Food caching as observed through use of den boxes by European pine martens (Martes martes)

Published in:
Mammal Communications

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 Mammal Communications. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Food caching as observed through use of den boxes by European pine martens (*Martes martes*)

Joshua Twining, Johnny Birks, John Martin and David Tosh
Food caching as observed through use of den boxes by European pine martens (extit{Martes martes})

Joshua Twining1, Johnny Birks2, John Martin3 and David Tosh4

ABSTRACT

Artificial den boxes have been used to supplement denning sites of the European pine marten (extit{Martes martes}) in Scotland and Northern Ireland where natural arboreal cavities are scarce. Here, information on food caches from annual checks are reported. Pine martens predominantly cached birds, largely juvenile passerines, followed by small mammals and amphibians. This investigation highlights the potential importance of food caching in the species, as well as the ability of artificial den box schemes to explore enigmatic aspects of marten ecology in the future.

INTRODUCTION

Artificial den boxes are becoming widely recognised as a valuable tool in the conservation and research of numerous species from various taxa including marsupials, bats, hole-nesting birds, predatory birds and arboreal mammals including martens, squirrels and dormice (Solheim, 1984; Lindenmayer et al., 1991; Newton, 1994; Shuttleworth, 1999; Birks et al., 2005; Panchetti et al., 2007; Croose et al., 2016; Davies et al., 2017). Provision can occur to supplement existing opportunities that might be limited in existing landscapes due to loss of traditional sites during anthropogenic processes (Lindenmayer et al., 1990; Niemela et al., 2005). Natural cavity development is a slow process typically taking >100 years (Birks et al., 2005; Cameron, 2006) with the aid of insects, fungi, fire or cavity excavating birds i.e. the black woodpecker (extit{Dryocopus martius}) (Adkins, 2006; Fox et al., 2009). Loss, or lack of nesting or denning opportunities, can limit population sizes, density and diversity of cavity reliant species, particularly those that cannot excavate their own (Lindenmayer et al., 1990; Newton, 1994; Rueeggger, 2016). A contemporary solution has been the deployment of artificial den boxes. As well as being vital as a conservation tool, such den boxes can also be utilised to conduct ecological research (Beyer & Goldingay, 2006), specifically they provide a platform to survey and monitor populations (Panchetti et al., 2007; Croose et al., 2016), obtain information on breeding behaviour (Shuttleworth, 1999; Davies et al., 2017), investigate prey choice and other behaviours difficult to observe under natural conditions (Solheim, 1984). One such behaviour is food caching. Food caching, the act of storing food for later consumption (Henry et al., 1990), is an adaptive behaviour that has been observed in a variety of species (MacDonald, 1976; Solheim, 1984). This behaviour is thought to enable species, that rely on prey whose abundance fluctuates throughout the year (Sherry, 1985), to ensure appropriate resources are available during periods of prey scarcity, or increased demand (e.g. rearing young).

1. School of Biological Sciences, Queen’s University, Belfast, MBC, BT9 7AE, Northern Ireland, UK
3. Myotismart Ltd, Hornocop Bungalow, Heversham, Milnthorpe, Cumbria LA7 7EB, UK
4. National Museums of Northern Ireland, Cultra, Hollywood, BT18 0QE, Northern Ireland UK

*Corresponding Author: joshuaptwining@gmail.com

Key words: pine marten, den box, denning ecology, food caching, camera traps, mammal ecology, habitat degradation, habitat management.

Food caching in den boxes by pine marten

The European pine marten (Martes martes) is a semi-arboreal predator native to Ireland and Britain whose populations are recovering (Croose et al. 2014; O’Mahony et al., 2017). Scarcity of arboreal denning sites has been suggested as a limiting factor to the species distribution and abundance (Brainerd et al., 1995). Therefore, artificial den box schemes have been implemented to supplement above ground resting sites (Croose et al., 2016). Although the species fits the criterion of a “cacher” (Macdonald, 1976) (e.g. solitary hunter, fixed home range), to our knowledge there are no direct observations of food caching in the species (Marchesi & Mermod 1989; Balharry, 1993; Helldin, 2000; Zalweski et al., 2004; Lynch & McCann, 2007). Scats collected during winter surveys containing bird eggs from Sweden are the only indirect evidence of this behaviour in pine marten (Helldin, 2000). The lack of evidence of this behaviour is likely due to the species’ nocturnal activity patterns and low densities, as opposed to reflecting the true frequency of this behaviour. In sub-optimal habitats, e.g. commercial forestry plantations, low food availability can leave populations vulnerable to decline. Food caching may therefore be key to ensuring survival through cyclical, seasonal or habitat induced reductions in prey abundance.

Evidence from other mustelids indicate caching behaviour typically occurs around den sites (Sleeman, 1989; Henry et al., 1990). Due to the difficulty in locating natural pine marten den sites (e.g. Birks et al., 2005), the use of artificial den boxes for the species (see Messenger et al., 2006), provides an opportunity to observe this under-recorded behaviour. We report here initial observations of caching behaviour from two pine marten den box monitoring schemes and suggest such schemes could provide insight into a variety of behaviours poorly recorded in the species.

METHODS

The observations reported here were made during monitoring of den box schemes currently running in the Ring of Gullion, Co. Armagh, Northern Ireland and Galloway Forest, south-west Scotland. In both locations, custom built artificial den boxes (55 cm x 51 cm x 24 cm, mass approximately 13 kg (Figure 1, Messenger et al., 2006) were installed into coniferous plantation forests. Forty boxes were installed in Galloway Forest in 2013, and a further 10 were installed in the Ring of Gullion during winter 2016/17. Den boxes were installed at a height of 3 - 4 m on trees at both locations. Box entrances were orientated away from the prevailing wind direction. In both studies a substrate, either locally collected moss or wood shavings were added to the boxes. In Armagh, Bushnell HD Trophy Camera Traps (Model: 119736) were attached to trees opposite den box entrances, allowing remote monitoring of den box occupancy. During annual checks of den boxes from January - June, opportunistic observations were made of pine martens using the den boxes to cache food. Frequency of occurrence (FO%) was calculated for each observation by dividing the sum of a specific food item by the total food items cached, expressed as a percentage (Fedriani & Travaini, 2000).

RESULTS

Seven separate observations of caching behaviour at five different den boxes were made, four from Scotland and three from Northern Ireland. Caches totalled 66 prey items. Three prey groups were found cached; birds (n = 53, FO% 66.62%); small mammals (n=12, FO% 33.11%) and anurans (n=1, FO% 0.26%) (Table 1). With the exception of a single large cache (Figure 2, n = 53), the caches were generally small (n = 1 - 6); five caches were discovered during spring and two during winter. The large cache, and a small cache containing a single item were found at natal den sites containing kits, the other caches were discovered at currently unoccupied boxes. Birds were the most commonly cached prey group (n = 53), these were predominantly small song birds including European robins (Erithacus rubecula); common chaffinches (Fringilla coelebs); Eurasian wrens (Troglodytes troglodytes) and various tits (Paridae sp.). A single corvid in the form of a hooded crow (Corvus corax), as well as two wood pigeons (Columbia palumbus) and a Eurasian woodcock (Scolopax rusticola) were also found in caches. The majority of birds cached were juveniles (n = 50), with only three adult individuals...
Food caching in den boxes by pine marten
discovered. Two of the caches were observed to be
returned to and removed by the marten, one cache had
been removed after a week, the other within a month.
Smalls mammals were the second most commonly
cached group ($n = 12$), three species were recorded, the
most common being the field vole ($Microtus agrestis$),
followed by the wood mouse ($Apodemus sylvaticus$) and
the common shrew ($Sorex minutus$) which were equally
recorded. All individuals cached were adults.
Finally, the rarest cached group were the amphibians with
a single adult common frog ($Rana temporaria$).

Table 1. Pine marten caches found at den boxes with dates, locations and prey composition.

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Number of prey items</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Birds</td>
<td>Small Mammals</td>
<td>Common Frog</td>
<td>Total</td>
</tr>
<tr>
<td>21/05/2015</td>
<td>Galloway</td>
<td>44</td>
<td>8</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>04/02/2017</td>
<td>Ring of Gullion</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>28/04/2017</td>
<td>Ring of Gullion</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>07/05/2017</td>
<td>Galloway</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>13/05/2017</td>
<td>Galloway</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>07/01/2018</td>
<td>Ring of Gullion</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14/05/2018</td>
<td>Galloway</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 2. Pine marten cache consisting of 53 items found in spring in coniferous forest in Galloway Forest, Scotland.

DISCUSSION

Our observations demonstrate that European pine
martens cache small to medium-sized prey items. Pine
martens usually den in sheltered, elevated cavities and it
has been difficult, until recently, to observe caching
behaviour. With the implementation of den boxes and
camera traps we were able to record such behaviours,
demonstrating the use of den boxes in exploring
enigmatic aspects of their ecology.
Pine martens are highly territorial (Zalewski et al., 1995;
Zalewski et al., 2004), and two observations are assumed
to be of the same individual caching prey items, returning
and feeding on them. Interestingly, contrary to previous
assumptions on caching, that it serves as a means of
storing prey items that display annual cycles to counteract
periods of scarcity (Sherry, 1985), these observations
demonstrate consumption of prey items following a short
duration of storage. This suggests caching can be a
shorter-term food storing behaviour than previously
thought and may assist an individual’s survival during
periods of high food demand, e.g. raising young. Another
interpretation may be that food caching merely serves to
remove prey from capture sites. This would provide
additional security by allowing the marten to feed away
from competitors or predators such as foxes ($Vulpes
vulpes$), which may be alerted to the location of the kill.
However, it is important to note that den boxes were only
checked infrequently, and it is not possible to comment
on the frequency of caching, or annual fluctuations in this
behaviour. To further our knowledge on the prevalence of
food caching a future investigation encompassing all
seasons, and a variety of habitat types would be
necessary. The deployment of camera traps at all den
boxes or caching sites for a year would allow the
collection of data on the duration of time items are cached
for and the frequency of visits to the site, as well as
reducing the survey effort making it easier to collect such
data.
It is noteworthy that 53 out of 66 prey items cached were
Food caching in den boxes by pine marten

birds, predominantly Passeriformes. The presence of birds in pine marten diet is typically represented by peaks in occurrence during spring and summer. It has been assumed this was due to the presence of vulnerable juveniles and fledglings in the nest (Lynch & McCann, 2007). However, dietary investigations based on scats fail to provide data on age of individuals consumed; so, this novel approach based on assessing caches allows us to confirm that juveniles and fledglings appear to be targeted in spring and summer. The presence of fledgling rather than adult birds is indicative of an above ground foraging ecology, and the raiding of nests. In consensus with studies on pine marten diet throughout their natural range, passerines make up the bulk of all avifauna predated (Marchesi & Mermod 1989; Balharry 1993; Zalewski et al., 1995; Helldin, 2000; Lynch & McCann, 2007). Despite the fact that in Scotland it has been reported that field voles are the chief prey item for the European pine marten, and occur in 80% of scats (Balharry, 1993), they form only a relatively small fraction of prey items cached in this study. It is important to note that Ireland has a lower small mammal biodiversity compared to Scotland with an absence of native voles (Montgomery et al., 2014). Despite the expected differences in diet (Balharry, 1993; Lynch & McCann, 2007), passerine birds remain the most commonly cached item at both locations. However, it may not be the complete range of prey items, with the possibility of large, heavy items being stored in ground level caches prohibiting our ability to record such events using this methodology.

This work highlights the value of artificial den box schemes beyond improving our knowledge of caching behaviour in pine martens. The use of den boxes provides potential for novel discoveries in otherwise cryptic aspects of their ecology such as: reproduction, breeding success, developmental growth and survival rates. Therefore, the benefits of such schemes should be evident in a situation where the species range is expanding and whose ecology we need to understand better to reduce potential for conflict in the future. In the case of the latter, provision of artificial den boxes to mitigate for the lack of above ground denning sites in immature or degraded forests, potentially releases pine marten populations from factors that otherwise limit their populations. Reduced predation risk (Brainerd et al., 1995; Birks et al., 2005) and decreased energy costs associated with thermoregulation from use of below ground sites (e.g. burrows and tree roots; Croose et al., 2016), may increase populations. As such, any benefits from providing den boxes should be evaluated based on their ability to increase or decrease conflict in the future.

ACKNOWLEDGEMENTS

Thank you to Therese Hamill from Newry Mourne and Down District Council for her assistance with the work in the Ring of Gullion and to the Northern Ireland Forest Service for allowing us access to their land for the work.

REFERENCES

