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A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mix-
tures, taking into account collisionality and kinematic (
uid) viscosity. A multicomponent plasma
con�guration is considered, consisting of positive ions, negative ions, electrons and a massive charged
component in the background (dust). The ionic dynamical scale is focused upon, thus electrons
are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg de
Vries/Burgers (hKdV-B) equation is derived. An analytical solution is obtained, in the form of a
shock structure (a step-shaped function for the electrostatic potential, or an electric �eld pulse)
whose maximum amplitude in the far downstream region decays in time. The e�ect of relevant
plasma con�guration parameters, in addition to dissipation, is investigated. Our work extends
earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

I. INTRODUCTION

Multicomponent plasma con�gurations, containing
electrons, positive and negative ions, in addition to
nanometer or even micron-sized charged particulates
(dust \grains"), are widely used in microelectronics, in
optoelectronics, in photonics, in microelectromechanical
devices, in material synthesis and in other industrial and
technological processes, e.g. in manufacturing miniature
circuit chips and various other applications [1{3]. By us-
ing a sophisticated experimental approach, Takeuchi et
al [4] have shown that a negative ion plasma can be pro-
duced by introducing a small amount of SF6 gas into a
collisionless plasma with K+ ions and electrons. They
found that positive (compression) and negative (rarefac-
tion) density jumps are generated by applying a posi-
tive and negative potential ramp, while the steepening of
the initial density jump depends on the actual negative
ion concentration in the plasma. Luo et al [5] subse-
quently showed that if the presence of concentration of
negative ions in plasma is higher than 90%, the pulse per-
turbation tends to steepen and compressive electrostatic
shocks are formed. In the presence of negative charge
dust grains, compressive electrostatic shock waves have
been observed in a double plasma device [6]. Also, they
have showed that the phase velocity of the electrostatic
shock wave increases with an increase in the dust density.
Bandyopadhyay et al [7] observed long-lived dust acous-
tic (DA) waves in a 
uid-state dusty plasma and showed
that the velocity of DA wavepackets increases, while their
width decreases, for higher values of the driving mod-
ulating voltage. Sarma and Nakamura [8] showed ex-
perimentally that the concentration of the negative ions
in dusty plasma may a�ect the polarity of electrostatic
shock waves. They predicted that both compressive and
rarefactive electrostatic shock wave may exist, for a given
initial excitation at a critical concentration of the nega-
tive ions. Heinrich et al [9] later used high-speed video
imaging to study self-excited dust acoustic shock waves
observed in a dc glow discharge. Recently, by using a

supersonic 
ow of charged microparticles, a �nite ampli-
tude dust acoustic shock wave was observed in a strongly
coupled laboratory dusty plasma [10]. The balancing be-
tween wave steepening due to an increase in the dust
density and dissipation due to dust-neutral collisions and
viscosity e�ects was thus shown experimentally to lead to
the formation of steady state shockwaves.

Collective e�ects in the form of linear and nonlin-
ear modes in dusty plasmas, have been the focus of a
large body of theoretical and experimental research in
the last two decades, mainly [11{15]. A Korteweg - de
Vries/Burgers (KdV-B) type equation was derived by
Shukla [16] by adding a kinematic viscosity force to the

uid equation of motion, to model electrostatic shocks
and holes in dusty plasma analytically. As regards dusty
plasma containing negative ions, which is our primary
focus here, the linear instability of ion acoustic waves
has been investigated via a comprehensive hydrodynamic
model by Vladimirov et al [17]. Rosenberg and Merlino
[18] investigated the in
uence of charged dust grains on
the stability of ion acoustic waves in a dusty negative-
ion plasma, discussing both laboratory and space plasma
environments. The e�ect of ion-dust collisions and ion
kinematic viscosity on the formation of DIA solitary and
shock waves in a dusty plasma in presence of negative
ions has been studied in Ref. 19.

The purpose of this paper is to investigate the occur-
rence and to study the propagation characteristics of elec-
trostatic shock wave in negative-ion plasma in the pres-
ence of dust particles. In Sec. II we present a plasma-
hydrodynamic model for our plasma con�guration of in-
terest. A linear analysis is presented in Sec. III. Using a
perturbation method, a new evolution equation is derived
for the electrostatic potential perturbation in Sec. IV. In
Sec. V, an investigation of the role of various plasma
plasma parameters is presented. A summary and critical
discussion of our �ndings is provided in Sec. VI.
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II. THE MODEL

We consider two distinct ion 
uids evolving against
a neutralizing background consisting of thermal (Boltz-
mann distributed) electrons and dust grains. The plasma
components interact with each other through mutual ion-
ion collisions, ion-dust collisions and a viscous drag due
to interparticle collisions and the collective electrostatic
potential. Since the electron thermal speed is much larger
than that of either of the ion species and the (ionic) dy-
namical velocity scale of interest is slow, we have ne-
glected the electron inertia, viz. ne = ne0 exp(e�=kBTe),
(where e is the magnitude of the electron charge, � the
wave potential, kB is the Boltzmann constant and Te the
electron temperature). The dust thermal speed is much
lower than the wave’s phase velocity and its response to
electrostatic perturbations is slow, hence we consider the
dust component as a stationary background. Further-
more, we assume that the dust particles have a constant
mass md and the dust grain charge is assumed to be
�xed zd (qd = const), since the charging rate is negligi-
bly low, compared to the dynamical plasma response rate
(�ch � !p) [11]. An adiabatic thermal pressure term is
considered, as we have assumed that the ion thermal ve-
locity is less than the characteristic phase velocity and
the electron thermal speed.

Adopting a one dimensional (1D) planar geometry, for
simplicity, the 
uid model equations read:

@n1

@t
+

@
@x

(n1u1) = 0; (1)

m1n1

�
@u1

@t
+ u1

@u1

@x

�
= �z1en1

@�
@x

�
@P1

@x

�m1n1�12(u1 � u2) +m1n1�1
@2u1

@x2 � �1du1; (2)

@n2

@t
+

@
@x

(n2u2) = 0; (3)

m2n2

�
@u2

@t
+ u2

@u2

@x

�
= z2en2

@�
@x

�
@P2

@x

�m2n2�21(u2 � u1) +m2n2�2
@2u2

@x2 � �2du2; (4)

@2�
@x2 = �

1
�0
e
�
z1n1 � z2n2 � ne + sdzdnd

�
; (5)

where the �rst two (continuity and momentum) equa-
tions describe the positive ion 
uid, the following two
sister equations describe the negative ion 
uid and the
�nal one (Poisson’s equation) describes the electrostatic
potential evolution under the in
uence of charge varia-
tions in space and time (�0 denotes the susceptibility of
vacuum, as usual). The physical quantities nj , uj respec-
tively denote the number density and the 
uid speed, of

uid(s) j = 1; 2 (i.e., the positive ion 
uid and the neg-
ative ion 
uid ), while mj and zj obviously denote the
respective mass and charge state, in the usual way. Note
that we have adopted no prior assumption for the dust
charge sign, which may be either positive or negative,
for sd = qd=jqdj = �1, respectively. We have de�ned

the characteristic coe�cients �j (denoting the inter-ion-

uid collisional frequency), �jd (the ion-dust collision fre-
quency) and �j , representing the intrinsic plasma kine-
matic viscosity. Finally, the ion thermal e�ects are in-
cluded in the model through the thermal pressure vari-
ables, denoted by P1 and P2 for the respective ion 
uids.
The system of equations (6 -10) is closed by assuming
an explicit density dependence of the pressure term(s)
in the form pj = Cn


j , where 
 is the ratio of speci�c
heats. Combining this assumption with the equation
of state (at equilibrium) pj;0 = nj0kBTj (where Tj de-
notes the temperature of species j), the pressure term
in the momentum Eqs. (7) and (9) is rearranged as
rpj=nj = 
KBTjn1�


j0 n
�2
j rnj with the adiabatic index


 = (2 + f)=f (where f denotes the number of degrees
of freedom), i.e. 
 = 3 in our case.

The model equations may be cast in a dimensionless
form, for simplicity in algebraic manipulation. Adopting
appropriate scales, the normalized evolution equations
become:
@n1

@t
+

@
@x

(n1u1) = 0; (6)

@u1

@t
+ u1

@u1

@x
= �

@�
@x

� �1n1
@n1

@x

� �12(u1 � u2) + �1
@2u1

@x2 � �1du1; (7)

@n2

@t
+

@
@x

(n2u2) = 0; (8)

@u2

@t
+ u2

@u2

@x
= �

@�
@x

� �2n2
@n2

@x

� �21(u2 � u1) + �2
@2u2

@x2 � �2du2; (9)

@2�
@x2 = �ene � n1 + �in2 � sd�d; (10)

The rescaled electron density reads ne(�) = e� � 1+�+
�2=2 + �3=6 + ::: We have de�ned the quantities:

� =
q2=m2

q1=m1
; and �j =

3
z1

Tj

Te

m1

mj
; (11)

i.e.,

�1 =
3
z1
�1; and �2 = �1

T2

T1

m1

m2
:

where q1 = z1e, q2 = z2e, �1 = T1
Te

, e is the elementary
charge unit and z1; z2 are the charge state of positive
and negative ions, respectively. Time t and space x have
been normalized by (the positive ion plasma frequency)
!p;1 = (z2

1e2n1;0=�0m1)1=2 and (the positive ion Debye
length) �D;1 =

�
�0kBTe=z1e2n1;0

�1=2. The number den-
sity nj and 
uid speed uj variables are normalized by
the respective unperturbed number density nj0 (for each

uid; viz. j = e; 1; 2 for electrons, ions 1 and ions 2) and
by the characteristic speed cs = (z1KBTe=m1)1=2 (i.e.,
essentially the sound speed in e-i plasmas). The quanti-
ties �, �j and �j are normalized by kBTe=e, �2

D1!p;1 and
!p;1, respectively. We have de�ned the relative ion num-
ber density ratio �i = z2n20

z1n10
, the electron-to-(positive-

)ion number density ratio �e = ne0
z1n10

and the dust den-
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sity ratio �d = zdnd
z1n10

. Neutrality at equilibrium (where
nj;0 = 1; 8j) imposes the condition

�e = 1 � �i + sd�d : (12)
Finally, we have assumed the ordering �12 � �3=2, �jd �
�3=2 and �j � �1=2 (j = 1; 2), suggesting that both ion-ion
and dust-ion collisional frequencies and the viscosity coef-
�cient are very low, compared to intrinsic plasma quanti-
ties (i.e. the plasma frequency, for the former quantities).

III. LINEAR WAVE ANALYSIS

Linearizing the dimensionless system of evolution
equations (6) - (10) and Fourier transforming, we readily
obtain the dielectric function

D(!; k) = 1 +
�e

k2 �
1

!2 � �1k2 �
�i�

!2 � �2k2 ; (13)

where we clearly distinguish the electron, positive ion
and negative ion contributions in the second, third and
fourth term(s) in the right-hand side (rhs), respectively.
The normal modes are obtained by setting D(!; k) = 0.
One is thus led to the dispersion relation

!4 + �1 !2 + �0 = 0 ; (14)

where �0 = k4

k2+�e

�
�i��1 + �2 + �1�2(k2 + �e)

�
and

�1 = � k2

k2+�e

�
1 + �i� + k2(�1 + �2) + (�1 + �2)�e

�
.

Two positive expressions are thus obtained from the
latter relation for the frequency (square), in the form:
!2

� = 1
2

�
��1 �

p
�2

1 � 4�0

�
. It is straightforward to

�nd that !� ! 0 for both modes: these essentially rep-
resent a fast and a slow ion-acoustic mode, as expected
[20, 21], here actually modi�ed in the presence of the
dust. In the absence of the negative ions �i = 0, one
recovers the dust-ion acoustic wave dispersion relation:

!2 =
k2

k2 + 1 + sd�d
+ �1k2 ; (15)

as expected [11].

Based on the expression(s) of the dispersion relation
Eq.14, we have analysed the e�ect of the negative ion
density on the linear dispersion relation. As shown in
Fig. 1, the dispersion relation (14) provides two acous-
tic modes (and no Langmuir-like mode, as intuitively ex-
pected). In the presence the negative ions �i 6= 0, the slow
and fast mode respectively lie below and above the plain
ion-acoustic frequency, i.e. !p;� < !j�i=0 < !p;+. The
e�ect of the dust density is studied in Fig. 2. It is clearly
visible in Fig. 2a that the presence of positively charged
dust (sd = 1) leads to a decrease in the frequency of
both linear modes. On the other hand, introducing neg-
atively charged dust particles into the plasma (sd = �1)
increases the frequency of both modes, as shown in Fig.
2b.

FIG. 1: (Color online) Dispersion relation: the e�ect of the
negative ion concentration (n2;0) is depicted, for sd = �1,
nd = 1:7 � 106 cm�3 and n1;0 = 2 � 109cm�3. The other
parameters are z1 = z2 = 1, zd = 350, m1 = 39mp, m2 =
146mp (mp: proton mass), Te = T1 = 0:2 eV and T2 = Te=8,
[22]. The dimensionless parameters are �d = 0:3, �i = 0:5,
� = 0:267, �1 = 3 and �2 = 0:1.

IV. DERIVATION OF KDVB EQUATION

Anticipating small amplitude nonlinear ion acoustic
waves, we have adopted the reductive perturbation tech-
nique [23] by introducing the stretched coordinates:

� = �
1
2 (x� V t) ; � = �

3
2 t : (16)

Here, V is a real (free) parameter, denoting the phase
velocity of ion acoustic waves (to be determined later
by algebraic compatibility considerations) and � (� � 1)
is a small real expansion parameter (0 < � � 1) char-
acterizing the strength of the nonlinearity. We expand
the perturbed state variables appearing in Eqs. (6-10) in
terms of the smallness parameter � as follows

nj = 1 + �n(1)
j + �2n(2)

j + �3n(3)
j + :::;

uj = �u(1)
j + �2u(2)

j + �3u(3)
j + :::

� = ��(1) + �2�(2) + �3�(3) + ::: ; (17)
(for j = 1; 2). We proceed by inserting the expansion(s)
Eqs. (17) into Eqs. (6)-(10)), and then isolating di�erent
contributions arising in di�erent orders (powers of �).

To lowest order, we have obtained precidely Eqs. (A1)-
(A5); see in Appendix A. Upon integrating, and apply-
ing appropriate boundary conditions, i.e., assuming that
n(1)

1;2 = 1 and u(1)
1;2 = �(1) ! 0 for x ! �1, we obtain the

algebraic relations

n(1)
1 =

1
V 2 � �1

�(1) ; (18)

n(1)
2 = �

�
V 2 � �2

�(1) ; (19)

u(1)
1 =

V
V 2 � �1

�(1) (20)

and u(1)
2 = �

�V
V 2 � �2

�(1) : (21)

Combining the expressions Eqs. (18) and (19) with Eq.
(A5), we obtain an expression for the phase velocity of
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(a) (b)

FIG. 2: (Color online) Dispersion relation: the e�ect of (a) the positive dust density (sd = 1), and (b) the negative dust density
(sd = �1) is depicted. The parameter values adopted are: n2;0 = 1:6�109cm�3 and n1;0 = 2�109cm�3, z1 = z2 = 1, zd = 350,
m1 = 39mp, m2 = 146mp (mp: proton mass), Te = T1 = 0:2 eV and T2 = Te=8. The dimensionless parameters are �d = 0:3,
�i = 0:5, � = 0:267, �1 = 3 and �2 = 0:1.

the ion acoustic shocks in the form:
V 4 + a1V 2 + a0 = 0 ; (22)

where

a1 = �
1 + �i�+ �e(�1 + �2)

�e
; (23)

a0 =
�i��1 + �2 + �e�1�2

�e
: (24)

Remember that �e is prescribed by Eq. (12). The wave
phase speed is thus given by the expressions

V 2
� =

1
2

�
� a1 �

q
a2

1 � 4a0

�
; (25)

in agreement with the considerations for !�. As a mat-

ter of fact, it is straightforward to verify that V� =
limk!0(!�=k); indeed, careful inspection reveals that
(25) may be precisely obtained from (14) upon formally
setting ! ! kV and then taking the limit k ! 0.

From next order in �, along with Eq. 25, we obtain
after a tedious algebraic procedure (the lengthy details
can be found in the Appendix) the following equation

@ 
@�

+A 
@ 
@�

+B
@3 
@�3 = C

@2 
@�2 �D (26)

for the electrostatic potential �(1) =  , where:

A =
�

� �e +
3V 2 + �1

(V 2 � �1)3 �
�i�2

(V 2 � �2)2 +
4V 2�i �2

(V 2 � �2)3

�
B;

B =
1

2V

�
1

(V 2 � �1)2 +
�i �

(V 2 � �2)2

��1

;

C = V
�

�1

(V 2 � �1)2 +
�i �2 �2

(V 2 � �2)2

�
B;

D = V
�
�12 + �1d

(V 2 � �1)2 +
�i � (�21 + �2d)

(V 2 � �2)2 +
�i �21 + � �12

(V 2 � �1)(V 2 � �2)

�
B : (27)

Recall that �e = 1 � �i + sd�d, while V is given by Eq.
(25).

The partial di�erential equation (PDE) (26) bears the
form of a \hybrid" (mixed) Korteweg de Vries/Burgers
equation (hKdV-B), with the addition of the extra (last)
term in the rhs, in account of dissipation (damping). For
D = 0 (i.e., setting all of �ij to zero), this is a KdV-
Burgers equation, which yields an exact analytical solu-
tion in the form of a monotonic shock; see in Ref. [24] for
details. Now, for D 6= 0, one may undertake a lengthy

algebraic procedure, based on an ad hoc perturbative
scheme [25], to �nd an approximate (damped shock) so-
lution. The tedious algebraic procedure, omitted here for
brevity, will be reported elsewhere in full detail [25]. The
main relevant results are summarised in the following, to
the extent that these are important in our analysis, to
follow. Equation (26) in fact admits an (approximate)
analytical solution in the form:

 (�; �) ’  max(�) (1 � Y )
�

1 +
1
3
Y

�
; (28)
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with

Y = tanh
�
� � �0 � q(�)�

L

�
; (29)

where �0 is the initial position of the shock front and the
shock solution’s maximum amplitude is

 max(�) =
9C2

25AB
e�D� ; (30)

its velocity is

q(�) =
9C2

25BD
(1 � e�D� �

1
3
D�)=� (31)

and its width is given by

L =
10B
C

e
1
6 Dt : (32)

This expression describes an electrostatic shock struc-
ture whose downstream asymptotic value exponentially
decays in time as � e�D� ; see in Fig. 6. The entire
structure slows down to a halt after a certain time, found
after a numerical calculation to be ’ 2:821D�1; the ex-
citation will therefore be su�ciently long-lived, provided
that 2:821D�1 � !�1

p , or D=!p � 2:821, i.e. practically
speaking, for small values of the collisional coe�cients �ij
(note the de�nition of D is given by Eqs. 27). Also, as
we can notice, the width of the shock L, given by Eq.
(32) as a function of time, becomes wider and wider due
to the dissipative e�ect under the action of the damping
coe�cient D.

V. PARAMETRIC ANALYSIS

Based on the algebraic expressions Eq. 28 with Eqs.
27, we have undertaken a detailed parametric investiga-
tion of the electrostatic shock’s structural and dynamical
features, in terms of various relevant plasma parameters.

A. Phase velocity

The e�ect of the negative ion density �i and the dust
density �d on the phase velocity Vph of the nonlinear wave
are shown in Figs. 3 and 4. Recall that the multi-
uid
plasma model adopted here supports two modes, namely
fast and slow waves, as discussed in Figs. 3 and 4. This is
re
ected in the (two) solutions of Eq. (25) for the phase
speed. In Fig. 3, it is shown that the phase velocity of
both modes increases, with an increase of the negative
ion density. Fig. 4a shows that the phase velocity of
the two nonlinear modes decreases with an increase in
positive dust density. While an increase of the number
density of negatively charged dust particles leads to an
increase of the phase velocity.

B. Electrostatic pulse polarity reversal

The plasma density perturbation is related to the elec-
trostatic potential perturbation through Eqs. (18)-(19).

FIG. 3: (Color online) The e�ect of the negative ions (con-
centration) n2;0 on the phase speed is investigated, taking
as representative values: sd=-1, nd = 1:7 � 106cm�3 and
n1;0 = 2 � 109cm�3. The other parameters are z1 = z2 = 1,
zd = 350, m1 = 39mp, m2 = 146mp (mp: proton mass),
T1 = 8T2 = Te = 0:2eV. The dimensionless parameters are
�d = 0:3, �i = 0:5, � = 0:267, �1 = 3 and �2 = 0:1.

Eq. (18) shows that the sign of the density excitation,
whether it represents a compression or a rarefaction in
the positive-ion density perturbation, is associated with
the sign (whether positive or negative, respectively) of
the polarity of the electrostatic potential perturbation
�(1). It is well known from previous works that the po-
larity of the electrostatic potential perturbation is de-
termined by the sign of the coe�cient of the nonlinear
term A. In this article, this is re
ected in Eq. (30)
for A, which then enters (28). It is therefore clear that
the sign of A (positive or negative) will determine the
polarity of the potential excitation. As shown in Fig.
5a, for positively charged dust in the plasma (i.e., for
sd = +1), the value of A is always positive, for any value
of �i. This means that only positive electrostatic poten-
tial pulses (and hence a compressive density disturbance)
may exist. On the other hand, Fig. 5b shows that, for
negatively charged dust particles, the value of the coef-
�cient A starts with a positive value and then changes
sign to negative value at a critical value of the negative
ion density, say �i = �i;cr.

In Figs. 6 and 7, we have depicted the full range of
values for the parameters �i and �d. The sign of the
coe�cient of the nonlinear term (A) is depicted in Fig.
6 for the fast mode (V = V+), both for positive dust
(sd = 1, in Fig. 6a) and for negative dust charge (sd =
�1, in Fig.6b). Likewise, the analogous plots for the
slow mode (V = V�) are provided in Fig. 7. We note
that polarity reversal is possible for the fast mode (only)
(i.e. realized in the white regions in Fig. 6 and, in fact,
nowhere in 7) is possible for both positive dust charge and
for negative dust charge (primarily). We conclude that
either compressive or rarefactive shock wave may exist,
depending on whether the negative ions are a minority
population or dominant.
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(a)

(b)

FIG. 4: (Color online) The phase velocity: (a) the e�ect
of positive dust density sd = 1, and (b) the e�ect of neg-
ative dust density sd = �1. The other parameters are
n2;0 = 1:6 � 109cm�3 and n1;0 = 2 � 109cm�3, z1 = z2 =
1; zd = 350;m1 = 39mp;m2 = 146mp (mp: proton mass),
Te = T1 = 0:2eV; T2 = Te=8. The dimensionless parameters
are �d = 0:3, �i = 0:5, � = 0:267, �1 = 3 and �2 = 0:1.

C. Evolution of an electrostatic shock

The temporal evolution of the electrostatic potential
 (�; �) and the associated electric �eld E(�; �) is inves-
tigated in Figs. 8, 10 and 12. We have plotted the evo-
lution of the electostatic potential (shock) structure for
the fast mode in Fig. 10 and for the slow mode in Fig.
12. Based on the analytical solution Eq. (28), the elec-
trostatic potential and the associated electric �eld are
shown in Figs. 8, 10 and 12)(a, b) for di�erent physical
parameters. By using

 (�; 0) =
9C2

25AB

�
1� tanh

�
�� �0

���
1+

1
3

tanh
�
�� �0

��
;

(33)
as initial condition, we have integrated Eq. (26) numeri-
cally by using a semispectral method [25]. The numerical
result is shown in Figs. 8, 8 and 12)(c, d). The compar-
ison between the analytical solution and the numerical
outcome shows a very good agreement.We can also no-
tice that the thickness of the shock wave increases as

(a)

(b)

FIG. 5: (Color online) The coe�cient of the nonlinear term
(A, continuous red curve) and the dispersion term (B, dashed
blue curve) versus the ion density ratio �i: (a) the e�ect
of positive dust density sd = 1, and (b) the e�ect of neg-
ative dust density sd = �1. The other parameters are
n2;0 = 1:6 � 109cm�3 and n1;0 = 2 � 109cm�3, z1 = z2 =
1; zd = 350;m1 = 39mp;m2 = 146mp (mp: proton mass),
Te = T1 = 0:2eV; T2 = Te=8. The dimensionless parameters
are �d = 0:3, �i = 0:5, � = 0:267, �1 = 3 and �2 = 0:1.

time progresses, due to dissipation. The amplitude and
the velocity of the wave are depicted in Figs. 9, 11 and
13, for three typical situations (parameter sets) consid-
ered. Clearly, both amplitude and velocity decrease for
stronger damping, i.e. for higher values of the coe�cient
D.

VI. CONCLUSIONS

We have introduced a hydrodynamical model, to model
the dynamics of electrostatic shock waves in a plasma
consisting of positive and negative ions, in addition to
electrons and (either positively or negatively charged)
dust particles. The linear dispersion relation was shown
to admit a pair of (\fast" and \slow") acoustic modes.
For �nite amplitude perturbations, we have used a per-
turbation method to derive the governing equation for
the electrostatic potential perturbation. Depending on
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(a) (b)

FIG. 6: (Color online) The sign of the nonlinearity coe�cient (A) is depicted, for the fast mode V = V+, for (a) positive dust
(sd = 1), and for (b) negative dust (sd = �1), for �1 = 0:2, �2 = 0:1, �12 = 0:02, �1d = 0:05, �2d = 0:03, �1 = 3; �2 = 0:1 and
� = 0:267. The shaded (red) region is for A > 0, while the white region is for A < 0 and the blue region (top right, in the right
panel) for the forbidden region (�e =< 0); cf. (12).

(a) (b)

FIG. 7: (Color online) The sign of the nonlinearity coe�cient (A) is depicted, for the slow mode V = V�, for (a) positive dust
(sd = 1), and for (b) negative dust (sd = �1), for �1 = 0:2, �2 = 0:1, �12 = 0:02, �1d = 0:05, �2d = 0:03, �1 = 3; �2 = 0:1 and
� = 0:267. The shaded (red) region (entire left panel, bottom left part in the right panel) is for A > 0, while the blue region
(top right, in the right panel) is the forbidden region (�e =< 0); cf. (12). We see that there is no negative A region, essentially,
to be associated with the slow mode.

the negative ion density, either compressive or rarefactive
electrostatic potential excitations may exist. We have
shown that the shock structure amplitude decreases ex-
ponentially, under the e�ect of dissipation, as intuitively
expected.

Our results aim at casting some light to the dynamics
of shocks in dissipative binary ion mixtures, in the pres-

ence of dust. In particular, the role of the dust may be
crucial in actually de�ning the shock polarity (here deter-
mined by the sign of the nonlinearity coe�cient A, within
our model). Likewise, injecting negative ions in a dusty
plasma may a�ect the properties of electrostatic excita-
tions which, in the presence of dissipation, may propagate
in the form of electrostatic shocks.
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(a) (b)

(c) (d)

FIG. 8: (Color online) The temporal evolution of the electrostatic potential shock structure  (�; �) is depicted, as it results
from (a) the analytical model, based on the solution (28), and (c) the numerical simulation. The associated electric �eld E(�; �)
is respectively shown, i.e. as obtained from (b) the analytical and (d) the numerical result. An ad hoc set of values have been
taken for the coe�cients as A = 1, B = 1, C = 1 and D = 0:01.
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APPENDIX A: DERIVATION OF KDVB
EQUATION

In order to derive KdVB equation (26), �rst we have in-
troduced the coordinate transformation (16), from fx; tg
to f�; �g, onto Eqs. (6)-(10). Then, we have perturbed
the plasma quantities fnj ; uj ; �g around the equilibrium
state f1; 0; 0g, as described by Eqs. 17. Substituting, we
have proceeded by collecting di�erent powers of �. From
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(a) (b)

FIG. 9: (Color online) (a) The maximum amplitude and (b) the velocity of the electrostatic shock wave depicted in Fig.8. The
coe�cients are A = 1, B = 1 and C = 1.

the lowest power in �, we obtain the following equations

�V
@n(1)

1
@�

+
@u(1)

1
@�

= 0; (A1)

�V
@n(1)

2
@�

+
@u(1)

2
@�

= 0; (A2)

�V
@u(1)

1
@�

+
@�(1)

@�
+ �1

@n(1)
1
@�

= 0; (A3)

�V
@u(1)

2
@�

� �
@�(1)

@�
+ �2

@n(1)
2
@�

= 0; (A4)

n(1)
1 � �in

(1)
2 � �e�(1) = 0: (A5)

We have solved Eqs. (A1) - (A5), by using the
boundary conditions n(1)

1;2 = 1 and u(1)
1;2; �(1) ! 0 for

x ! �1, to obtain the �rst order perturbed quantities
(n(1)

1;2; u
(1)
1;2; �(1)) in Eqs. (18) -(21).

The next highest (2nd-order) power in � yields the fol-
lowing equations:

V
@n(2)

1
@�

+
@u(2)

1
@�

= L1; (A6)

V
@n(2)

2
@�

+
@u(2)

2
@�

= L2; (A7)

V
@u(2)

1
@�

�
@�(2)

@�
+ �1

@n(2)
1
@�

= L3; (A8)

V
@u(2)

1
@�

+ �
@�(2)

@�
+ �2

@n(2)
1
@�

= L4; (A9)

n(2)
1 � �in

(2)
2 � �e�(2) = L5 ; (A10)

where

L1 =
@n(1)

1
@�

+ u(1)
1
@n(1)

1
@�

+ n(1)
1
@u(1)

1
@�

(A11)

L2 =
@n(1)

2
@�

+ u(1)
2
@n(1)

2
@�

+ n(1)
2
@u(1)

2
@�

(A12)

L3 =
@u(1)

1
@�

+ u(1)
1
@u(1)

1
@�

+ �1n
(1)
1
@n(1)

1
@�

� �12(u(1)
1 � u(1)

2 ) + �1
@2u(1)

1
@x2 � �1du

(1)
1 (A13)

L4 =
@u(1)

2
@�

+ u(1)
2
@u(1)

2
@�

+ �2n
(1)
2
@n(1)

2
@�

� �21(u(1)
2 � u(1)

1 ) + �2
@2u(1)

2
@x2 � �2du

(1)
2 (A14)

L5 =
1
2
�e�(1)2 �

@2�(1)

@�2 : (A15)

By substituting the �rst order quantities (n(1)
1;2, u(1)

1;2)
inside L1 - L4 in Eqs. (A6) - (A9), we have solved Eq.
(A6) and Eq. (A7) for u(2)

1 and u(2)
2 . Then, by substi-

tuting u(2)
1 and u(2)

2 into Eqs. (A8) and (A9), we have
solve them for n(2)

1 and n(2)
2 in terms of �(1). Finally,

using Eq. (A10) and n(2)
1;2, we have eventually obtained

the KdV-Burgers equation (26).
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FIG. 12: (Color online) The temporal evolution of the electrostatic potential shock structure  (�; �) is depicted, as it results
from (a) the analytical model, based on the solution (28), and (c) the numerical simulation. The associated electric �eld E(�; �)
is respectively shown, i.e. as obtained from (b) the analytical and (d) the numerical result. Here, we have considered: sd = �1
(negative dust), �d = 0:3, �i = 0:5, � = 0:267, �1 = 3, �2 = 0:1, �1 = 5; �2 = 4, �12 = 0:02 , �1d = 0:05 and �2d = 0:03. The
resulting coe�cient values for the slow mode (V� = 0:4) are: A = 3, B = 0:1, C = 2 and D = 0:02.
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FIG. 13: (Color online) (a) The maximum amplitude and (b) the velocity of the electrostatic shock wave for structure shown
in depicted in Fig.12, i.e., sd = 1, �d = 0:3, �i = 0:5, � = 0:267, �1 = 3, �2 = 0:1, �1 = 5; �2 = 4, �12 = 0:02 , �1d = 0:05 and
�2d = 0:03. The corresponding coe�cient values for the slow mode (V� = 0:4) are: A = 3, B = 0:1 and C = 2.


