Animal models of retinal vein occlusion

Published in:
Investigative Ophthalmology and Visual Science

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 the authors. This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Animal Models of Retinal Vein Occlusion

Meiaad Khayat,1,2 Noemi Lois,1 Michael Williams,3 and Alan W. Stitt1

1Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast, United Kingdom
2Department of Anatomy, College of Medicine–Rabigh Branch, King Abdulaziz University, Jeddah, Saudi Arabia
3Centre for Medical Education, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast, United Kingdom

Correspondence: Noemi Lois, Welcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, 97 Lisburn Road, BT9 7AE, Belfast, United Kingdom; n.lois@qub.ac.uk.

Submitted: August 10, 2017
Accepted: October 16, 2017

Citation: Khayat M, Lois N, Williams M, Stitt AW. Animal models of retinal vein occlusion. Invest Ophthalmol Vis Sci. 2017;58:6175–6192. DOI: 10.1167/iovs.17-22788

PURPOSE. To provide a comprehensive and current review on the available experimental animal models of retinal vein occlusion (RVO) and to identify their strengths and limitations with the purpose of helping researchers to plan preclinical studies on RVO.

METHODS. A systematic review of the literature on experimental animal models of RVO was undertaken. Medline, SCOPUS, and Web of Science databases were searched. Studies published between January 1, 1965, and March 31, 2017, and that met the inclusion criteria were reviewed. The data extracted included animal species used, methods of inducing RVO, and the clinical and histopathologic features of the models, especially in relation to strengths, limitations, and faithfulness to clinical sequelae.

RESULTS. A total of 128 articles fulfilling the inclusion criteria were included. Several species were used to model human branch and central RVO (BRVO; CRVO) with nonhuman primates being the most common, followed by rodents and pigs. BRVO and CRVO were most commonly induced by laser photoocoagulation and all models showed early features of clinical disease, including retinal hemorrhages and retinal edema. These features made many of the models adequate for studying the acute phase of BRVO and CRVO, although macular edema, retinal ischemia, and neovascular complications were observed in only a few experimental animal models (laser-induced model in rodents, pigs, and nonhuman primates, diathermy-induced model in pigs, and following intravitreal injection of PD0325901 in rabbits for BRVO; and in the laser-induced model in rodents, rabbits, and nonhuman primates, diathermy-induced model in nonhuman primates, following permanent ligation of the central retinal vein in nonhuman primates, and with intravitreal injection of thrombin in rabbits for CRVO).

CONCLUSIONS. Experimental animal models of RVO are available to study the pathogenesis of this disease and to evaluate diagnostic/prognostic biomarkers and to develop new therapeutics. Data available suggest laser-induced RVO in pigs and rodents to be overall the best models of BRVO and the laser-induced RVO rodents the best model for CRVO.

Keywords: retinal vein occlusion, retinal vein thrombosis, ischemia, experimental models, animal models, in vivo models

Retinal vein occlusion (RVO) is the second most common vascular cause of visual loss, surpassed only by diabetic retinopathy.1–5 Obstruction of the retinal venous system is commonly caused by thrombus formation, which may result in devastating consequences, including macular edema and neovascular complications, leading to visual impairment and blindness.1,6–14 RVO has been typically classified into central (CRVO), branch (BRVO), hemicentral and hemispheric types based on the site of the occlusion.1,2,4,5,15–17 Each of these RVO types has been further subclassified into ischemic and nonischemic forms based on the severity of the disease and the likelihood of developing neovascular complications. Ischemic RVO (iRVO) is the most severe form, associated with higher risk of complications and having a poorer prognosis than non-iRVO.1,2,4,5,17,18

Current treatments of RVO, including laser photoocoagulation, intravitreal anti-VEGF therapies, intravitreal steroids, and pars plana vitrectomy, target the complications of RVO, namely macular edema and neovascularization and its consequences.1,5,7,10,16,17,19–24 and may not fully reverse the functional and structural damage result of the disease.10,25–59 Furthermore, each of these treatments carries a risk to patients, such as destruction of the retina following laser photoocoagulation, endophthalmitis following intravitreal injections, and cataract and glaucoma as a result of steroid administration. Treatments for macular edema that are a result of RVO have been predominantly investigated for the nonischemic form, with most randomized clinical trials excluding or including only few with the iRVO.5,5,9,40,45–47,52–55,60 In trials in which they have been included, only approximately 50% or less of patients with iRVO show a meaningful improvement in visual acuity following these therapies,54,57,58,45,49,51–57 with often poor final visual acuity (≤ 20/100) despite treatment.10,34,36–38,41,43,51,57

Further research is still needed to improve current understanding of the pathogenesis of RVO as well as to identify more clinically effective and cost-effective therapeutic options. This is especially true for patients with iRVO.

Experimental animal models often can be useful to study disease mechanisms and to test the efficacy and potential
toxicity of new treatments. Such animal approaches have been successful in ophthalmic research, allowing advancement in our understanding of pathogenesis and development of improved novel therapies.51–66 Experimental animal models of RVO also are available, which variably develop functional and structural features resembling those present in people with this disorder. Herein, we aim at providing a comprehensive up-to-date review on experimental animal models of RVO including species, methods of vessel occlusion, their clinicohistopathologic features, and the limits of their translational value. Taken together, this focused and in-depth review ought to help researchers design future studies and appreciate the strengths and weaknesses of the animal models they use.

METHODS

A systematic review of the literature was conducted, and data sources were Medline, SCOPUS, and Web of Science databases. Keywords including “retinal vein occlusion,” “retinal vein thrombosis,” and “retinal vein obstruction” were combined with “experimental models” or “animal models.” The search covered published articles from January 1, 1965, to March 31, 2017, and was filtered to include articles in English only. The included articles of studies describing methods of creating animal models of RVO and their findings were analyzed, and data contained in these articles were used to inform species-specific model systems, the range of methods for inducing vein occlusion, pathologic and clinical features developed in these models, and strengths and limitations of available models. The information extracted was used to populate Tables 1 through 8 of this review. In addition, their clinical value and potential translational implications for the management of patients with this disorder was considered. Changes on levels of cytokines/chemokines/growth factors and other biochemical and molecular events occurring as a result of the induction or RVO in these models, as well as effects of treatments tested in these models, as well as effects of treatments tested in these animal models are beyond the scope of this review and, thus, are not summarized herein.

RESULTS

Studies Included

After removal of duplicates, a total of 320 titles were identified and their abstracts obtained and evaluated for potential inclusion in the review. Of the 320 abstracts, 193 were found to relate to studies outside the scope of this review and, thus, were excluded. Full articles of the remaining 128 studies were obtained, found to be directly related to the topic of this review, and used to extract pertinent data.

Species

Several animal species have been used to study RVO, including rodents,67–100 rabbits,101–114 cats,115–124 dogs,125–127 pigs,128–130 and nonhuman primates82,111,129,157–196 (Tables 1, 2). Each of these species has its own size and anatomic advantages, but also ethical challenges and cost implications; these have been summarized in Table 3. Although the retina and retinal vessels of these animals share many anatomic features with humans, differences still exist and are more pronounced in some species (Table 4). None of the animal models, with the exception of the nonhuman primate, have an anatomic macula or fovea centralis.197 Pigs,198–202 cats,201,203 and dogs198,204 have a central retinal area with high density of ganglion cells and cone photoreceptors known as area centralis, which would correspond to the fovea centralis in humans but is less specialized and cannot be identified by gross fundus examin-
Methods of Inducing RVO

Several techniques have been used to induce an RVO in experimental animals. These have been summarized, including their advantages and disadvantages, in Table 5. In the most cases, experimental RVO has been induced by traumatizing one or more retinal veins using laser photocoagulation, or intravitreal injection of PD032590.

Branch Retinal Vein Occlusion. Experimentally, BRVO has been produced by using laser photocoagulation, photodynamic coagulation, or intravitreal injection of PD032590.

Laser Photocoagulation. In this method, laser irradiation is performed on selected retinal veins to produce BRVO. Laser photocoagulation is typically done on the slit-lamp using a contact lens. Some studies have combined laser photocoagulation with vitrectomy.

Different types of laser and wavelengths have been used, commonly 514-nm Argon, and their parameters varied depending on the type of laser used, type of animal, and use or not of adjuvants. Photosensitizers, such as Rose Bengal, have been the most commonly used photosensitizer. Other photosensitizers include erythrosin B, sodium fluorescein, chloroaluminium sulfonated phthalocyanine, PAD-S31, and mono-L-aspartyl chlorin e6 (NPe6).

Combination of intravitreal injection of the dye and laser photocoagulation has been used. The amount of laser energy required to produce the RVO depends on the type of laser used, type of animal, and use or not of adjuvants (Table 6). Other methods that have been used include intravitreal injection of PD032590, combined with burn injury, or intravitreal injection of PD032590.
tion of thrombin (50 units) and laser photocoagulation has also been reported. Endophotocoagulation has also been used to achieve a vein occlusion; for this technique, an endolaser probe is inserted into the eye through a sclerostomy (without removing the vitreous) and retinal veins are then photocoagulated until evidence of occlusion is seen.146,147

Photodynamic Therapy. Photodynamic coagulation is another method that has been used to induce BRVO. 93–95,112,119,148,149 This method involves light illumination using a slit-lamp and a contact lens, or an endo illuminator in combination with vitrectomy aiming at selected retinal vein or veins, with care not to damage retinal arteries, for a duration ranging between 6 and 20 minutes until evidence of venous occlusion is observed.93–95,112,119,148,149 Photosensitizers, such as Rose Bengal,93–95,112,119,148,149 sodium fluorescein,119 and NPe6,82 have been used in different doses depending on the species used to facilitate thrombus formation.

Diathermic Cauterization. An alternative way to produce experimental BRVO is by using diathermy, which has been undertaken via a pars plana sclerotomy.75,120–124,150–152 In cats, BRVO has been induced with indirect ophthalmoscopy and 20-gauge bipolar diathermy that is applied to the targeted vein/veins for 5 seconds.120–124 In pigs, a technique has been described that produces a BRVO following a temporal canthotomy, conjunctival incision, and performance of three sclerotomies at 10, 2, and 5 o’clock, 2 mm posterior to the corneal limbus.150–153 In this method, a light source and a blunt bipolar diathermy probe are inserted into the vitreous and one or two major retinal veins are coagulated approximately 1 disc diameter away from the optic disc for 5 to 7 seconds after 5 seconds of compression and under direct view.

| Table 3. Advantages and Inconveniences of Species Used as Animal Models of RVO |
|-----------------------------------|-----------------------------|-----------------------------|
| Animal | Advantages | Disadvantages |
| Rodents | Low cost | Small eyes |
| | Easy to obtain | Lack of macula |
| | Easy to handle | |
| | Reproducible | |
| | Feasible for genetic manipulation | |
| | Suitable for evaluating the effects of therapeutic interventions | |
| | Small size of the animal, which allows keeping larger number of animals in smaller spaces | |
| | Share some anatomic similarities with human (Table 4) | |
| Rabbits | Low cost | Anatomy of the rabbit’s retina significantly different from that of humans |
| | Easy to obtain | Lack of macula |
| | Relatively large eyes | |
| | Accessible retinal vessels | |
| | Eye very suitable for diagnostic and surgical procedures | |
| | Share some anatomic similarities with human (Table 4) | |
| Cats | Relatively large eyes | High cost |
| | Accessible retinal vessels | Limited availability |
| | Eye very suitable for diagnostic and surgical procedures | Can be aggressive and difficult to handle |
| | Share some anatomic similarities with human (Table 4) | Ethical considerations |
| Dogs | Relatively large eyes | High cost |
| | Accessible retinal vessels | Limited availability |
| | Eye suitable for diagnostic and surgical procedures | Can be aggressive and difficult to handle |
| | Share some anatomic similarities with human (Table 4) | Ethical considerations |
| Pigs | Eye size and scleral thickness are nearly identical to humans | High cost |
| | Eye suitable for diagnostic and surgical procedures | Large size of the animal |
| | Share some anatomic similarities with human (Table 4) | Requires large housing facilities |
| Nonhuman primates | Anatomy almost identical to human | High cost |
| | Accessible retinal vessels | Limited availability |
| | | Difficult to handle |
| | | Requires highly experienced team, and special housing facilities |
| | | Ethical considerations |
through an operating microscope and with the aid of a fundus contact lens. This procedure does not involve vitrectomy.

Intravitreal Injection of Substances. PD0325901 (N-[2,3-dihydroxy-propoxy]-3,4-difluoro-2-[fluoro-4-iodo-phenylamino]-benzamide) is a mitogen-activated protein kinase inhibitor that has been used in clinical trials for the treatment of solid tumors benzbamide) is a mitogen-activated protein kinase inhibitor that has been used in clinical trials for the treatment of solid tumors.67–75,101,111,157–217 In one study, a through-and-through suture was placed in the cornea, in addition to the laser photocoagulation in nonhuman primate models, to create an aqueous leak and subsequent hypotony to produce iris hemorrhage. This model was successfully created through the intravitreal injection of thrombin over the wall of the rabbit’s retinal veins (thrombin solution 0.01 mL [5 units]) under direct vision using a 27-gauge needle. A Goldmann contact lens and operational microscope were used to view the fundus.67–75

NPe6: Another animal model of CRVO, also in rabbits, was developed in rats and in pigs.67–75,102 Based on the premise that the extrinsic coagulation mechanism can be triggered by thromboplastin in the perivascular connective tissues, CRVO was successfully produced also to produce CRVO in rats and in pigs.67–75,102 This method, however, included the ciliary vessels and the central retinal artery and, thus, not reproducing an isolated CRVO.

Intravitreal Injection of Substances.

- **Thrombin:** A different CRVO model, the Hirosaki model, was developed in rabbits as described in one study.102 Based on the premise that the extrinsic coagulation mechanism can be triggered by thromboplastin in the perivascular connective tissues, CRVO was successfully produced also to produce CRVO in rats and in pigs.67–75,102

NPe6: Another animal model of CRVO, also in rabbits, was developed in rats and in pigs.67–75,102 Based on the premise that the extrinsic coagulation mechanism can be triggered by thromboplastin in the perivascular connective tissues, CRVO was successfully produced also to produce CRVO in rats and in pigs.67–75,102

Mechanical Ligation.

- Permanent ligation of central retinal vein: Mechanical ligation of the central retinal vein was used in nonhuman primates to produce CRVO in one study.174 Through a lateral orbital approach and using the operating microscope to aid visualization and achieve adequate magnification, the central retinal vein was identified and ligated using a 6-0 silk suture. Two approaches were then used to achieve a CRVO: (1) a small incision was made proximal to the suture and neovascularization was introduced through a cannula into the central retinal vein where it solidified, or (2) the central retinal vein was cut after ligation.174
- Transient ligation or clamping of the optic nerve: Transient ligation/clamping (60–120 minutes) of the optic nerve using a lateral orbital approach has been used also to produce CRVO in rats and in pigs.67–75 This method, however, included the ciliary vessels and the central retinal artery and, thus, not reproducing an isolated CRVO.

Clinical and Histopathologic Features of RVO Models

Clinical and/or histopathologic features observed in animal models of BRVO and CRVO were described in 89 and 38 articles, respectively, identified in our search. Macular edema has been addressed in only 5 of 21 studies on nonhuman primate models of BRVO, all laser-induced and in only 2 of 21 studies on nonhuman primate models of CRVO,
both diathermy-induced.170,195 Ischemia, defined by development of neovascular complications, extensive areas of capillary nonperfusion (capillary dropout), or both, or capillary nonperfusion associated with atrophy/cell loss of the inner retinal layers, has been reported in 28 of 89 studies in laser-induced BRVO models of rodents (n \geq 8), 80,83,85,89,90,92,96,97 and nonhuman primates (n \geq 6)130–134,154 and in thrombin-induced CRVO models in rabbits (n = 1)175,176,178–181,184,187–190,192,193,195 and nonhuman primates (n = 9)157–160,162–166 in permanent ligation of central retinal vein CRVO models in nonhuman primates (n = 1)174 and in thrombin-induced CRVO models in rabbits (n = 1)174.

The features described in this section, unless otherwise specified, do not refer to the changes observed at the site of the occlusion and caused by the procedure used to create the RVO itself, but rather those result of the vein occlusion. All models showed early features classically observed in human BRVO and CRVO, including cessation of blood flow and venous dilation, engorgement, and tortuosity distal to the

Table 5: Advantages and Disadvantages of the Different Methods Used to Induce RVO

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>photosensitive dye</td>
<td>Easy to undertake</td>
<td>Inner retina damage at the site of the laser treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Successful in 89–100% of cases</td>
<td>May rupture retinal vessels and cause vitreous hemorrhage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Many studies supporting this technique</td>
<td>Requires laser equipment</td>
<td></td>
</tr>
<tr>
<td>Photodynamic therapy +</td>
<td>Produces BRVO</td>
<td>Potential phototoxicity with photosensitizers and sun/light exposure</td>
<td>93–95, 112, 119, 148, 149</td>
</tr>
<tr>
<td>photosensitive dye</td>
<td>Successful in 50–100% of cases</td>
<td>Inner/outer retinal damage at the site of the light application</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exudative retinal detachment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retinal necrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires specialized equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Successful in 90–100% of cases</td>
<td>Requires access to surgical facilities to produce CRVO</td>
<td></td>
</tr>
<tr>
<td>Permanent ligation of the central</td>
<td></td>
<td>Successful in 100% of cases</td>
<td>174</td>
</tr>
<tr>
<td>retinal vein</td>
<td></td>
<td>Requires access to surgical facilities to produce CRVO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May affect ciliary vessels and central retinal artery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only 1 reported study</td>
<td></td>
</tr>
<tr>
<td>Transient ligation/clamping of</td>
<td>Produces CRVO</td>
<td>Invasive</td>
<td>76–79, 128</td>
</tr>
<tr>
<td>optic nerve</td>
<td>Successful in 100% of cases</td>
<td>Requires access to surgical facilities to produce CRVO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Affects ciliary vessels and central retinal artery</td>
<td></td>
</tr>
<tr>
<td>Intravitreal thrombin injection</td>
<td>Produces CRVO</td>
<td>Successful in only 43% of cases</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>No mechanical vascular damage</td>
<td>Only 1 reported study</td>
<td></td>
</tr>
<tr>
<td>Intravitreal ET-1 injection</td>
<td>Produces BRVO</td>
<td>Only 1 reported study</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Successful in 100% of cases</td>
<td>Transient occlusion (50–70 minutes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No mechanical vascular damage</td>
<td>Affects both retinal arteries and veins</td>
<td></td>
</tr>
<tr>
<td>Intravitreal NPe6 injection</td>
<td>Produces BRVO</td>
<td>Only 1 reported study</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Successful in 100% of cases</td>
<td>May produce features unrelated to RVO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No mechanical vascular damage</td>
<td>Takes 1 week to produce RVO</td>
<td>114</td>
</tr>
<tr>
<td>Intravitreal PD0325901 injection</td>
<td>Produces BRVO</td>
<td>Only 1 reported study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Successful in 100% of cases</td>
<td>May produce features unrelated to RVO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No mechanical vascular damage</td>
<td>Takes 1 week to produce RVO</td>
<td></td>
</tr>
</tbody>
</table>

BRVO, branch retinal vein occlusion; CRVO, central retinal vein occlusion; RVO, retinal vein occlusion; ET-1, endothelin-1; NPe6, mono-L-aspartyl chlorin E6.
Table 6. Parameters of Laser Photocoagulation Used in the Different Animal Models

<table>
<thead>
<tr>
<th>Animal</th>
<th>Type of Laser</th>
<th>Wavelength, nm</th>
<th>Adjuvant</th>
<th>Power</th>
<th>Duration, s</th>
<th>Size</th>
<th>No. of Shots</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mice</td>
<td></td>
<td></td>
<td>Krypton</td>
<td>530.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yag</td>
<td>532</td>
<td>1 mL 1% fluorescein</td>
<td>200 mW</td>
<td>0.5</td>
<td>50 µm</td>
<td>7–12</td>
<td>90, 92</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>532</td>
<td>0.15 mL Rose Bengal</td>
<td>160 mW</td>
<td>0.8–2.5</td>
<td>50 µm</td>
<td>2–5</td>
<td></td>
</tr>
<tr>
<td>Rats</td>
<td>Argon</td>
<td>514</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>80–150 mW</td>
<td>0.1–0.2</td>
<td>50–100 µm</td>
<td>6–20</td>
<td>68, 69, 73, 81, 83, 96, 217, 220</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>490</td>
<td>IV PAD-S51 (10 mg/kg)</td>
<td>3 mW</td>
<td>N/A</td>
<td>300 µm</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>N/A</td>
<td>IP 0.3 mL 10% sodium</td>
<td>100–200 mW</td>
<td>0.2</td>
<td>50 µm</td>
<td>3–5</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>N/A</td>
<td>IV 0.2 mL 10% sodium</td>
<td></td>
<td>50–100 mW</td>
<td>0.5–1</td>
<td>50 µm</td>
<td>1–12</td>
</tr>
<tr>
<td></td>
<td>Diode</td>
<td>532</td>
<td>IV Rose Bengal (20 mg/kg)</td>
<td>100 mW</td>
<td>0.4</td>
<td>75 µm</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diode</td>
<td>532</td>
<td>180–240 mW</td>
<td>0.4</td>
<td>100 µm</td>
<td>5–7</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diode</td>
<td>675</td>
<td>IV PAD-S51 (10 mg/kg)</td>
<td>3 mW</td>
<td>N/A</td>
<td>300 µm</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>532</td>
<td>IV 2% Erythrosin B (20 mg/kg)</td>
<td>10 mW</td>
<td>0.2</td>
<td>100 µm</td>
<td>5–10</td>
<td>74</td>
</tr>
<tr>
<td>Rabbits</td>
<td>Argon</td>
<td>N/A</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>90–120 mV</td>
<td>0.2–0.5</td>
<td>50–125 µm</td>
<td>5–20</td>
<td>101, 104, 107</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>532</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>150–300 mW</td>
<td>0.5</td>
<td>125 µm</td>
<td>10–30</td>
<td>109, 110</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>N/A</td>
<td>IV Rose Bengal (50 mg/kg)</td>
<td>0.14 mW</td>
<td>0.3</td>
<td>100 µm</td>
<td>5–20</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Diode</td>
<td>670</td>
<td>IV CASPc (5 mg/kg)</td>
<td>2 mW</td>
<td>N/A</td>
<td>0.5 mm²</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Cats</td>
<td>Argon</td>
<td>514</td>
<td></td>
<td>300–500 mV</td>
<td>0.2</td>
<td>200 µm</td>
<td>20–25</td>
<td>116–118</td>
</tr>
<tr>
<td>Dogs</td>
<td>Argon</td>
<td>514</td>
<td>IV Rose Bengal (50 mg/kg)</td>
<td>100–150 mW</td>
<td>0.2</td>
<td>100 µm</td>
<td>15–20</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Diode</td>
<td>Green</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>100–150 mW</td>
<td>0.2</td>
<td>100 µm</td>
<td>15–20</td>
<td>127</td>
</tr>
<tr>
<td>Pigs</td>
<td>Argon</td>
<td>514</td>
<td>IV Rose Bengal (10–15 mg/kg)</td>
<td>100–180 mW</td>
<td>1</td>
<td>100–125 µm</td>
<td>4–6</td>
<td>132, 134, 137, 139, 141, 151, 155</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>514</td>
<td></td>
<td>250 mW</td>
<td>0.2–0.5</td>
<td>500 µm</td>
<td>N/A</td>
<td>136, 140</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>532</td>
<td>IV Rose Bengal (10 mg/kg)</td>
<td>400 mW</td>
<td>0.5</td>
<td>N/A</td>
<td>20–40</td>
<td>144, 145, 156</td>
</tr>
<tr>
<td></td>
<td>Argon (endophotocoagulation)</td>
<td>532</td>
<td>IV Rose Bengal (10 mg/kg)</td>
<td>140 mW</td>
<td>0.1</td>
<td>N/A</td>
<td>N/A</td>
<td>146, 147</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>N/A</td>
<td>IV 1 mL 10% sodium</td>
<td>100–20 mW</td>
<td>0.2</td>
<td>200 µm</td>
<td>N/A</td>
<td>142</td>
</tr>
<tr>
<td>Nonhuman</td>
<td>Argon (coherence radiation 800)</td>
<td>N/A</td>
<td>IV 0.5–2 mL of 10% sodium</td>
<td>100–450 mW</td>
<td>0.2</td>
<td>50–100 µm</td>
<td>N/A</td>
<td>192–194</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>N/A</td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>150–190 mW</td>
<td>5</td>
<td>100 µm</td>
<td>5–7</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>Green</td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>400–500 mW</td>
<td>0.5</td>
<td>500 µm</td>
<td>N/A</td>
<td>167, 185</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>N/A</td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>200–500 mW</td>
<td>0.1–0.2</td>
<td>100–200 µm</td>
<td>N/A</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>675</td>
<td>IV CASPc</td>
<td>N/A</td>
<td>N/A</td>
<td>300 µm</td>
<td>N/A</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>129, 157, 158, 176–181</td>
</tr>
<tr>
<td></td>
<td>Xenon arc</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>188, 189</td>
</tr>
<tr>
<td></td>
<td>Dye</td>
<td>577</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>186, 188</td>
</tr>
<tr>
<td></td>
<td>Krypton</td>
<td>N/A</td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>150–190 mW</td>
<td>5</td>
<td>100 µm</td>
<td>N/A</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Diode</td>
<td>664</td>
<td>IV NP6 (2 mg/kg)</td>
<td>N/A</td>
<td>N/A</td>
<td>1200 µm</td>
<td>N/A</td>
<td>82</td>
</tr>
</tbody>
</table>

CASPC, chloraluminium sulfonated phthalocyanine; IP, intraperitoneal; IV, intravenous; N/A, no data available.
occlusion site. Moreover, all models, except the ET-1-induced CRVO, showed retinal hemorrhages and various degrees of retinal edema, which were commonly observed within the first 48 hours of RVO induction. 170,178,180,187,189,191,192,195,216,221 Peak edema was observed at day 4, 70,74,84,89,96,97,102,108,129,156,169,170,172,192,222 various degrees of exudative retinal detachment developed in many eyes of laser-induced and diathermy-induced BRVO. 67,74,80,85,89,96,97,105,115,121,124,126,132,186 and laser-induced CRVO eyes. 67,70,174 Bollous retinal detachment also was observed in many models that resolved spontaneously during follow-up. 67,70,74,85,89 Changes in the thickness of the overall retina and individual retinal layers as a result of the edema (thickening) or ischemia (thinning) were evaluated mainly by histopathology. 70,74,76,89–92,94,95,114,121,129,131–133,151,154,169,174,177,187,189,190,192,195,216,221 In five studies, optical coherence tomography (OCT) was used also for this purpose. 75,80,90,91,100 Both CRVO and BRVO models showed significant increase in the thickness of the inner retinal layers 1 to 4 days postinduction, followed by gradual reduction over time, with follow-up periods ranging between 7 and 28 days. In many models, retinal thickness was reduced during the follow-up to values below those detected at baseline (atrophic thickening); this was observed at 7 to 14 days from RVO induction. 75,80,90,91,100

Branch Retinal Vein Occlusion. Macular Edema. Macular edema in the nonhuman primate models was observed as early as 1 to 6 hours following venous occlusion 80,193 and became prominent at 7 to 9 days postocclusion. 180,193 It was found in up to 100% of treated eyes in one of the four studies on nonhuman primate models that described macular edema in induced BRVO (see above). 180,193 Both intracellular neural and extracellular edema were reported. 180,193,195 The edema was mainly observed in the nerve fiber layer and outer plexiform layer. 190,193 Adjacent to the extracellular edema often appeared shrunk or compressed. 190,193 In addition, macular edema was often associated with photoreceptor cell loss, which persisted after resolution of macular edema. 180,186,193 Spontaneous resolution of macular edema occurred in all occluded eyes between 14 days and 2 years after laser photocoagulation clinically. 180,186,190,195 In one study, histopathologic examination of six eyes at 48 months showed cystic spaces in the outer plexiform layer in four of six eyes. 180,193

Retinal Capillary Nonperfusion and Reperfusion. Various degrees of capillary nonperfusion in laser-induced, diathermy-induced, and PD325901-induced models of BRVO were reported. 74,80,85,89,92,94,97,105,121,135,150,157,170,180,189,191–195,216,222 Areas of capillary nonperfusion were observed as early as 5 days following venous occlusion 85,89 and found to progress with time. 179,192 Extensive or severe areas of capillary nonperfusion were prominent 1 to 4 weeks following vein occlusion 182,187,192,222 and were observed in up to 75% of eyes. 96,153,221 The areas of capillary nonperfusion persisted during the follow-up, which ranged between 1 and 20 weeks, despite reperfusion. 70,80,85,89,92,94,96,121,135,150,175,179,189,191–195,221,222 Reperfusion in these models was either by recanalization/reopening of the occluded vessels in some or all eyes, 70,80,85,89,92,94,96,97,105,110,112,115,120,126,129,152,153,157,186,187,222 or development of collateral vessels. 85,89,92,96,104,105,120,121,124,129,133,135,153,175,179,180,183,187,189,192,221,222 Recanalization was observed in 0% to 100% of eyes of BRVO models 1 to 14 days following induction. 70,80,85,89,92,94,96,97,104,110,112,120,124,129,133,135,175,179,180,183,187,189,192,221,222 Collateral vessels were observed in 14 to 5 days following establishment of the RVO. 92,129,179,180,192 (Tables 7, 8)

Neovascular Complications. Posterior segment neovascularization occurred in some laser-induced BRVO models in rodents, 85,89,96 pigs, 132,154,154,221,222 and nonhuman primates, 175,188,189,192 but not in the other BRVO models. Retinal and/or disc neovascularization was observed in 8.3% of eyes as early as 7 days postocclusion. 95,193 and in 60% to 70% of eyes 14 days following laser induction in rodent models. 85,89 In laser-induced pig models, retinal and/or disc neovascularization were described in approximately 50% to 93% of eyes 3 to 4 weeks following RVO induction 12,135,221,222 and up to 100% of eyes at 6 weeks. 134,193 In laser-induced nonhuman primate models, 9% of eyes developed retinal neovascularization at 4 weeks. 192 Anterior segment neovascularization was observed in laser-induced nonhuman primate models when three major branches were targeted. 176,178,181,184 In this model, up to 100% of eyes developed iris neovascularization within the first 6 days of occlusion. 176,178,181,184 and 17% to 20% developed neovascular glaucoma within 25 days of follow-up. 76,178,184 There was no spontaneous regression during follow-up of 28 to 84 days. 86,90

Vascular Endothelial and Pericyte Cell Loss. Damage and loss of the vascular endothelial cells and pericytes was detected by histopathologic examination in experimental animal models of BRVO. 80,106,123,187,190,193 which resulted in ghost acellular vessels with glial invasion. 170,187,193 observed as early as 1 to 48 hours postocclusion. 120,190,193 Endothelial cell apoptosis was detected as early as 1 day postocclusion. 190 In rodent models, retinal capillary cell loss was observed 3 days following occlusion and significantly worsened at 7 days with 40% pericyte cell loss detected. 80,193

Retinal Atrophy. Atrophy (thinning/loss) of the inner retinal layers 70,74,80,89,91,92,94,95,121,127,125,135,151,154,179,179,189,190,192,195,222 and replacement with gli scars 151,187 has been reported. The loss of the inner retinal layers was first observed 3 days postocclusion 80 and was marked at 7 to 28 days of follow-up. 70,74,80,89,91,92,95,132,153,151,190,192 Damage of the outer retinal layers and loss of the photoreceptors was observed distal to the site of the occlusion in some eyes with laser-induced BRVO and ischemia at 3 to 6 weeks following occlusion. 132,153,222 Photoreceptor cell loss was observed in 67% of eyes at 3 months following the occlusion. 180 Damage to the photoreceptors was reported in photodynamic-induced thrombosis in rats within 2 days of the occlusion, which was most likely related to the photodynamic therapy itself rather than the result of ischemia. 174 Unspecified RPE changes were reported 4 weeks to 3 months following occlusion in laser-induced BRVO nonhuman primate models. 132,180,192

Functional Changes. When conducted, ERG studies showed reduction of the “a” and “b” wave amplitudes of both scotopic and photopic ERG at 1, 2, 3, 4, 6, and 7 days following laser-induced BRVO in rat models. 80,100 In multifocal ERG, a significant decrease in the P1 and N1 amplitudes and prolonged implicit times in the affected retina were observed 4 weeks following thrombus formation in diathermy-induced BRVO in pig models. 151,152 Other features also were observed in some eyes with experimental animal BRVO, such as cotton wool spots, detected at 3 days to 6 weeks in laser-induced nonhuman primate models. 180,192 venous sheathing between 7 days and 3 months, 125,127,129,152,192 microaneurysms 1 to 8 months, 120,125 and reduction of preretinal oxygen saturation measured at different time points between 60 minutes and 3 weeks following occlusion. 120,121,123,151,150,222

Central Retinal Vein Occlusion. Macular Edema. Macular edema was observed as early as 48 hours following venous thrombosis in 14% to 66% of CRVO nonhuman primate models induced by diathermy. 170,193 This had resolved spontaneously in all eyes 14 days following induction. 170,195 (Tables 7, 8)

Capillary Nonperfusion and Reperfusion. Various degrees of capillary nonperfusion were reported in laser-induced,
<table>
<thead>
<tr>
<th>Animal Models of RVO</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodents</td>
<td>70, 74, 80, 83-86, 88-92, 96-100, 220</td>
</tr>
<tr>
<td>Rabbits</td>
<td>104-107, 109, 110</td>
</tr>
<tr>
<td>Cats</td>
<td>115-118</td>
</tr>
<tr>
<td>Dogs</td>
<td>125-127</td>
</tr>
<tr>
<td>Pigs</td>
<td>129-134, 136-142, 144-147, 150-156</td>
</tr>
<tr>
<td>Nonhuman primates</td>
<td>175, 176, 178-181, 184, 187-190, 192, 193</td>
</tr>
</tbody>
</table>

CNP, capillary nonperfusion; EC, endothelial cells; IRL, inner retinal layers; MO, macular edema; N, not developed; N/A, not assessed/no data available; NV, neovascularization; ORL, outer retinal layers; Y, developed.
Table 8. Clinical and Histopathologic Features of CRVO Animal Models

<table>
<thead>
<tr>
<th>Method</th>
<th>Success, %</th>
<th>Retinal Hemorrhage</th>
<th>Retinal Edema</th>
<th>MO</th>
<th>CNP</th>
<th>Recanalization</th>
<th>Collaterals</th>
<th>Posterior Segment NV</th>
<th>Anterior Segment NV</th>
<th>Loss of EC/Pericytes</th>
<th>Loss of IRL</th>
<th>Loss of ORL</th>
<th>RPE changes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser photocoagulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68-70, 74, 75, 220</td>
</tr>
<tr>
<td>Rodents</td>
<td>92-100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Rabbits</td>
<td>93</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
<td>101</td>
</tr>
<tr>
<td>Nonhuman primates</td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
<td>111, 157-160, 162-167</td>
</tr>
<tr>
<td>Diathermy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonhuman primates</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
<td>168-173</td>
</tr>
<tr>
<td>Permanent mechanical ligation of central retinal vein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonhuman primates</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
<td>174</td>
</tr>
<tr>
<td>Transient ligation/clamping of optic nerve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>76, 77, 79</td>
</tr>
<tr>
<td>Pigs</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>128</td>
</tr>
<tr>
<td>Intravitreal thrombin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
<td>102</td>
</tr>
<tr>
<td>Rabbits</td>
<td>43</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
<td>103</td>
</tr>
<tr>
<td>Intravitreal NPe6</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>113</td>
</tr>
<tr>
<td>Intravitreal ET-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbits</td>
<td>100</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>113</td>
</tr>
</tbody>
</table>
permanently ligated in the central retinal vein, and thrombin-induced CRVO models. In one of these studies, it was found to become extensive 2 to 4 weeks following the induction of CRVO and progressed to involve up to 75% of the retinal area 7 weeks postinduction of RVO by laser photocoagulation in 67% of eyes. In thrombin-induced CRVO in rabbits, extensive areas of retinal capillary nonperfusion were observed at 3 months following the occlusion. Recanalization or reopening of the occluded vessels was reported in many studies of laser-induced CRVO, and thrombin-induced CRVO. Most animal models of RVO demonstrated spontaneous reperfusion and/or vascular remodeling, which seemed to occur more rapidly and effectively than in humans with RVO. As a result, persistent ischemic features failed to develop in most models, and iris neovascularization was not observed, except in laser-induced nonhuman primate models. This was observed 4 to 22 days postocclusion in up to 100% of eyes, with some having spontaneous regression 13 to 60 days following laser photocoagulation. Iris fluorescein leakage from iris new vessels was reported in many studies of laser-induced CRVO. Recanalization or reopening of the occluded vessels was observed 1 to 3 weeks following laser photocoagulation in 17% to 90% of rats, with no spontaneous regression described. In nonhuman primate models, however, posterior segment neovascularization was described in only one study, in which disc neovascularization was detected in 17% of eyes due to 26 days postocclusion that resolved spontaneously at day 87, but not in other studies with follow-up periods ranging between 1 and 24 weeks. Thrombin-induced CRVO in rabbits showed retinal neovascularization in 60% of eyes at 3 months following injection. Spontaneous regression of neovascularization in this model was not reported. Iris neovascularization was observed only in laser-induced nonhuman primate models and in up to 100% of eyes, with some having spontaneous regression 13 to 60 days following laser photocoagulation. Iris fluorescein leakage from iris new vessels was observed at 5 days of follow-up in 50% of eyes. Neovascular glaucoma developed in 18% to 53% of eyes in the laser-induced nonhuman primate model 12 to 21 days following occlusion.

Vascular Endothelial and Pericyte Cell Loss. Vascular endothelial and pericyte cell loss has not been described in experimental models of CRVO. Retinal Atrophy. Atrophic thinning of the central retinal layer and cells was reported 7 to 21 days in rodents and rabbits following laser photocoagulation, and 7 to 10 days in diathermy-induced nonhuman primate models, which was in this model associated with gliosis, 3 to 7 days in nonhuman primate models of permanent ligation of the central retinal vein, and 4 days in temporary (60 minutes) ligation of the optic nerve. These changes were not reversible in any of the models during the follow-up, which ranged from 1 to 6 weeks. The ganglion cell loss in overall retina (central, midperipheral, and peripheral retinal regions) was reported to be approximately 11% at 7 days, 30% to 51% at 14 days, and 40% at 21 days following laser-induced RVO in rodents. Atrophy of the outer nuclear layers was observed in the site of laser photocoagulation was reported as early as 4 days following vein occlusion using laser photocoagulation in rodent models. RPE changes were observed in many of the CRVO models.

Functional Changes. Loss of retinal function in these models was confirmed with ERG studies that showed significant reduction of amplitudes in both scotopic and photopic ERGs in laser-induced CRVO in rodents and temporary ligation of optic nerve in rodents.

Other Features. Disc hyperemia was observed within 48 hours in up to 100% of diathermy-induced CRVO in nonhuman primate models, which was secondary to the procedure rather than to the CRVO.

Strengths and Limitations of Available Animal Models

Although none of the animal RVO models described above develop all features occurring in human RVO, almost all models demonstrate the early characteristics of this disease, including retinal hemorrhages and edema, which may make them adequate models to study the acute phase of both BRVO and CRVO. Only a few models, however, developed macular edema (i.e., laser photocoagulation in BRVO nonhuman primate models and diathermy in CRVO nonhuman primate models) which makes the study of this particular feature difficult.

Most animal models of RVO demonstrated spontaneous reperfusion and/or vascular remodeling, which seemed to occur more rapidly and effectively than in humans with RVO. As a result, persistent ischemic features failed to develop in most models, and iris neovascularization was not observed, except in laser-induced nonhuman primate models. This was observed 4 to 22 days postocclusion in up to 100% of eyes, with some having spontaneous regression 13 to 60 days following laser photocoagulation. Iris fluorescein leakage from iris new vessels was observed at 5 days of follow-up in 50% of eyes. Neovascular glaucoma developed in 18% to 53% of eyes in the laser-induced nonhuman primate model 12 to 21 days following occlusion.

Vascular Endothelial and Pericyte Cell Loss. Vascular endothelial and pericyte cell loss has not been described in experimental models of CRVO. Retinal Atrophy. Atrophic thinning of the central retinal layer and cells was reported 7 to 21 days in rodents and rabbits following laser photocoagulation, and 7 to 10 days in diathermy-induced nonhuman primate models, which was in this model associated with gliosis, 3 to 7 days in nonhuman primate models of permanent ligation of the central retinal vein, and 4 days in temporary (60 minutes) ligation of the optic nerve. These changes were not reversible in any of the models during the follow-up, which ranged from 1 to 6 weeks. The ganglion cell loss in overall retina (central, midperipheral, and peripheral retinal regions) was reported to be approximately 11% at 7 days, 30% to 51% at 14 days, and 40% at 21 days following laser-induced RVO in rodents. Atrophy of the outer nuclear layers was observed in the site of laser photocoagulation was reported as early as 4 days following vein occlusion using laser photocoagulation in rodent models. RPE changes were observed in many of the CRVO models.

Functional Changes. Loss of retinal function in these models was confirmed with ERG studies that showed significant reduction of amplitudes in both scotopic and photopic ERGs in laser-induced CRVO in rodents and temporary ligation of optic nerve in rodents.

Other Features. Disc hyperemia was observed within 48 hours in up to 100% of diathermy-induced CRVO in nonhuman primate models, which was secondary to the procedure rather than to the CRVO.

Strengths and Limitations of Available Animal Models

Although none of the animal RVO models described above develop all features occurring in human RVO, almost all models demonstrate the early characteristics of this disease, including retinal hemorrhages and edema, which may make them adequate models to study the acute phase of both BRVO and CRVO. Only a few models, however, developed macular edema (i.e., laser photocoagulation in BRVO nonhuman primate models and diathermy in CRVO nonhuman primate models) which makes the study of this particular feature difficult.

Most animal models of RVO demonstrated spontaneous reperfusion and/or vascular remodeling, which seemed to occur more rapidly and effectively than in humans with RVO. As a result, persistent ischemic features failed to develop in most models, and iris neovascularization was not observed, except in laser-induced nonhuman primate models. This was detected 4 to 22 days postocclusion in up to 100% of eyes, with some having spontaneous regression 13 to 60 days following laser photocoagulation. Iris fluorescein leakage from iris new vessels was observed at 5 days of follow-up in 50% of eyes. Neovascular glaucoma developed in 18% to 53% of eyes in the laser-induced nonhuman primate model 12 to 21 days following occlusion.

Vascular Endothelial and Pericyte Cell Loss. Vascular endothelial and pericyte cell loss has not been described in experimental models of CRVO. Retinal Atrophy. Atrophic thinning of the central retinal layer and cells was reported 7 to 21 days in rodents and rabbits following laser photocoagulation, and 7 to 10 days in diathermy-induced nonhuman primate models, which was in this model associated with gliosis, 3 to 7 days in nonhuman primate models of permanent ligation of the central retinal vein, and 4 days in temporary (60 minutes) ligation of the optic nerve. These changes were not reversible in any of the models during the follow-up, which ranged from 1 to 6 weeks. The ganglion cell loss in overall retina (central, midperipheral, and peripheral retinal regions) was reported to be approximately 11% at 7 days, 30% to 51% at 14 days, and 40% at 21 days following laser-induced RVO in rodents. Atrophy of the outer nuclear layers was observed in the site of laser photocoagulation was reported as early as 4 days following vein occlusion using laser photocoagulation in rodent models. RPE changes were observed in many of the CRVO models.

Functional Changes. Loss of retinal function in these models was confirmed with ERG studies that showed significant reduction of amplitudes in both scotopic and photopic ERGs in laser-induced CRVO in rodents and temporary ligation of optic nerve in rodents.
Although thrombin-induced CRVO rabbit models showed ischemic features, namely areas of capillary nonperfusion and development of retinal neovascularization in 60% of eyes,102 this feature was observed at or after 3 months, which makes the study of the neovascularization in this model time-consuming. In addition, the success rate of developing RVO in this model is as low as 43%,102 and there are not enough studies in the literature that would allow validating the findings in this model. Similarly, laser-induced iCRVO101 and PD0525901-induced iBRVO114 in rabbits do not have adequate supporting literature.

Clinical Value of RVO Models

Although therapeutic strategies are available for people suffering from RVO, these are limited, and a relatively large proportion of patients still lose sight as a result, especially those with iRVO. Treatment is, at present, delivered only once per suffering from RVO, these are limited, and a relatively large proportion of patients still lose sight as a result, especially those with iRVO. Treatment is, at present, delivered only once per

CONCLUSIONS

Several experimental animal models of RVO are available to study the pathogenesis and to test new diagnostic/prognostic/therapeutic interventions for this disease. Selecting the most appropriate ones, based on the information provided in this review, will allow researchers to better adhere to two of the three “Rs” of “reduction” and “refinement,” as “replacement” is not an option when understanding the complex events that take place in RVO. It will also help researchers in the development of new treatment modalities by allowing them to select those that mimic more closely the human disease, that develop its features more consistently and in shorter periods of time. This will subsequently reduce testing times and costs and will improve the planning and design of future, more successful studies as well as the potential for translation to clinical practice.

Acknowledgments

The authors thank Paul Canning for kindly providing the illustration for this manuscript.

Supported by the King Abdulaziz University and the Saudi Arabian Cultural Bureau in London (Grant Number R8384CEM), Elizabeth Sloan, and the Sir Jules Thorn Trust.

Disclosure: M. Khayat, None; N. Lois, None; M. Williams, None; A.W. Stitt, None

References

Animal Models of RVO

