around the central phosphorus atom and represents the most unsymmetrical cation. The lowest intensities in SFG spectra were observed for the $[P_{1224}]^+$ cation, suggesting a highly disordered structure, which was expected.

As mentioned, Fig. 5 showed methoxy-functionalized tetraalkylphosphonium chlorides, $[P_{8882-OMe}]^+$ and $[P_{4444-OMe}]^+$, displaying features of the unique substituents attached to the central phosphorus atom, namely, 2-methoxyethyl (–C$_2$H$_4$OMe) and 4-methoxybutyl (–C$_4$H$_9$OMe). Individual spectral profiles of these two independent cases indicate that, for the unique chains to be detected at the surface, 2-methoxyethyl in $[P_{8882-OMe}]^+$ and 4-methoxybutyl in $[P_{4444-OMe}]^+$ must be close enough in surface energy as their purely alkyl chain equivalent, $[P_{8884}]^+$ and $[P_{4444}]^+$, respectively. Contact angle measurements using self-assembled monolayers (SAMs) on various metal substrates reveal slightly lower water contact angles for SAMs as their purely alkyl chain equivalent, $[P_{8884}]^+$ and $[P_{4444}]^+$, respectively. Contact angle measurements using self-assembled monolayers (SAMs) on various metal substrates reveal slightly lower water contact angles for SAMs as their purely alkyl chain equivalent, $[P_{8884}]^+$ and $[P_{4444}]^+$, respectively. Contact angle measurements using self-assembled monolayers (SAMs) on various metal substrates reveal slightly lower water contact angles for SAMs as their purely alkyl chain equivalent, $[P_{8884}]^+$ and $[P_{4444}]^+$, respectively. Contact angle measurements using self-assembled monolayers (SAMs) on various metal substrates reveal slightly lower water contact angles for SAMs as their purely alkyl chain equivalent, $[P_{8884}]^+$ and $[P_{4444}]^+$, respectively. Contact angle measurements using self-assembled monolayers (SAMs) on various metal substrates reveal slightly lower water contact angles for SAMs as their purely alkyl chain equivalent, $[P_{8884}]^+$ and $[P_{4444}]^+$, respectively. Contact angle measurements using self-assembled monolayers (SAMs) on various metal substrates reveal slightly lower water contact angles for SAMs as their purely alkyl chain equivalent, $[P_{8884}]^+$ and $[P_{4444}]^+$, respectively.

While the specific features of the unique methoxy-containing substituent are detected, it is beyond the scope of these experiments to distinguish separately the contributions of the trioctyl or tributyl chains vs. the single methoxy-containing group. Ultimately, the presence of a terminal –OCH$_3$ group sufficiently distorts the surface structure, as seen in the decrease of the r$^+$ mode intensity in $[P_{8882-OMe}]^+$, to almost half its original intensity than in $[P_{8884}]^+$, as well as the slight, but obvious decrease in intensity of the r$^+$ mode in $[P_{4444-OMe}]^+$ relative to $[P_{4444}]^+$. The clear appearance of the r$^+$ mode in $[P_{4444-OMe}]^+$ vs. its absence in $[P_{4444}]^+$ is further indication of gauche defects.

CONCLUSION

SFG spectroscopy results in conjunction with MD simulations provide more detailed picture of the gas-liquid interface for tetraalkylphosphonium ionic liquids. They have single chains from each of the phosphonium centers projecting to the gas phase. However, there is a nearly equal probability for any one of the four alkyl groups to be present. Furthermore, the experimental data and computations show that the chains are relatively disordered with a high degree of conformational motion possible.

SUPPLEMENTARY MATERIAL

See supplementary material for more detailed description of sample preparations, MD simulation details, and polarization spectra of the SFG spectroscopy.

ACKNOWLEDGMENTS

S.B thanks the Welch Foundation (Grant No. E-1531) and N.V.P., K.R.S., and G.A. thank Cytec Canada, for support of the project. Computer time provided in part by the University of Houston uHPC founded by NSF (Award No. ACI: 1531814) and Institute for Research in Fundamental Sciences (IPM) is greatly acknowledged. M.H.G. thanks the University of Houston for granting his sabbatical leave during January to September 2017 and support by INSF (Grant No. 93044214). This article is dedicated to our friend and coauthor K.R.S. whose enthusiasm and guidance in science will be very much missed.