Capturing Goodwillie's Derivative

Published in:
Journal of Pure and Applied Algebra

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 15. Dec. 2018
Capturing Goodwillie’s Derivative

David Barnes Rosona Eldred

May 26, 2015

Abstract
Recent work of Biedermann and Röndigs has translated Goodwillie’s calculus of functors into the language of model categories. Their work focuses on symmetric multilinear functors and the derivative appears only briefly. In this paper we focus on understanding the derivative as a right Quillen functor to a new model category. This is directly analogous to the behaviour of Weiss’s derivative in orthogonal calculus. The immediate advantage of this new category is that we obtain a streamlined and more informative proof that the n-homogeneous functors are classified by spectra with a Σ_n-action. In a later paper we will use this new model category to give a formal comparison between the orthogonal calculus and Goodwillie’s calculus of functors.

Contents
1 Introduction 2
 1.1 Recent History and Context 2
 1.2 Re-working the classification 3
 1.3 Organisation 5
2 Model structures on spaces and functors 5
 2.1 Model category background 5
 2.2 Model structures on spaces 6
 2.3 The category WT_Top of topological functors 7
3 Model structures for Goodwillie calculus 8
 3.1 The cross effect model structure 8
 3.2 The n-excisive model structure 10
 3.3 The n-homogeneous model structure 12
4 Capturing the derivative over a point 14
 4.1 A model category for spectra with a Σ_n-action 15
 4.2 Definition of $\Sigma_n \ltimes (\text{WT}_\text{Top}_n)$ and the projective model structure 16
 4.3 The stable equivalences 17
 4.4 The stable model structure 17
5 Equivalence of the two versions of spectra 18
 5.1 The adjunction between $\Sigma_n \ltimes (\text{WT}_\text{Top}_n)$ and $\Sigma_n \cup \text{WSp}$ 18
 5.2 The Quillen equivalence 19
6 Differentiation is a Quillen equivalence 20
 6.1 The adjunction between $\Sigma_n \ltimes (\text{WT}_\text{Top}_n)$ and $\text{WT}_n\text{-homog}$ 21
 6.2 The Quillen equivalence 22
7 Quillen equivalence with symmetric multilinear functors 24

Bibliography 26
1 Introduction

Goodwillie’s calculus of homotopy functors is a highly successful method of studying equivalence-preserving functors, often with source and target either spaces or spectra. The original development is given in the three papers by Goodwillie [9, 10, 11], motivated by the study of Waldhausen’s algebraic K-theory of a space. A family of related theories grew out of this work: our focus is on the homotopy functor calculus and (to a lesser extent in this paper) the orthogonal calculus of Weiss [23]. The orthogonal calculus was developed to study functors from real inner-product spaces to topological spaces, such as $BO(V)$ and $TOP(V)$.

The model categorical foundations for the homotopy functor calculus and the orthogonal calculus have been established; see Biedermann-Chorny-Röndigs [5], Biedermann-Röndigs [6] and Barnes-Oman [3]. However, we have found these to be incompatible. Most notably, the symmetric multilinear functors of Goodwillie appear to have no analogue in the theory of Weiss. In this paper, we re-work the classification results of Goodwillie to make it resemble that of the orthogonal calculus. In a subsequent paper [2], we will use this similarity to give a formal comparison between the orthogonal calculus and Goodwillie’s calculus of functors.

This re-working marks a substantial difference from the existing literature on model structures (or infinity categories) for Goodwillie calculus, as they follow the pattern of Goodwillie’s work in a variety of different contexts (see also Pereira [21] or Lurie [16]). Our setup takes a more equivariant perspective and has the advantage of using one less adjunction and fewer categories than that of [6] and [11]. In detail, we construct a new category $(\Sigma_n \hat{\times} \mathcal{W}_n \mathcal{Top})$, Section 4.2 which will be the target of an altered notion of the derivative over a point (diff$_n$, Section 6.1). This approach simplifies the classification of homogeneous functors in terms of spectra with Σ_n-action, whilst retaining Goodwillie’s original classification at the level of homotopy categories, see Theorem 6.7. It also provides a new characterisation of the n-homogeneous equivalences, see Lemma 6.5 and clarifies some important calculations, see Examples 6.8 and 6.9.

1.1 Recent History and Context

What the family of functor calculi have most in common is that they associate, to an equivalence-preserving functor F, a tower (the Taylor tower of F) of functors

$$
\cdots \xrightarrow{D_n F} P_n F \xrightarrow{D_{n-1} F} \cdots \xrightarrow{D_1 F} P_1 F \xrightarrow{P_0 F}
$$

where the $P_n F$ have a kind of n-polynomial property, and for nice functors, the inverse limit of the tower, denoted $P_{\infty} F$, is equivalent to F. The layers of the tower, $D_n F$, are then analogous to purely-n-polynomial functors – called n-homogeneous. Figure 1 represents Goodwillie’s classification of (finitary) n-homogeneous functors in terms of spectra with Σ_n-action. This classification is phrased in terms of three equivalences of homotopy categories.

$$
\text{Ho}(n\text{-homog-Fun}(C, \text{Top})) \xrightarrow{[11] \text{[2]}} \text{Ho}(n\text{-homog-Fun}(C, \text{Sp})) \xrightarrow{[11] \text{[Thm 3.5]}} \text{Ho}(\text{Symm-Fun}(C^n, \text{Sp})_{nd}) \xrightarrow{[11] \text{[5]}} \text{Ho}(\Sigma_n \odot \text{Sp})
$$

Figure 1: Goodwillie’s classification
Here, “Ho” indicates that we are working with homotopy categories. \(n \)-homog-Fun(A,B) is the category of \(n \)-homogeneous functors from A to B, C is either spectra (Sp) or spaces (Top) and \(\Sigma_n \odot_{\text{Sp}} \) denotes (Bousfield-Friedlander) spectra with an action of \(\Sigma_n \). The category (Symm-Fun(C^n,Sp)_{ml}) consists of symmetric multi-linear functors of \(n \)-inputs: those \(F \) with \(F(X_1, \ldots, X_n) \cong F(X_{\sigma(1)}, \ldots, X_{\sigma(n)}) \) for \(\sigma \in \Sigma_n \) and which are degree 1-polynomial in each input.

Goodwillie, in [11], suggested that his classification would be well-served by being revised using the structure and language of model categories and hence phrased in terms of Quillen equivalences. For the homotopy functor calculus, Biedermann, Chorny and Röndigs [5] and Biedermann and Röndigs [6] completed Goodwillie’s recommendation. For simplicial functors with fairly general target and domain, they follow the same pattern as Goodwillie’s paper [11]. This classification involves several intermediate categories, similar to Figure 1. In Figure 2, \(\mathcal{S} \) denote based simplicial sets, \(\mathcal{S}^{f} \) denotes finite based simplicial sets and Fun(\(\Sigma_n \odot_{\mathcal{S}^{f}} \mathcal{S}_{\text{ml}} \)) denotes a model structure of symmetric multi-linear functors with target \(\mathcal{C} \) being simplicial sets or spectra.

For the orthogonal calculus, the classification of \(n \)-homogeneous functors by Weiss [23, Section 7] was re-worked and promoted to a description in terms of Quillen equivalences of model categories in Barnes and Oman [3]. In the notation of this paper, their classification diagram ([3, p.962]) is Figure 3. Without going into detail, the left hand category is a model structure for \(n \)-homogeneous functors and the right hand category is a spectra with an action of \(O(n) \).

\[
\begin{align*}
\text{Figure 2: Classification of Biedermann-R"ondigs for } & \mathcal{C} = \mathcal{S}^{f}, \mathcal{D} = \mathcal{S} & \text{[6, (6.2)]}\\
\text{Figure 3: Weiss’s classification } & \end{align*}
\]

1.2 Re-working the classification

The middle category of Figure 3 is not a kind of orthogonal version of symmetric multilinear functors. Indeed, there appears to be no such analog in the orthogonal setting. With that in mind, as well as our goal of a model-category comparison of the two calculi, we re-work the homogeneous classification for homotopy functors without using symmetric multilinear functors. We instead use the homotopy functor analog of the middle category of Figure 3, which we denote \(\Sigma_n \odot_{\text{WTop}} \). This notation reflects our choice to use the category WTop (continuous functors from finite based CW-complexes to based topological spaces) as our model for homotopy functors from spaces to spaces, which we will say more about later.

In this paper, we construct the diagram of Quillen equivalences of Figure 4. The top line of this diagram provides an alternate classification of \(n \)-homogeneous functors and is analogous to
We also compare our classification with the model category of symmetric multi-linear functors.

\[
\begin{align*}
\text{WTOP}_{n, \text{homog}} & \xrightarrow{(-)/\Sigma_n \circ \text{map-diag}^*} \Sigma_n \ltimes (\text{W}_n \text{Top})_{\text{stable}} \\
& \xrightarrow{\text{diff}_n} \Sigma_n \circ \text{W}_n \text{Sp} \\
\text{Sym-Fun(W}^n, \text{Top})_{\text{ml}} & \xrightarrow{\text{ob-diag}} \Sigma_n \circ \text{ob-diag}^*
\end{align*}
\]

Figure 4: Diagram of Quillen equivalences

We show that the derivative construction (denoted \(\text{diff}_n\), see Definition 3.1) in the setting of spaces over a point naturally takes values in \(\Sigma_n \ltimes (\text{W}_n \text{Top})\) and that this construction is a Quillen equivalence. We furthermore construct a Quillen equivalence between \(\Sigma_n \ltimes (\text{W}_n \text{Top})\) and spectra with a \(\Sigma_n\)-action (denoted \(\Sigma_n \circ \text{W}_n \text{Sp}\)). Our new classification then resembles the orthogonal version of Barnes and Oman [3], which involves one less adjunction and fewer categories than that of [6] and [11].

The category \(\Sigma_n \ltimes (\text{W}_n \text{Top})\) is a relatively standard construction of equivariant spectra, similar to the constructions of equivariant orthogonal spectra of Mandell and May [17]. If we are prepared to work with this category rather than spectra with a \(\Sigma_n\)-action we have a one-stage classification of homogeneous functors in terms of spectra. We also claim that our category \(\Sigma_n \ltimes (\text{W}_n \text{Top})\) is no more complicated than the category of symmetric functors. See Section 4 for a definition of \(\Sigma_n \ltimes (\text{W}_n \text{Top})\) and Section 7 for a comparison with symmetric multi-linear functors.

Another useful aspect of this work is that we choose to work with the category \(\text{WTop}\) as our model of homotopy functors. Every object of this category is a homotopy functor, which removes the need for the homotopy functor model structure, a prominent feature of [5, 6]. We comment more on this in Section 2.3.

In a sequel to this paper: Given a functor \(F \in \text{WTop}\) we can consider the functor of vector spaces \(V \mapsto F(S^V)\) (where \(S^V\) is the one-point compactification of \(V\)), which we call the restriction of \(F\). We show that the restriction of an \(n\)-homogeneous functor (in the sense of Goodwillie) gives an \(n\)-homogeneous functor (in the sense of Weiss). Similarly, we show that restriction sends \(n\)-excisive functors to \(n\)-polynomial functors. These statements currently have the status of folk-results; we will provide formal proofs in [2].

Our primary aim in the sequel is to show that when \(F\) is analytic the restriction of the Goodwillie tower of \(F\) and the Weiss tower associated to the functor \(V \mapsto F(S^V)\) agree. From this, we obtain two applications. Firstly, we prove convergence of the Weiss tower of the functor \(V \mapsto BO(V)\) (as claimed in [1, Page 13]). Secondly, we lift the comparisons of the two forms of calculus to a commutative diagram of model categories and Quillen pairs, see [2, Section 5].

With this aim in mind, working with a topologically enriched category of homotopy functors rather than simplicially enriched is necessary: there is no good way to study orthogonal calculus using simplicial enrichments, due to the continuity of the \(O(n)\) actions. Similarly, while [6]
considers the case of homotopy functors between categories other than simplicial sets or spectra, there is no analogous generalisation for orthogonal calculus (since the domain is the category J_0 of real inner product spaces and linear isometries). As our overall aim is a comparison between these two kinds of calculus, we choose to work in the specific context of W_{Top} in this paper.

1.3 Organisation

In Section 2 we remind the reader of some important model category definitions and introduce W_{Top}, the category of functors that we will use to model homotopy functors. We then follow the structure of [6] and establish model structures on W_{Top} analogous to their work. Specifically, in Section 3 we define the cross effect model structure, the n-excisive model structure and the n-homogeneous model structure.

With these basics completed, we can turn to the construction of the new category $\Sigma_n \ltimes (W_n \text{Top})$. In Section 4 we start by giving the construction of the stable model structure on spectra with a Σ_n–action and then move on to constructing the stable model structure on $\Sigma_n \ltimes (W_n \text{Top})$. Section 5 establishes the Quillen equivalence between $\Sigma_n \ltimes (W_n \text{Top})$ and spectra with a Σ_n–action. The Quillen equivalence between n-homogeneous functors and $\Sigma_n \ltimes (W_n \text{Top})$ induced by differentiation is established in Section 6. This is the primary result of this part of the paper. We finish by giving the Quillen equivalence between symmetric multilinear functors and $\Sigma_n \ltimes (W_n \text{Top})$ in Section 7.

Acknowledgements Part of this work was completed while the first author was supported by an EPSRC grant (EP/H026681/1), and the latter by the Humboldt Prize of Michael Weiss. The authors would also like to thank Greg Arone, Georg Biedermann, Oliver Röndigs and Michael Weiss for a number of stimulating and helpful discussions.

2 Model structures on spaces and functors

2.1 Model category background

The conditions we use are essentially those which make arbitrary model categories most like spaces: the ability to pushout or pullback weak equivalences (properness) and a good notion of cellular approximation (cofibrantly generated). We take our definitions and results from Hirschhorn [13] and May and Ponto [19].

Similarly to Mandell et al. [18], we use topological, rather than simplicial model categories. When we say a category is topological we mean that it is enriched in Top in the sense of Kelly [15] (the category has spaces of morphisms and continuous composition). Whereas a model category is said to be topological if it satisfies the following definition, which is analogous to the concept of a simplicial model category.

Definition 2.1 [18, Definition 5.12] For maps $i : A \to X$ and $p : E \to B$ in a model category M, let the map below be the map of spaces induced by $\mathcal{M}(i, \text{id})$ and $\mathcal{M}(i, p)$ after passing to the pullback.

$$\mathcal{M}(i^*, p_*): \mathcal{M}(X, E) \to \mathcal{M}(A, E) \times_{\mathcal{M}(A, B)} \mathcal{M}(X, B)$$
A model category \(\mathcal{M} \) is **topological**, provided that \(\mathcal{M}(i^*, p_*) \) is a Serre fibration of spaces if \(i \) is a cofibration and \(p \) is a fibration; it is a weak equivalence if, in addition, either \(i \) or \(p \) is a weak equivalence.

Definition 2.2 [13, Definition 11.1.1] Let \(\mathcal{M} \) be a model category, and let the following be a commutative square in \(\mathcal{M} \):

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{i} & & \downarrow{j} \\
C & \xrightarrow{g} & D
\end{array}
\]

\(\mathcal{M} \) is called **left proper** if, whenever \(f \) is a weak equivalence, \(i \) a cofibration, and the square is a pushout, then \(g \) is also a weak equivalence. \(\mathcal{M} \) is called **right proper** if, whenever \(g \) is a weak equivalence, \(j \) a fibration, and the square is a pullback, then \(f \) is also a weak equivalence. \(\mathcal{M} \) is called **proper** if it is both left and right proper.

This concept can also be phrased as the set of (co)fibrations being closed under (co)base change.

Definition 2.3 [13, Definition 13.2.1] A **cofibrantly generated model category** is a model category \(\mathcal{M} \) with sets of maps \(I \) and \(J \) such that \(I \) and \(J \) support the small object argument (see [13, Definitions 15.1.1 and 15.1.7,]) and

1. a map is a trivial fibration if and only if it has the right lifting property with respect to every element of \(I \), and
2. a map is a fibration if and only if it has the right lifting property with respect to every element of \(J \).

2.2 Model structures on spaces

There are three model structures that we use on \(\text{Top} \), the \(q \)-("Quillen") model structure, the \(h \)-("Hurewicz) model structure and the \(m \)-("mixed") model structure.

Theorem 2.4 [19, Theorem 17.1.1, Corollary 17.1.2] The category \(\text{Top} \) of based spaces has a monoidal and proper model structure, the **\(h \)-model structure**, where the weak equivalences are the homotopy equivalences; the fibrations are the Hurewicz fibrations and the cofibrations are the \(h \)-cofibrations (those maps with the homotopy extension property). All spaces are both fibrant and cofibrant.

Theorem 2.5 [19, Theorem 17.2.2, Corollary 17.2.4] The category \(\text{Top} \) of based spaces has a cofibrantly generated monoidal and proper model structure, the **\(q \)-model structure**, where the weak equivalences are the weak homotopy equivalences; the fibrations are the Serre fibrations (those maps that satisfy the right lifting property with respect to \(J_{\text{Top}} \) as defined below). The cofibrations are the \(q \)-cofibrations (defined by the left lifting property). All spaces are fibrant.

The \(q \)-model structure on spaces is cofibrantly generated. The generating cofibrations (\(I_{\text{Top}} \)) are the inclusions \(S_n \to D_n^2 \), \(n \geq 0 \) and the generating acyclic cofibrations (\(J_{\text{Top}} \)) are the maps \(i_0 : D_n^2 \to (D^n \times I)_+ \), \(n \geq 0 \).

Theorem 2.6 [19, Theorem 17.4.2, Corollary 17.4.3] The category \(\text{Top} \) of based spaces has a monoidal and proper model structure, the **\(m \)-model structure**, where the weak equivalences are the weak homotopy equivalences; the fibrations are the Hurewicz fibrations and the cofibrations defined by the left lifting property with respect to Hurewicz fibrations which are also \(q \)-equivalences.
Note that every m-cofibration is a h-cofibration and the h-cofibrations are closed inclusions of spaces, see Mandell et al. [18, Page 457].

2.3 The category $\mathcal{W}\text{Top}$ of topological functors

Goodwillie calculus studies equivalence-preserving functors from the category of based spaces to itself. In this section we introduce $\mathcal{W}\text{Top}$ and show how it is a good model for these.

Let \mathcal{W} be the category of based spaces homeomorphic to finite CW complexes. We note immediately that \mathcal{W} is Top-enriched, but not \mathcal{W}-enriched. We define $\mathcal{W}\text{Top}$ to be the category of \mathcal{W}-spaces: continuous functors from \mathcal{W} to Top (for full details see Mandell et al. [18]). In particular, an $X \in \mathcal{W}\text{Top}$ consists of the following information: a collection of based spaces $X(A)$ for each $A \in \mathcal{W}$ and a collection of maps of based spaces $X(A,B) : W(A,B) \to \text{Top}(X(A), X(B))$ for each pair A,B in \mathcal{W}. These maps must be compatible with composition and also associative and unital. The map $X(A,B)$ induces a structure map:

$$X(A) \wedge W(A,B) \to X(B)$$

The category $\mathcal{W}\text{Top}$ is complete and cocomplete with limits and colimits taken objectwise. This category is tensored and cotensored over based spaces. For a functor X in $\mathcal{W}\text{Top}$ and a based space A, the tensor $X \wedge A$ is the objectwise smash product. The cotensor $\text{Top}(A,X)$ is the objectwise function space. The category $\mathcal{W}\text{Top}$ is also enriched over based spaces, with the space of natural transformations from X to Y given by the enriched end (for more on (co)ends, see Kelly [15, Section 3.10])

$$\text{Nat}(X,Y) = \int_{A \in \mathcal{W}} \text{Top}(X(A), Y(A))$$

The category $\mathcal{W}\text{Top}$ is a closed symmetric monoidal category by Mandell et al. [18, Theorem 1.7]. The smash product and internal function object are defined as follows, where X and Y are objects of $\mathcal{W}\text{Top}$ and $A \in \mathcal{W}$.

$$(X \wedge Y)(A) = \int_{B,C \in \mathcal{W}} X(B) \wedge Y(C) \wedge W(B \wedge C, A)$$
$$\text{Hom}(X,Y)(A) = \int_{B \in \mathcal{W}} \text{Top}(X(B), Y(A \wedge B))$$

There is another important natural construction that we will use. Let X be an object of $\mathcal{W}\text{Top}$, then the **assembly map** of X is

$$a_{A,B} : X(A) \wedge B \to X(A \wedge B).$$

It may be defined as the following composition, where the final map is the structure map of X.

$$X(A) \wedge B \cong X(A) \wedge W(S^0, B) \xrightarrow{\text{id} \wedge (A \wedge -)} X(A) \wedge W(A, A \wedge B) \to X(A \wedge B)$$

The existence of the assembly map tells us that X takes homotopic maps to homotopic maps (compose the assembly map with X applied to the homotopy between the maps). Since \mathcal{W} consists of CW–complexes, it follows that X preserves weak homotopy equivalences, that is, X is a homotopy functor.
We record here an important observation about objects of $W\text{Top}$. Since Id_{*} is the basepoint of $W(\ast, \ast)$, the map $\text{Id}_{X(\ast)} = X(\text{Id}_{*})$ is the base point of $\text{Top}(X(\ast), X(\ast))$. Hence $X(\ast) = \ast$ for any $X \in W$. We therefore say that every functor of $W\text{Top}$ is reduced.

The category W has a small skeleton $\text{sk} W$, which fixes set-theoretic problems with the totality of natural transformations between functors from Top to Top. In particular, it ensures that all small limits exist in $W\text{Top}$. Biedermann and Röndigs \cite{6} work (in particular) with the simplicial analogue of $W\text{Top}$ and considers Goodwillie calculus in terms of simplicial functors from the category of finite simplicial sets S^f to the category of all simplicial sets S. A nice discussion of the set-theoretic problem can be found in Biedermann-Chorny-Röndigs \cite[Section 2]{5}.

We now want to equip the category $W\text{Top}$ with a model structure, the following result is \cite[Theorem 6.5]{18}.

Lemma 2.7 The projective model structure on the category $W\text{Top}$ has fibrations and weak equivalences which are defined objectwise in the q-model structure of spaces. The cofibrations are determined by the left lifting property. In particular they are objectwise m-cofibrations of spaces. This model structure is proper, cofibrantly generated and topological. The generating sets are given below, where $\text{sk} W$ denotes a skeleton of W.

$$
I_{W\text{Top}} = \{ W(X, -) \land i \mid i \in I_{\text{Top}}, X \in \text{sk} W \}
$$

$$
J_{W\text{Top}} = \{ W(X, -) \land j \mid j \in J_{\text{Top}}, X \in \text{sk} W \}
$$

Recall from Goodwillie \cite[Definition 5.10]{11} that a homotopy functor from Top to Top is said to be **finitary** if it commutes with filtered homotopy colimits. Such functors are determined by their restriction to W. Since any space A is naturally weakly equivalent to a homotopy colimit of finite CW-complexes $\text{hocolim}_n A_n$, we can extend a homotopy functor $X \in W\text{Top}$ by the formula $X(A) = \text{hocolim}_n X(A_n)$ to obtain a finitary homotopy functor from Top to itself.

To relate $W\text{Top}$ to the work of Biedermann and Röndigs, consider the category of simplicial functors from the category of finite based simplicial sets to the category of based simplicial sets, $\text{Fun}(S^f, S)$. This category can be equipped the homotopy functor model structures of \cite[Section 4]{6}. It is then an exercise left to the enthusiast to show that $W\text{Top}$ with its projective model structure is Quillen equivalent to $\text{Fun}(S^f, S)$ with the homotopy functor model structure. The result is a consequence of the simplicial approximation theorem, which implies that a finite CW complex is homotopy equivalent to the realisation of a finite simplicial complex.

3 Model structures for Goodwillie calculus

In this section, we explain how to construct model categories of n-excisive functors and n-homogeneous functors. Only brief details are given, as the method is similar to that of \cite{6} and Barnes and Oman \cite{3}. Many of the following constructions and definitions may be found originally in \cite{11}.

3.1 The cross effect model structure

We need the cross effect and the functor diff_n (defined below) to be right Quillen functors for the classification of the n-homogeneous functors. That is, if $f : F \to G$ is a fibration of $W\text{Top}$, we need $\text{diff}_n(f) : \text{diff}_n F \to \text{diff}_n G$ (and the same for the cross effect) to be an objectwise
fibration of $\mathbb{W}Top$. This does not hold for the projective model structure, as explained in the introduction to \cite[Section 3.3]{6}.

Similar to Biedermann and Röndigs (albeit topologically rather than simplicially), we introduce another model structure on $\mathbb{W}Top$ that is Quillen equivalent to the projective model structure. This alternative model structure will be called the \textbf{cross effect model structure} (see Theorem \ref{thm:cross-effect-model-structure}). It has the same weak equivalences as the projective model structure.

Definition 3.1 For $F \in \mathbb{W}Top$ and an n-tuple of spaces in \mathcal{W}, (X_1, \ldots, X_n), the \textbf{n^{th}–cross effect of F at (X_1, \ldots, X_n)} is the space

$$\text{cr}_n(F)(X_1, \ldots, X_n) = \text{Nat}(\bigwedge_{i=1}^n \mathbb{W}(X_i, -), F)$$

Pre-composing $\text{cr}_n(F)$ with the diagonal map $\mathbb{W}(X, Y) \to \bigwedge_{i=1}^n \mathbb{W}(X, Y)$ yields an object of $\mathbb{W}Top$ which we call $\text{diff}_n(F)$, which in keeping with language of orthogonal calculus, is the n^{th} (unstable) derivative. That is

$$\text{diff}_n(F)(X) = \text{Nat}(\bigwedge_{i=1}^n \mathbb{W}(X, -), F).$$

In Section \ref{sec:cross-effects} we elaborate on how the spaces $(\text{diff}_n F)(X)$ define a spectrum. As it is defined in terms of the cross-effect we only work in the based setting, so it is the derivative over the point.

Remark 3.2 We caution the reader that there is a difference between what Goodwillie \cite{11} calls the n^{th} cross-effect and the above notation. As is now standard, Goodwillie’s version is called the homotopy cross-effect.

To make the cross effect into a right Quillen functor we need to have more cofibrations than in the projective model structure on $\mathbb{W}Top$. The extra maps we need are defined below in Definition \ref{def:phi}. We first need the following formalism for cubical diagrams.

Definition 3.3 Let \overline{n} denote the set $\{1, \ldots, n\}$ and let $\mathcal{P}(\overline{n})$ denote the powerset of \overline{n}. We define $\mathcal{P}_0(\overline{n})$ as the set of non–empty subsets of \overline{n}.

Definition 3.4 Consider the following collection of maps, where $\phi_{\overline{X}, \overline{n}}$ is defined via the projections which send those factors in S to the basepoint.

$$\Phi_n = \{ \phi_{\overline{X}, \overline{n}}: \text{colim}_{S \subseteq \mathcal{P}_0(\overline{n})} \mathbb{W}(\bigvee_{i \in S} X_i, -) \to \mathbb{W}(\bigvee_{i=1}^n X_i, -) \mid \overline{X} = (X_1, \ldots, X_n), X_i \in \text{sk} \mathbb{W} \}$$

We then also define $\Phi_{\overline{X}} = \bigcup_{n \geq 1} \Phi_n$.

The cofibre of $\text{Nat}(-, F)(\phi_{\overline{X}, \overline{n}})$ is the cross effect of F at \overline{X}, $\text{cr}_n(F)(X_1, \ldots, X_n)$; see \cite[Lemma 3.14]{6}.

Definition 3.5 Given $f: A \to B$ a map of based spaces and $g: X \to Y$ in \mathcal{W}, the \textbf{pushout product} of f and g, $f \Box g$, is given by

$$f \Box g: B \wedge X \bigvee_{A \wedge X} A \wedge Y \to B \wedge Y.$$
Theorem 3.6 There is a cofibrantly generated model structure on WTop, the cross effect model structure, whose weak equivalences are the objectwise weak homotopy equivalences and whose generating sets are given by

\[I_{\mathsf{Wcr}} = \Phi_\times \square I_{\mathsf{Top}} \quad J_{\mathsf{Wcr}} = \Phi_\times \square J_{\mathsf{Top}} \]

We call the cofibrations of this model structure cross effect cofibrations and call the fibrations the cross effect fibrations. We write $\mathsf{WTop}_{\mathsf{cross}}$ for this model category and \hat{f}_{cross} for its fibrant replacement functor.

Proof. Similar to the arguments of [6, Section 3.3]. Note the following two facts:

1. $\phi_{X,n}$ is an objectwise m-cofibration (and hence a h-cofibration) of based spaces,
2. the domains of the generating sets are small with respect to the objectwise h-cofibrations by Hovey [14, Proposition 2.4.2] and Hirschhorn [13, Proposition 10.4.8].

Corollary 3.7 The cross effect model structure on WTop is proper and the cofibrant objects are small with respect to the class of objectwise h-cofibrations.

Proof. Every cross effect cofibration is an objectwise h-cofibration. Similarly every cross effect fibration is an objectwise q-fibration. Since the weak equivalences, limits and colimits are all defined objectwise, the result follows from standard properties of Top. The smallness follows from [13, Section 10.4] and the second point of the proof of Theorem 3.6.

Corollary 3.8 For $k: A \rightarrow B$ a cofibration of based spaces and (X_1,\ldots,X_n) an n-tuple of objects of W, the map

\[
\bigwedge_{l=1}^n \mathsf{W}(X_l,-) \wedge k: \bigwedge_{l=1}^n \mathsf{W}(X_l,-) \wedge A \rightarrow \bigwedge_{l=1}^n \mathsf{W}(X_l,-) \wedge B
\]

is a cross effect cofibration.

Proof. The map $\alpha:* \rightarrow \bigwedge_{l=1}^n \mathsf{W}(X_l,-)$ is a cross effect cofibration, where $*$ denotes here the one point space. It follows that $\alpha \square k$ is a cross effect cofibration.

The proof of the following is effectively Biedermann and Röndigs [6, Lemma 3.24].

Lemma 3.9 If F is a cross effect fibrant object of WTop then the n^{th} homotopy cross effect of F is given by the strict n^{th} cross effect.

3.2 The n-excisive model structure

As in Barnes and Oman [3, Section 6], we perform a left Bousfield localisation of the cross effect model structure on WTop to obtain the n-excisive model structure. The class of fibrant objects of this model structure will be the class of n-excisive objects of WTop; see Definition 3.11 and Theorem 3.14. The cofibrations will remain unchanged and the weak equivalences will be the P_n-equivalences, those maps $f:F \rightarrow G$ such that $P_n f$ (see Definition 3.12) is an objectwise weak homotopy equivalence.
Definition 3.10 An n–cube in \mathcal{W} (or Top) is a functor \mathcal{X} from $\mathcal{P}(n)$ to \mathcal{W} (resp. Top). An n–cube is said to be strongly cocartesian if all of its two-dimensional faces are homotopy pushout squares. An n–cube is said to be cartesian if the map

$$\mathcal{X}(\emptyset) \longrightarrow \text{holim}_{S \in \mathcal{P}_0(n+1)} \mathcal{X}(S)$$

induced by the maps $\mathcal{X}(\emptyset) \to \mathcal{X}(S)$ is a weak homotopy equivalence.

Definition 3.11 An object $F \in \text{WT}op$ is said to be n-excisive if it sends strongly cocartesian $(n+1)$-cubes in \mathcal{W} to cartesian $(n+1)$-cubes in Top.

We now give the construction of the homotopy-universal approximation to F by an n-excisive functor, denoted P_nF. Note that we use $X \star Y$ to denote the topological join of X and Y.

Definition 3.12 We first define a functor $T_n: \text{WT}op \to \text{WT}op$ and a natural transformation $t_n: \text{Id} \to T_n$. Let $F \in \text{WT}op$ then T_nF is given below.

$$(T_nF)(X) = \text{Nat}(\text{holim}_{S \in \mathcal{P}_0(n+1)} W(S \star X, -), F) = \text{holim}_{S \in \mathcal{P}_0(n+1)} F(S \star X)$$

The inclusion of the empty set as the initial object of $\mathcal{P}_0(n+1)$ and that $\emptyset \star X \cong X$ gives a natural transformation $t_{n,F}$ from $F(-) \cong F(\emptyset \star -)$ to the homotopy limit T_nF.

Furthermore, we define

$$P_nF := \text{holim} \left(F \xrightarrow{t_{n,F}} T_nF \xrightarrow{t_{n,T_nF}} T_n^2F \xrightarrow{t_{n,T_n^2F}} T_n^3F \longrightarrow \ldots \right)$$

For more details on homotopy limits in functor categories see Heller [12]. In particular T_nF and P_nF are continuous functors from \mathcal{W} to based topological spaces. One could also apply model category techniques and take a strict limit of a suitably fibrant replacement of the diagram.

Lemma 3.13 An object $F \in \text{WT}op$ is n-excisive if and only if the map $t_{n,F}: F \to T_nF$ is an objectwise weak homotopy equivalence.

In particular, $t_{n,F}: F \to T_nF$ is a P_n-equivalence for any F. To make a new model structure where the P_n-equivalences are weak equivalences, it is necessary and sufficient to turn the class of maps $t_{n,F}$ into weak equivalences. Consider the following set of maps

$$S_n = \{ s_{n,X}: \text{holim}_{S \in \mathcal{P}_0(n+1)} W(S \star X, -) \longrightarrow W(X, -) \mid X \in \text{sk} \mathcal{W} \}.$$

By the Yoneda lemma, $\text{Nat}(-, F)(s_{n,X}) \cong t_{n,F}(X)$. Hence, a model structure on $\text{WT}op$ will have S_n contained in the weak equivalences if and only if the P_n-equivalences are weak equivalences. We proceed to alter $\text{WT}op$ so that the maps in S_n are weak equivalences.

We replace the set of maps S_n by a set of objectwise h-cofibrations, K_n. For $s_{n,X} \in S_n$ let $k_{n,X}$ be the map from the domain of $s_{n,X}$ into the mapping cylinder $M s_{n,X}$. Similarly, let $r_{n,X}: M s_{n,X} \to W(X, -)$ be the retraction. Define

$$K_n = \{ k_{n,X}: \text{holim}_{S \in \mathcal{P}_0(n+1)} W(S \star X, -) \longrightarrow M s_{n,X} \mid X \in \text{sk} \mathcal{W} \}.$$
Theorem 3.14 There is a cofibrantly generated model structure on WTop whose weak equivalences are the P_n-equivalences and whose generating sets are given by

$$I_{n-\text{exs}} = \Phi_z \Box I_{\text{Top}} \quad J_{n-\text{exs}} = (\Phi_z \Box I_{\text{Top}}) \cup (K_n \Box I_{\text{Top}})$$

The cofibrations are the **cross effect cofibrations** and the fibrations are called n-**excisive fibrations**. In particular, every n-excisive fibration is a cross effect fibration. The fibrant objects are the cross effect fibrant n-excisive functors. We write $\text{WTop}_{n-\text{exs}}$ for this model category, which we call the n-**excisive model structure**.

Proof. Much of the work is similar to Biedermann and Röndigs [6, Theorem 5.8 and Lemma 5.9]. The lifting properties and classification of the weak equivalences are consequences of the following statement: a map f has the right lifting property with respect to $J_{n-\text{exs}}$ if and only if f is a cross effect fibration and either (and hence both) of the squares below is a homotopy pullback for all $X \in \mathcal{W}$.

$$
\begin{array}{ccc}
F(X) & \longrightarrow & (T_n F)(X) \\
\downarrow & & \downarrow \\
G(X) & \longrightarrow & (T_n G)(X)
\end{array}
\quad
\begin{array}{ccc}
F(X) & \longrightarrow & (P_n F)(X) \\
\downarrow & & \downarrow \\
G(X) & \longrightarrow & (P_n G)(X)
\end{array}
$$

The small object argument holds in this setting by Hirschhorn [13, Theorem 18.5.2] and Corollary 3.7.

Proposition 3.15 The n-excisive model structure on WTop is proper.

Proof. The functor P_n satisfies the assumptions of Bousfield [7, Theorem 9.3] (as verified in [6, Theorem 5.8]). Hence, there is a proper model structure on WTop with weak equivalences the P_n-equivalences and cofibrations the cross effect cofibrations – which is precisely our n-excisive model structure, so it is proper.

Note that every n-excisive functor in WTop is objectwise weakly equivalent to a cross effect fibrant n-excisive functor.

Lemma 3.16 Fibrant replacement in $\text{WTop}_{n-\text{exs}}$ is given by first applying the functor P_n and then applying $\hat{\tau}_{\text{cross}}$, the fibrant replacement functor of $\text{WTop}_{\text{cross}}$.

Proof. For $F \in \text{WTop}$, $P_n F$ is n-excisive. Applying $\hat{\tau}_{\text{cross}}$ we obtain an objectwise weakly equivalent object $\hat{\tau}_{\text{cross}} P_n F$. This object is also n-excisive and is cross effect fibrant. Hence it is fibrant in $\text{WTop}_{n-\text{exs}}$. Thus we can set $\hat{\tau}_{n-\text{exs}} = \hat{\tau}_{\text{cross}} P_n$.

3.3 The n-homogeneous model structure

Our next class of functors to study are those which are ‘purely’ n-excisive, that is, those F such that $P_n F \simeq F$ but $P_{n-1} F \simeq \ast$.

Definition 3.17 An object $F \in \text{WTop}$ is said to be n-**homogeneous** if it is n-excisive and $P_{n-1} F(X)$ is weakly equivalent to a point for each $X \in \mathcal{W}$.

For $F \in \text{WTop}$, define $D_n F \in \text{WTop}$ as the homotopy fibre of $P_n F \to P_{n-1} F$. Since P_n and P_{n-1} commute with finite homotopy limits the functor $D_n F$ takes values in n-homogeneous functors and hence is called the n-**homogeneous approximation** to F.

12
Similarly to Barnes and Oman \[3\] Section 6] and Biedermann and Röndigs \[6\] Section 6] we perform a right Bousfield localisation of WTop_n – this adds weak equivalences whilst preserving the class of fibrations. The aim is to obtain a new model structure WTop_n–homog where the weak equivalences are the D_n–equivalences and the cofibrant-fibrant objects are precisely the n–homogeneous objects which are fibrant and cofibrant in the cross effect model structure. Thus every n–homogeneous object of WTop will be objectwise weakly equivalent to a cofibrant-fibrant object of this new model structure. This will give us a ‘short exact sequence’ of model structures as below, where the composite derived functor WTop_n–homog $\rightarrow \text{WTop}_p$ \rightarrow sends every object to the trivial object.

\[
\begin{array}{cccc}
\text{WTop}_n \text{-homog} & \longrightarrow & \text{WTop}_n \text{-exs} & \longrightarrow & \text{WTop}_p \text{-nexs} \\
\end{array}
\]

Figure 5: Sequence of localisations

The required n-homogeneous model structure will have weak equivalences those maps $f \in \text{WTop}$ such that

$$\text{hodiff}_n f = \text{diff}_n \hat{r}_n \text{-exs} f = \text{diff}_n \hat{r}_p \text{cross} P_n f$$

is an objectwise weak homotopy equivalence. The name hodiff$_n$ refers to the fact it is defined in terms of the homotopy cross effect (see Remark \[3.2\] and Lemma \[3.9\]). In Section 6 we shall turn the construction diff$_n$ into a Quillen functor (indeed, into a Quillen equivalence) and hodiff$_n$ will be its derived functor.

A pointed model category is called **stable** if the suspension functor is an equivalence on the homotopy category; this definition agrees with Schwede and Shipley \[22, Definition 2.1.1\].

Theorem 3.18 There is a model structure on WTop with fibrations the n-excisive fibrations and weak equivalences the hodiff$_n$–equivalences. We call this the **n–homogeneous model structure** and denote it by WTop_n–homog. The model structure is cofibrantly generated, proper and stable.

Proof. By Christensen and Isaksen \[8\] Theorem 2.6] the right Bousfield localisation of the model category WTop_n–exs at the set

$$M_n = \left\{ \bigwedge_{l=1}^n W(X,-) \mid X \in \text{sk} W \right\}$$

exists and is right proper. We have used the fact that cofibrantly generated model categories (such as WTop_n–exs) always satisfy \[8\] Hypothesis 2.4]. Note that this set is substantially smaller than that of \[6\] Definition 6.2], where the X terms depend on l.

The model category WTop_n–exs is topological (see Definition \[2.1\]). Hence the weak equivalences of WTop_n–homog are given by those maps $f : F \rightarrow G$ which induce weak homotopy equivalences of spaces as below for all $X \in W$.

$$\text{Nat}(\bigwedge_{l=1}^n W(X,-), \hat{r}_n \text{-exs} F) \xrightarrow{\simeq} \text{Nat}(\bigwedge_{l=1}^n W(X,-), \hat{r}_n \text{-exs} G)$$

By Lemma \[3.16\] there is a weak homotopy equivalence of spaces

$$\text{Nat}(\bigwedge_{l=1}^n W(X,-), \hat{r}_n \text{-exs} F) \simeq \text{Nat}(\bigwedge_{l=1}^n W(X,-), \hat{r}_p \text{cross} P_n F) = \text{diff}_n \hat{r}_p \text{cross} P_n F = \text{hodiff}_n F.$$
It follows that the weak equivalences of $\text{WTop}_{n-\text{homog}}$ are as claimed. In particular, every object of this model category is weakly equivalent to an n-homogeneous functor.

The proof of Biedermann and Röndigs [6, Theorem 6.11] adapted to our setting shows that $\text{WTop}_{n-\text{homog}}$ is stable. Given that it is stable, the work of Barnes and Roitzheim [4, Proposition 5.8] tells us that the category is left proper. A small variation on [4, Theorem 5.9] yields that the generating cofibrations are given by the union of the generating acyclic cofibrations for $\text{WTop}_{n-\text{exs}}$ along with the set of morphisms

$$\{S^k_+ \wedge \bigwedge_{l=1}^n W(X, -) \rightarrow D^k_+ \wedge \bigwedge_{l=1}^n W(X, -) \mid k \geq 0, X \in \text{sk } W\}.$$

Our next task is to show that Figure 5 does indeed behave like a ‘short exact sequence’ of model categories. That is, we want to show that an object F of the n–excisive model structure has $P_{n-1}F \simeq \ast$ if and only if it is in the image of the derived functor from $\text{WTop}_{n-\text{homog}}$ to $\text{WTop}_{n-\text{exs}}$.

Lemma 3.19 A map is a $\text{hodiff}_{n-\text{equivalence}}$ if and only if it is a $D_{n-\text{equivalence}}$.

Proof. Let f be a D_n–equivalence, so $D_n f$ is an objectwise weak homotopy equivalence. Since $\text{hodiff}_n f = \text{diff}_n \hat{\text{cross}} P_n f$, it is weakly equivalent to $\text{diff}_n \hat{\text{cross}} D_n f$, the first half of the result follows.

For the converse, we use a method similar to Biedermann and Röndigs [6, Lemma 6.19]. Take some $\text{hodiff}_{n-\text{equivalence}} f$. We can extend this to a map $\Sigma^{\infty} f$ between functors which take values in sequential spectra. Applying hodiff_n levelwise to $\Sigma^{\infty} f$ gives an objectwise weak equivalence of spectra.

By Goodwillie [11, Proposition 5.8] it follows that $\text{hocross}_{\Sigma^{\infty}} f$ is an objectwise weak equivalence of spectra. The result [11, Proposition 3.4] (see also [6, Corollary 6.9]) implies that $D_n \Sigma^{\infty} f$ is also an objectwise weak equivalence. Hence so is the zeroth level of $D_n \Sigma^{\infty} f$, $\text{Ev}_0 D_n \Sigma^{\infty} f$. The functor Ev_0 commutes with D_n (up to objectwise weak equivalence) and $\text{Ev}_0 \Sigma^{\infty} \simeq \text{Id}$ since we are in a stable model structure. Thus $D_n f$ is an objectwise weak equivalence.

We state the following without proof as it follows from [6, Lemma 6.24].

Proposition 3.20 An object of $\text{WTop}_{n-\text{homog}}$ is cofibrant and fibrant if and only if it is n–homogeneous and fibrant and cofibrant in the cross effect model structure. The cofibrations of $\text{WTop}_{n-\text{homog}}$ are the cross effect cofibrations that are P_{n-1}–equivalences.

Thus we now see that the cofibrant-fibrant objects of $\text{WTop}_{n-\text{homog}}$ are exactly those functors of $\text{WTop}_{n-\text{exs}}$ that are trivial in $\text{WTop}_{(n-1)-\text{nexs}}$. Thus Figure 6 is a ‘short exact sequence’ of model categories.

4 Capturing the derivative over a point

We begin this section by giving a stable model structure for the category of spectra with a Σ_n–action (as these classify the n–homogeneous functors). It plays the role analogous to the intermediate category $O(n)\mathcal{E}_n$ of Barnes and Oman, see [3, Section 7]. This category has been designed to receive Goodwillie’s derivative and we shall show in Section 6 that the derivative is part of a Quillen equivalence.
After defining the category $\Sigma_n \times (W_n \text{Top})$, we establish the projective model structure in Theorem 4.8, then left Bousfield localize to get the stable structure. This makes use of the definition of $n\pi$-isomorphisms (analogous to [3, Definition 7.7]).

4.1 A model category for spectra with a Σ_n-action

One can model spectra by putting a stable model structure on $W\text{Top}$ as in Mandell et al. [18]. This model category is Quillen equivalent to the other models of the stable homotopy category. We perform the same operation but Σ_n-equivariantly.

The next result follows immediately from applying the transfer argument, Hirschhorn [13, Theorem 11.3.2], to the free functor $(\Sigma_n)_+ \land - : \text{Top} \to \Sigma_n \otimes \text{Top}$ where Top is equipped with the q-model structure. See also Mandell and May [17, Section II.1].

Lemma 4.1 The category $\Sigma_n \otimes \text{Top}$ of based spaces with an action of Σ_n has a cofibrantly generated monoidal and proper model structure. The weak equivalences are those which are weak homotopy equivalences after forgetting the Σ_n-action. Similarly, the fibrations are those maps whose underlying map in Top is a Serre fibration. The cofibrant objects are free. The monoidal product is given equipping the smash product of two Σ_n-spaces with the diagonal action.

The internal function object is given by equipping the space of non-equivariant maps with the conjugation action: if $f \in \text{Top}(X,Y)$, $\sigma \cdot f = \sigma Y \circ f \circ \sigma_X^{-1}$.

Combining the projective model structure on $W\text{Top}$ (Lemma 2.7) with Lemma 4.1, we obtain the following model structure on $\Sigma_n \otimes W\text{Top}$, the category of Σ_n-objects in $W\text{Top}$ and Σ_n-equivariant morphisms.

Lemma 4.2 The projective model structure on the category $\Sigma_n \otimes W\text{Top}$ has as generating sets

\[
I_{\Sigma_n \otimes \text{Top}} = \{ W(X, -) \land (\Sigma_n)_+ \land i \mid i \in I_{\text{Top}}, X \in \text{sk} W \},
\]

\[
J_{\Sigma_n \otimes \text{Top}} = \{ W(X, -) \land (\Sigma_n)_+ \land j \mid j \in J_{\text{Top}}, X \in \text{sk} W \}.
\]

A fibration (resp. weak equivalence) in this model structure is a Σ_n-equivariant map f such that each $f(X)$ is a q-fibration (resp. weak homotopy equivalence) of the underlying non-equivariant spaces. If $F \in \Sigma_n \otimes W\text{Top}$ is cofibrant, then each $F(X)$ is a free Σ_n-space. This model structure is proper, cofibrantly generated and topological.

We now modify the projective model structure to obtain the stable model structure. We first relate $\Sigma_n \otimes W\text{Top}$ to sequential spectra, which allows us to define the weak equivalences of the stable model structure.

Definition 4.3 Let $F \in \Sigma_n \otimes W\text{Top}$ and $A \in W$. We define a spectrum $F[A]$ via

\[F[A]_k := F(A \land S^k), \]

where we have forgotten the Σ_n-action. The assembly maps provide the structure maps of $F[A]$ as well as maps $F[A] \land B \to F[A \land B]$. We call $F[0^0]$ the underlying spectrum of F.

Definition 4.4 A map $f : F \to G$ in $\Sigma_n \otimes W\text{Top}$ is said to be a π-isomorphism if f induces a π-isomorphism on the underlying spectra of F and G.

We then have the following Σ_n-equivariant analogue of Mandell et al. [18, Theorem 9.2], which we state without proof. Note that we are using the absolute stable model structure of [18, Section 17].
Lemma 4.5 There is a stable model structure on $\Sigma_n \otimes \mathcal{W}\text{Top}$. It is formed by left Bousfield localising the projective model structure at the set of maps below

$$\{ \mathcal{W}(A \wedge S^1, -) \wedge S^1 \rightarrow \wedge \mathcal{W}(A, -) \mid A \in \text{sk } \mathcal{W} \}$$

The cofibrations are the same as for the projective model structure and the weak equivalences are the π_n-isomorphisms. This model structure is cofibrantly generated, proper and topological. We denote it by $\Sigma_n \otimes \mathcal{W}\text{Sp}$.

4.2 Definition of $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})$ and the projective model structure

We are interested in the functor diff_n, which is defined in terms of maps out of the functor $\mathcal{W}_n(X, -)$ (Definition 4.6). To help us study diff_n we construct a category $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})$ where the $\mathcal{W}_n(X, -)$ are the representable functors. In Section 5 we show how diff_n takes values in this category. We also note that the stable model structure on $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})$ is very similar to the constructions of equivariant orthogonal spectra in Mandell and May [17]. In Section 5 we will show it is Quillen equivalent to spectra with a Σ_n-action.

The motivation for this construction was the classification of n-homogenous functors in orthogonal calculus done by Barnes and Oman [3], by means of the category $O(n)\mathcal{E}_n$ (which in our current notation is $O(n) \ltimes (j_n \mathcal{Top})$). This category is a variation of the usual model structure on orthogonal spectra with an $O(n)$ action; the model structure of Mandell et al. [18] on orthogonal spectra transferred over the functor $O(n)_+ \wedge -$.

Definition 4.6 Let \mathcal{W}_n be the category enriched over topological spaces with Σ_n-action whose objects are those of \mathcal{W} and whose spaces of morphisms are given by

$$\mathcal{W}_n(X, Y) := \bigwedge_{i=1}^n \mathcal{W}(X, Y)$$

with the Σ_n-action which permutes the factors. (Note that this differs from the wreath product of Definition 7.2.)

Definition 4.7 The category $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})$ is the category of $\Sigma_n \otimes \text{Top}$-enriched functors from \mathcal{W}_n to $\Sigma_n \otimes \text{Top}$.

A functor X in the category $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})$ consists of the following information: a collection of based Σ_n-spaces $X(A)$ for each $A \in \mathcal{W}_n$ and a collection of Σ_n-equivariant maps of based Σ_n-spaces

$$X_{A,B}: \mathcal{W}_n(A, B) \rightarrow \text{Top}(X(A), X(B))$$

for each pair A, B in \mathcal{W}_n. The Σ_n-structure on $\text{Top}(X(A), X(B))$ is given by conjugation. The maps $X_{A,B}$ must be compatible with composition and also associative and unital. They induce a structure map, where Σ_n acts diagonally on the smash product:

$$X(A) \wedge \mathcal{W}_n(A, B) \rightarrow X(B).$$

Note that when $n = 1$, $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})$ is just $\mathcal{W}\text{Top}$.

We present the following without proof, as it is basically that of [18 Theorem 6.5].

Theorem 4.8 $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})$ has a projective model structure, starting with the free model structure on Σ_n-spaces. The generating cofibrations and trivial cofibrations are

$$I_{\mathcal{W}_n} = \{ \mathcal{W}_n(A, -) \wedge (\Sigma_n)_+ \wedge i \mid i \in I_{\text{Top}}, A \in \text{sk } \mathcal{W} \}$$

$$J_{\mathcal{W}_n} = \{ \mathcal{W}_n(A, -) \wedge (\Sigma_n)_+ \wedge j \mid j \in J_{\text{Top}}, A \in \text{sk } \mathcal{W} \}.$$

This defines a compactly generated topological proper model category denoted $\Sigma_n \ltimes (\mathcal{W}_n \text{Top})_{\text{proj}}$.

16
4.3 The stable equivalences

We will equip \(\Sigma_n \times (W_n \text{Top}) \) with a stable model structure. To do so, we must define the weak equivalences. Compare the following with Barnes and Oman [3, Definition 7.7] and Definitions 4.3 and 4.4.

Definition 4.9 The \(n \)-homotopy groups of an object \(F \) of \(\Sigma_n \times (W_n \text{Top}) \) at \(A \) are denoted \(n\pi^A_p(F) \) and defined as

\[
\colim_{k \in \mathbb{Z}} \pi_p(\Omega^n F(A \wedge S^k)) \cong \colim_{k \in \mathbb{Z}} \pi_{p+nk}(F(A \wedge S^k)).
\]

The maps of this colimit diagram are induced by adjoints of the structure maps of \(F \).

A map is said to be an \(n\pi^A_\ast \)-isomorphism if it induces isomorphisms on \(n\pi^A_p \) for all \(p \in \mathbb{Z} \).

We establish independence of choice of space \(A \) via Proposition 4.10, which follows by the same arguments as in Mandell et al. [18, Proposition 17.6], so we omit the proof. Consequently, we may speak of \(n \)-homotopy groups and \(n\pi^A_\ast \)-isomorphisms without reference to a choice of space \(A \).

Proposition 4.10 A map \(f : F \to G \) in \(\Sigma_n \times (W_n \text{Top}) \) is an \(n\pi^A_\ast \)-isomorphism for \(A = S^0 \) if and only if it is an \(n\pi^A_\ast \)-isomorphism for all \(A \in W \). We therefore call an \(n\pi^A_0 \) isomorphism an \(n\pi^A_\ast \)-isomorphism.

The following Corollary is analogous to [18, Lemma 8.6]. This says that our \(n \)-stable equivalences are in particular \(n\pi^A_\ast \)-isomorphisms.

Corollary 4.11 The generalised evaluation maps

\[
\lambda_{A,n} : W_n(A \wedge S^1, -) \wedge S^n \to W_n(A, -)
\]

are \(n\pi^A_\ast \)-isomorphisms, as are the morphisms \((\Sigma_n)_+ \wedge \lambda_{A,n} \).

Proof. This follows from verifying that the following map is an isomorphism

\[
\colim_{k \in \mathbb{Z}} \pi_{p+nk}(\Sigma^n \Omega^n W_n(A, S^k)) \to \colim_{k \in \mathbb{Z}} \pi_{p+nk}(W_n(A, S^k)).
\]

This is simply an \(n \)-fold version of the \(\pi_\ast \)-isomorphism \(\Sigma \Omega X \to X \) for \(X \) a spectrum.

4.4 The stable model structure

The stable model structure on \(\Sigma_n \times (W_n \text{Top}) \) is the left Bousfield localisation of the projective model structure at the set of maps

\[
\lambda_{A,n} : W_n(A \wedge S^1, -) \wedge S^n \to W_n(A, -)
\]

where \(S^n \), viewed as \(S^1 \wedge \cdots \wedge S^1 \), and \(W_n(A, -) \) have the \(\Sigma_n \)-action which permutes factors. Smash products are equipped with the diagonal action.

Proposition 4.12 The category \(\Sigma_n \times (W_n \text{Top}) \) has a stable and proper model structure with cofibrations the projective cofibrations and whose weak equivalences are the \(n\pi^A_\ast \)-isomorphisms (of Definition 4.9). This model structure is denoted \(\Sigma_n \times (W_n \text{Top})_{\text{stable}} \).
Analogous to \cite[Proposition 9.5]{18}, the fibrations are objectwise fibrations such that the square below is a homotopy pullback.

\[
\begin{array}{ccc}
F(A) & \longrightarrow & \Omega^n F(A \wedge S^1) \\
\downarrow & & \downarrow \\
G(A) & \longrightarrow & \Omega^n G(A \wedge S^1)
\end{array}
\]

The fibrant objects are the those \(F\) such that the maps \(F(A) \rightarrow \Omega^n F(A \wedge S^1)\) are weak homotopy equivalences for all \(A \in W\). An \(n\pi_*\)-isomorphism between fibrant objects is an objectwise weak equivalence.

The generating cofibrations are as in Theorem \[.8\]; the generating acyclic cofibrations differ by including the maps of following form, constructed from equation \(\eqref{eq:1}\) by taking mapping cylinders and taking the pushout product with maps of the form \((\Sigma_n)_+ \wedge i\) for \(i \in I_{\text{Top}}\).

\[
\{((\Sigma_n)_+ \wedge i)\square (W_n(A \wedge S^1, -) \wedge S^n \longrightarrow M(A_{A,n})) \mid A \in \text{sk } W_n, \ i \in I_{\text{Top}}\}
\]

The homotopy category of \(\Sigma_n \times (W_n \text{Top})_{\text{stable}}\) is generated by the object \((\Sigma_n)_+ \wedge W_n(S^0, -)\).

Proof. This follows by the same arguments used in both Barnes and Oman \cite[Section 7]{3} and Mandell et al. \cite[Section 9]{18}, together with Corollary \[.11\] (the weak equivalences are the \(n\pi_*\)-isomorphisms). The statement about generators for the homotopy category (see Schwede and Shipley \cite[Definition 2.1.2]{22}) follows from the isomorphism \(n\pi_*(F) \cong [(\Sigma_n)_+ \wedge W_n(S^0, -), F]_*\) and Proposition \[.10\].

5 Equivalence of the two versions of spectra

We now provide an adjunction between \(\Sigma_n \times (W_n \text{Top})\) and \(\Sigma_n \cup W\text{Sp}\), then show that it is a Quillen equivalence when both categories are equipped with their stable model structures.

\[
\Sigma_n \times (W_n \text{Top})_{\text{stable}} \xrightarrow{\mu_n^s} \Sigma_n \cup W\text{Sp}
\]

We start by defining the right adjoint.

5.1 The adjunction between \(\Sigma_n \times (W_n \text{Top})\) and \(\Sigma_n \cup W\text{Sp}\)

Definition 5.1 We define a \(\text{Top}-\text{enriched functor} \mu_n : W_n \rightarrow W\). It sends the object \(X\) to \(X^{\wedge n}\) and on morphisms acts as the smash product. It is the adjoint to \(n\)-fold evaluation:

\[
W_n(X, Y) \wedge X^{\wedge n} \longrightarrow Y^{\wedge n}.
\]

This map of enriched categories \(\mu_n\) induces a functor \(\mu_n^s\), which is (almost) pre-composition with \(\mu_n\).

Let \(F\) be an object of \(\Sigma_n \cup W\text{Top}\). Then we define \((\mu_n^s F)(X) = F(X^{\wedge n})\), but with an altered action of \(\Sigma_n\). The space \(F(X^{\wedge n})\) has an action of \(\Sigma_n\) by virtue of \(F\) being a functor to \(\Sigma_n\)-spaces. We denote this action by \(\sigma \mapsto \sigma^F(X^{\wedge n})\) and refer to it as the **external action**. The space \(X^{\wedge n}\) also has an action of \(\Sigma_n\), denoted \(\sigma_X\) for \(\sigma \in \Sigma_n\). We thus have a second action
on $F(X^\wedge n)$, the **internal action**. We combine these and define the action on $(\mu_n^* F)(X)$ to be
\[\sigma \mapsto \sigma F(X) \cdot F(\sigma X). \]
Note that the internal and external actions commute.

We complete our definition of $\mu_n^* F$ by giving its structure map below, where ν^F is the structure map of F.

\[
W_n(X, Y) \wedge F(X^\wedge n) \xrightarrow{(\mu_n)_{X,Y}} W(X^{\wedge n}, Y^{\wedge n}) \wedge F(X^{\wedge n}) \xrightarrow{\nu^F_{X^{\wedge n}, Y^{\wedge n}}} F(Y^{\wedge n}).
\]

We must now show that this map is Σ_n-equivariant using the altered action on $F(X^{\wedge n})$ and $F(Y^{\wedge n})$ and the permutation action on $W_n(X, Y)$. The action on $W(X^{\wedge n}, Y^{\wedge n})$ is via conjugation: $f \mapsto \sigma_Y \circ f \circ \sigma_X^{-1}$. The first map is clearly Σ_n-equivariant. For the second map, we look at the actions separately. By naturality of ν^F, the second map is equivariant with respect to the internal actions on $F(X^{\wedge n})$ and $F(Y^{\wedge n})$ and the action on $W(X^{\wedge n}, Y^{\wedge n})$. It is also equivariant with respect to the external actions on $F(X^{\wedge n})$ and $F(Y^{\wedge n})$ (with no action on $W(X^{\wedge n}, Y^{\wedge n})$). Composing the two actions gives the result.

Remark 5.2 We compare the different versions of equivariance for $\Sigma_n \ltimes (W_n \text{Top})$ and $\Sigma_n \bigodot \text{Top}$. Consider some $F : W \to \Sigma_n \bigodot \text{Top}$. Then $F(A) \in \Sigma_n \bigodot \text{Top}$ and for a map $f \in \text{Top}(A, B)$, the map $F(f) : F(A) \to F(B)$ is Σ_n-equivariant. That is, F induces a map

\[F_{A,B} : \text{Top}(A, B) \to \text{Top}(F(A), F(B))^{\Sigma_n}. \]

In contrast, for $G \in \Sigma_n \ltimes (W_n \text{Top})$, the following is a Σ_n-equivariant map.

\[G_{A,B} : W(A, B)^{\wedge n} \to \text{Top}(G(A), G(B)) \]

The functor μ_n^* allows us to compare these two types of equivariance. Indeed, the altered action on $(\mu_n^* F)(X)$ is designed precisely to take account of the non-trivial Σ_n-action on $W_n(X, Y)$.

The left adjoint $W \wedge W_n -$ takes an object F of $\Sigma_n \ltimes (W_n \text{Top})$ to the coend

\[\int^{A \in W_n} F(A) \wedge W(A^{\wedge n}, -). \]

The term $W(A^{\wedge n}, -)$ has an action of Σ_n by permuting the factors of $A^{\wedge n}$. Establishing the adjunction is a formal exercise in manipulating ends and coends.

5.2 The Quillen equivalence

In this section we prove that the adjunction we have established is a Quillen equivalence.

\[\Sigma_n \ltimes (W_n \text{Top})_{\text{stable}} \xleftarrow{\mu_n^*} \Sigma_n \bigodot W \text{Sp} \]

Lemma 5.3 The adjoint pair $(W \wedge W_n -, \mu_n^*)$ is a Quillen pair with respect to the stable model structures.

Proof. A generating cofibration of $\Sigma_n \ltimes (W_n \text{Top})$ is of the form $W_n(A, -) \wedge (\Sigma_n)_+ \wedge i$, for i a cofibration of based spaces. The left adjoint sends this map to $W(A^{\wedge n}, -) \wedge (\Sigma_n)_+ \wedge i$, which is a cofibration of $\Sigma_n \bigodot W \text{Sp}$. Similarly, it sends the generating acyclic cofibrations of the projective model structure on $\Sigma_n \ltimes (W_n \text{Top})$ to acyclic cofibrations of $\Sigma_n \bigodot W \text{Sp}$.

19
The stable model structure on \(\Sigma_n \times (W_n \text{Top}) \) comes from taking the projective model structure and localising at the maps

\[
W_n(A \wedge S^1, -) \wedge S^n \to W_n(A, -)
\]

The left adjoint will take a map of the form above to the \(\pi_s \)-isomorphism

\[
W(A^{\wedge n} \wedge S^n, -) \wedge S^n \to W(A^{\wedge n}, -).
\]

It follows that the left adjoint is a left Quillen functor.

Proposition 5.4 The adjoint pair \((W \wedge W_n, -, \mu_n^p)\) is a Quillen equivalence.

Proof. We claim that the right adjoint preserves all weak equivalences. A map \(f \) is a weak equivalence of \(\Sigma_n \circ W \text{Sp} \) if and only if \(f[S^0] \) is a \(\pi_s \)-isomorphism of spectra by Definition 4.4. Similarly a map \(g \) is a weak equivalence of \(\Sigma_n \circ (W_n \text{Top}) \) if and only if it is an \(n \pi_s \)-isomorphism, by Proposition 4.12. By Proposition 4.10, \(g \) is an \(n \pi_s \)-iso if and only if \(n \pi_s(S_0) \circ \mu_n^p g = n \pi_s(S_0) \circ p \).

Consider \(\mu_n^p F \) for some object \(F \) in \(\Sigma_n \circ W \text{Sp} \). It is routine to check that

\[
n \pi_p^S(\mu_n^p F) = \text{colim}_{k \in \mathbb{Z}} \pi_{p+nk}(F(S^k)).
\]

By cofinality of the terms \(p+nk \) in \(\mathbb{Z} \), if follows that \(\mu_n^p f \) is an \(n \pi_s \)-isomorphism whenever \(f[S^0] \) is a \(\pi_s \)-isomorphism. Hence we have shown our claim that the right adjoint preserves all weak equivalences.

By [14 Corollary 1.3.16], we must now show that for cofibrant \(F \in \Sigma_n \circ (W_n \text{Top}) \), the derived unit map of the adjunction is a weak equivalence. Since the right adjoint preserves all weak equivalences (in particular, that between an object and its fibrant replacement), it is enough to consider the unit map

\[
F \to \mu_n^p W \wedge W_n F.
\]

By stability, it suffices to check this in the case of the single generator of the homotopy category of \(\Sigma_n \circ (W_n \text{Top}) \). Replacing \(F \) by this generator and simplifying, we are left with the map below, which is induced by \(\mu_n \).

\[
(\Sigma_n)_+ \wedge W(S^0, -)^{\wedge n} \to (\Sigma_n)_+ \wedge W(\mu_n(S^0), \mu_n(-)) = (\Sigma_n)_+ \wedge W(S^0, (-)^{\wedge n})
\]

This map is an isomorphism, hence it is a weak equivalence as desired.

6 **Differentiation is a Quillen equivalence**

In this section we define differentiation as an adjunction between the homogeneous model structure on \(W \text{Top} \) and the stable model structure on \(\Sigma_n \circ (W_n \text{Top}) \). We then show that it is a Quillen equivalence. Thus we will have a diagram of Quillen equivalences as below, showing that \(W \text{Top}_{n\text{-homog}} \) is Quillen equivalent to spectra with a \(\Sigma_n \)-action. Finally we will show that this diagram captures precisely Goodwillie’s classification theorem.

\[
\begin{array}{c}
W \text{Top}_{n\text{-homog}} \xrightarrow{\text{\((-)\circ \text{map-diag}^*\)}} \Sigma_n \circ (W_n \text{Top})_{\text{stable}} \xrightarrow{\text{\(W \wedge W_n\)}} \Sigma_n \circ W \text{Sp}
\end{array}
\]
6.1 The adjunction between \(\Sigma_n \times (\mathcal{W}_n Top) \) and \(WTop_n \)-homog

Recall Definition 3.1 where we define the \(n^{th} \) cross effect. The \(n^{th} \)-derivative of \(F \) is

\[
\text{diff}_n(F)(X) = \text{Nat}(\bigwedge_{l=1}^{n} \mathcal{W}(X,-), F)
\]

which is cross effect pre-composed with the diagonal, which we originally considered as an object of \(WTop \). The category \(\Sigma_n \times (\mathcal{W}_n \text{Top}) \) is the most natural target for the functor \(\text{diff}_n \), as its representable functors are of the form \(\mathcal{W}_n(X,-) = \bigwedge_{l=1}^{n} \mathcal{W}(X,Y) \).

Definition 6.1 We define the \(n^{th} \) (stable) derivative of \(F \in WTop \), to be the functor \(\text{diff}_n(F) \) in \(\Sigma_n \times (\mathcal{W}_n \text{Top}) \). The structure map below is induced from the composition of \(\mathcal{W}_n \) and is \(\Sigma_n \)-equivariant

\[
\mathcal{W}_n(X,Y) \land \text{Nat}(\mathcal{W}_n(X,-), F) \rightarrow \text{Nat}(\mathcal{W}_n(X,-), F).
\]

Proposition 6.2 The functor \(\text{diff}_n \) has a left adjoint:

\[
(-)/\Sigma_n \circ \text{map–diag}: \Sigma_n \times (\mathcal{W}_n \text{Top}) \rightarrow WTop
\]

which we define in the proof below.

Proof. We begin by defining the Top-enriched functor \(\text{map–diag}: \mathcal{W} \rightarrow \mathcal{W}_n \). It is the identity on objects and the diagonal on morphisms:

\[
f \in \mathcal{W}(A,B) \mapsto [(f, \ldots, f)] \in \mathcal{W}(A,B)^\Lambda_n = \mathcal{W}_n(A,B).
\]

In particular, \(\text{map–diag} \) lands in the \(\Lambda_n \)-fixed points of \(\mathcal{W}_n(A,B) \). Let \(E \in \Sigma_n \times (\mathcal{W}_n \text{Top}) \), then for \(X \in \mathcal{W}, \ E(X) \) is a space with an action of \(\Sigma_n \). We use a shorthand

\[
E(X)/\Sigma_n := ((-)/\Sigma_n \circ \text{map–diag}^*(E))(X)
\]

We must also describe the structure maps of \(E(-)/\Sigma_n \in WTop \). Consider the composite

\[
E(X) \land \mathcal{W}(X,Y) \rightarrow E(X) \land \mathcal{W}_n(X,Y) \rightarrow E(Y)
\]

where the first map is \(\text{Id} \land \text{map–diag} \) as defined above and the second is the structure map of \(E \in \Sigma_n \times (\mathcal{W}_n \text{Top}) \). If we equip \(\mathcal{W}(X,Y) \) with the trivial action, then this composite is \(\Sigma_n \)-equivariant. Hence, we can apply \((-)/\Sigma_n \) to this map, the result of which is the structure map of \(E(-)/\Sigma_n \in WTop \).

A gentle exercise in category theory shows that we have an adjunction:

\[
WTop(E/\Sigma_n \circ \text{map–diag}, F) = \left\{ X \in W \mid \text{Top}(E(X)/\Sigma_n, F(X)) \right\} \\
\simeq \left\{ Y \in W_n \mid \Sigma_n \text{Top}(E(Y), \text{diff}_n(F)(Y)) \right\} \\
= \Sigma_n \times (W_n \text{Top}) \left(E, \text{diff}_n(F)\right).
\]

Lemma 6.3 The adjunction \((((-)/\Sigma_n \circ \text{map–diag}^*, \text{diff}_n)) \hspace{1pt} \text{is Top-enriched.} \)

Proof. There is an isomorphism, natural in \(E \in \Sigma_n \times (\mathcal{W}_n \text{Top}) \) and \(K \in \text{Top} \)

\[
(((-)/\Sigma_n \circ \text{map–diag}^*)(E)) \land K \rightarrow ((-)/\Sigma_n \circ \text{map–diag}^*)(E \land K)
\]

induced by the isomorphism \(E(X)/\Sigma_n \land K \rightarrow (E(X) \land K)/\Sigma_n \). It follows that the right adjoint commutes with the cotensoring with \(\text{Top} \) and that the adjunction is enriched over topological spaces.

With the language of parameterised spectra (in the sense of May and Sigurdsson [20]) we could extend our definitions of \(\Sigma_n \times (\mathcal{W}_n \text{Top}) \) and \(\text{diff}_n \) to capture derivatives of functors of spaces over \(Y \). As is common in the modern literature, we concentrate on the fundamental case of the derivative over a point.
6.2 The Quillen equivalence

Proposition 6.4 The adjunction $((-)/\Sigma_n \circ \text{map-diag}^*, \text{diff}_n)$ is a Quillen pair with respect to the following pairs of model structures.

1. $\Sigma_n \times (W_n \text{Top})_{\text{proj}}$ and $W \text{Top}_{\text{cross}}$.
2. $\Sigma_n \times (W_n \text{Top})_{\text{proj}}$ and $W \text{Top}_{n-exs}$.
3. $\Sigma_n \times (W_n \text{Top})_{\text{stable}}$ and $W \text{Top}_{n-exs}$.
4. $\Sigma_n \times (W_n \text{Top})_{\text{stable}}$ and $W \text{Top}_{n-homog}$.

Proof. A generating (acyclic) cofibration of the projective model structure on $\Sigma_n \times (W_n \text{Top})$ has the form $W_n(A, -) \land (\Sigma_n)_+ \land i$, where i is a generating (acyclic) cofibration for based spaces. By Lemma 6.3 the functor $(-)/\Sigma_n \circ \text{map-diag}^*$ takes this to the map $W_n(A, -) \land i$ of $W \text{Top}$, which is a (acyclic) cofibration of the cross effect model structure on $W \text{Top}$ by Corollary 3.8. Thus $(-)/\Sigma_n \circ \text{map-diag}^*$ is a left Quillen functor as claimed in Part (1.).

Part (2.) holds as every (acyclic) cofibration of the cross effect model structure on $W \text{Top}$ is a (acyclic) cofibration of the n–excisive model structure on $W \text{Top}$.

For Part (3.), by Hirschhorn [13 Theorem 3.1.6] we only need to show that diff_n takes fibrant objects of the n–excisive model structure to fibrant objects of the stable model structure. That is, if F is n-excisive and cross effect fibrant, then for any $A \in W$

$$(\text{diff}_n F)(A) \to \Omega^n(\text{diff}_n F)(A \land S^1)$$

is a weak homotopy equivalence. This is the content of Goodwillie [11 Proposition 3.3] with the assumption that $F(*)$ is equal to $*$, rather than just weakly equivalent. This assumption holds true for any object of $W \text{Top}$ as is noted in Section 2.3.

For Part (4.), the cofibrations of the n-stable model structure have the form $W_n(A, -) \land (\Sigma_n)_+ \land i$. Such a map is sent by $(-)/\Sigma_n \circ \text{map-diag}^*$ to $W_n(A, -) \land i$, which is a cofibration of the n–excisive model structure by Corollary 3.8. This map is a cofibration of the n–homogeneous model structure by [13 Proposition 3.3.16] and [13 Lemma 5.5.2]. So the left adjoint preserves cofibrations. The acyclic cofibrations are the same as in Part (3), hence the left adjoint preserves acyclic cofibrations.

The following lemma provides an even simpler description of the weak equivalences of the n–homogeneous model structure. That is, one only has to know how to calculate the spaces $\text{diff}_n \hat{\text{F}}_{\text{cross}} F(X)$ (which is the homotopy cross effect precomposed with the diagonal) to understand the behaviour of $\text{hodiff}_n F$. There is no need to apply P_n as we are no longer interested in the objectwise weak homotopy equivalences, but the $n\pi_*\text{-isomorphisms}$. This justifies the use of stable when calling $\text{diff}_n F \in \Sigma_n \times (W_n \text{Top})$ the n^{th} stable derivative.

Lemma 6.5 Let $f: F \to G$ be a map of cross-effect fibrant functors. If f is a weak equivalence in the n-homogeneous model structure on $W \text{Top}$, then $\text{diff}_n f$ is an $n\pi_*\text{-isomorphism}$. In particular, the weak equivalences of $W \text{Top}_{n-homog}$ are those maps f such that $\text{diff}_n \hat{\text{F}}_{\text{cross}} f$ is an $n\pi_*\text{-isomorphism}$.

Proof. Let $F \in W \text{Top}$, then Goodwillie’s functor $T_{1, \ldots, 1}$, which is T_1 applied in each variable, applied to $\text{cr}_n F$ can be written as

$$(T_{1, \ldots, 1} \text{cr}_n F)(A, \ldots, A) \simeq \Omega^n(\text{cr}_n F)(A \land S^1, \ldots, A \land S^1) = \Omega^n(\text{diff}_n F)(A \land S^1)$$

Abusing notation, we will write $T_{1, \ldots, 1} F(A)$ for $\Omega^n(\text{diff}_n F)(A \land S^1)$, even though diff_n is not an n-variable functor. Recall that the functor $P_{1, \ldots, 1}$ is the homotopy colimit of repeated

22
applications of \(T_{1,...,1} \). Hence the map \(\text{diff}_n F \to P_{1,...,1} \text{diff}_n F \) is (weakly equivalent to) the fibrant replacement functor of the stable model structure on \(\Sigma_n \times (W_n \text{Top}) \). Consequently, the maps \(\alpha \) and \(\delta \) below are stable equivalences.

\[
\begin{align*}
\text{diff}_n \hat{\tau}_{\text{cross}} F \xrightarrow{\alpha} P_{1,...,1} \text{diff}_n \hat{\tau}_{\text{cross}} F \\
\downarrow \beta & \\
\text{diff}_n \hat{\tau}_{\text{cross}} P_n F \xrightarrow{\delta} P_{1,...,1} \text{diff}_n \hat{\tau}_{\text{cross}} P_n F \end{align*}
\]

The map \(\gamma \) is an objectwise homotopy weak equivalence by Biedermann and Röndigs [6] Theorem 5.35, when viewed as a map

\[
P_{1,...,1} \text{cr}_n \hat{\tau}_{\text{cross}} F \to P_{1,...,1} \text{cr}_n \hat{\tau}_{\text{cross}} P_n F.
\]

So \(\beta \) is an \(n\pi_s \)-isomorphism and the result follows immediately.

Theorem 6.6 The adjunction \(((-)\Sigma _n \circ \text{map–diag}^* , \text{diff}_n) \) is a Quillen equivalence with respect to the \(n \)-stable model structure on \(\Sigma_n \times (W_n \text{Top}) \) and the \(n \)-homogeneous model structure on \(\text{WTop} \).

Proof. We show that the right adjoint reflects weak equivalences between fibrant objects. Let \(g : X \to Y \) be a map between cross effect fibrant \(n \)-excisive functors in \(\text{WTop} \) such that \(\text{diff}_n g \) is an \(n\pi_s \)-isomorphism in \(\Sigma_n \times (W_n \text{Top}) \). The domain and codomain of \(\text{diff}_n g \) are fibrant in the stable model structure by Proposition 6.4. Hence, \(\text{diff}_n g \) is an objectwise weak homotopy equivalence by Proposition 4.12. The fibrancy assumption also tells us that \(g \simeq \hat{r}_{n-\text{exs}} g \), so that \(\text{diff}_n g \) is weakly equivalent to \(h\text{diff}_n g \). Thus \(\text{diff}_n g \) is a weak equivalence of the \(n \)-homogeneous model structure.

We now show that for any cofibrant \(E \in \Sigma_n \times (W_n \text{Top}) \), the derived unit map

\[
E \longrightarrow \text{hodiff}_n ((-)\Sigma_n \circ \text{map–diag}^* (E))
\]

is an \(n\pi_s \)-isomorphism. But this derived unit map is the map \(\theta \) of Goodwillie [11] Theorem 3.5, which is an equivalence. Thus by Hovey [14] Corollary 1.3.16 this adjunction is a Quillen equivalence.

Recall the functor \(\mu_n \) of Definition 5.1 and \(\mu_n^*: \Sigma_n \otimes \text{WSp} \to \Sigma_n \times (W_n \text{Top})_{\text{stable}} \), the right adjoint of the Quillen equivalence of Proposition 5.4.

Theorem 6.7 The composite of the derived functors of \(\text{map–diag}^* \circ (\cdot)/\Sigma_n \) and \(\mu_n^* \) agrees with Goodwillie’s classification of \(n \)-homogeneous functors (recall Figure 7 see [14] Section 2.5). That is, for a \(\Sigma_n \)-spectrum, \(D \), we have that \((\text{L map–diag}^* \circ (\cdot)/\Sigma_n \circ \text{R } \mu_n^*)(D) \) is weakly equivalent in \(\text{WTop}_{n-\text{homog}} \) to the functor

\[
A \mapsto \Omega^E ((D \wedge A^n)/h\Sigma_n).
\]

Proof. The functor \(\text{map–diag}^* \circ (\cdot)/\Sigma_n \) preserves objectwise weak homotopy equivalences (such as acyclic fibrations in the stable model structure) between \(\Sigma_n \)-free objects. Hence the derived composite of \(\text{map–diag}^* \circ (\cdot)/\Sigma_n \) and \(\mu_n^* \) applied to some \(E \in \Sigma_n \otimes \text{Sp} \) is given by

\[
A \mapsto (E\Sigma_n) + \wedge \Sigma_n \left(\text{hocolim}_{k \in \mathbb{Z}} \Omega^k E(A^n \wedge S^k) \right)
\]

We claim that the functor \((a) \) is weakly equivalent in \(\text{WTop}_{n-\text{homog}} \) to each of the following two functors

\[
\begin{align*}
A & \mapsto (E\Sigma_n) + \wedge \Sigma_n \left(\Omega^E (E \wedge B^n) \right) \\
A & \mapsto \Omega^E \left((E\Sigma_n) + \wedge \Sigma_n (E \wedge B^n) \right).
\end{align*}
\]

23
That (a) is equivalent to (b) follows from Mandell et al. [18 Proposition 17.6], which implies that there is a natural weak homotopy equivalence of spaces
\[\Omega^\infty(E \wedge B^{\wedge n}) := \lim_{k \to \infty} \Omega^k(E(S^k) \wedge B^{\wedge n}) \to \lim_{k \to \infty} \Omega^k(E(B^{\wedge n} \wedge S^k)) \]
By the connectivity arguments of Weiss [23 Example 6.4], the functors (b) and (c) agree up to order \(n \), in the sense of [11 Definition 1.2]. By [11 Proposition 1.6] they are \(P_n \)-equivalent. Hence our derived functor is weakly equivalent in \(\textbf{WTop}_{n\text{-homog}} \) to Goodwillie’s formula. \(\blacksquare \)

Note that our derived composite sends a spectrum \(E \) to a functor in \(\textbf{WTop}_{n\text{-homog}} \) which is weakly equivalent to that of Goodwillie’s theorem. However the formula of Goodwillie actually creates an \(n \)-homogenous functor directly.

Example 6.8 As an example of how our version of the classification can make calculations easier, consider the cofibrant object \((\Sigma_n)_+ \wedge W_n(X,-) \) of \(\Sigma_n \ltimes (W_n \textbf{Top}) \). The derived functor of \(W \wedge W_n \) sends this to \((\Sigma_n)_+ \wedge W(X^{\wedge n},-) \). Equally the derived functor of \((-)/\Sigma_n \circ \text{map–diag}^* \) sends this to \(W_n(X,-) \) in \(\textbf{WTop}_{n\text{-homog}} \). Hence we have that the \(n \)-homogeneous part of \(W_n(X,-) \) is classified by the \(\Sigma_n \)–spectrum \((\Sigma_n)_+ \wedge W(X^{\wedge n},-) \). In the case \(X = S^0 \), this says that the functor \(A \to A^{\wedge n} \) has \(n^{th} \) derivative \((\Sigma_n)_+ \wedge S \), (recall the spectrum sphere in \(\textbf{WSp} \) is given by \(W(S^0,-) \)). This is analogous to the statement that the \(n^{th} \) derivative of \(x^n \) is \(n! \).

Example 6.9 We may also make an analogy to the statement: the \(n^{th} \) derivative of \(x^n/n! \) is 1. Consider the non-cofibrant object \(W_n(X,-) \) of \(\Sigma_n \ltimes (W_n \textbf{Top}) \). The derived functor of \(W \wedge W_n \) sends this to \(W(X^{\wedge n},-) \). Equally the derived functor of \((-)/\Sigma_n \circ \text{map–diag}^* \) sends \(W_n(X,-) \) to \((E\Sigma_n)_+ \wedge \Sigma_n W_n(X,-) \) in \(\textbf{WTop}_{n\text{-homog}} \). In the case \(X = S^0 \), this says that the functor \(A \to A^{\wedge n}/h\Sigma_n \) has \(n^{th} \) derivative given by \(S \).

In general, we can take a spectrum with \(\Sigma_n \)–action, find a model for it in \(\Sigma_n \ltimes (W_n \textbf{Top}) \) and then easily calculate its image in \(\textbf{WTop}_{n\text{-homog}} \). Finding a model for a spectrum with \(\Sigma_n \)–action in \(\Sigma_n \ltimes (W_n \textbf{Top}) \) is a standard problem, akin to finding a nice point-set model of an EKMM spectrum in terms of orthogonal spectra or symmetric spectra. This combined with Lemma 6.5 shows how our new perspective and description of the classification simplifies some calculations.

7 Quillen equivalence with symmetric multilinear functors

We establish in Theorem 7.3 a Quillen equivalence between our new category \(\Sigma_n \ltimes (W_n \textbf{Top})_{\text{stable}} \) and \(\text{Sym–Fun}(W_n, \textbf{Top})_{\text{ml}} \), the category of symmetric functors with the symmetric-multilinear model structure. This result makes it clearer still that the category of symmetric multilinear functors can be omitted from the classification of \(n \)-homogeneous functors.

We begin by giving some definitions and recalling the statement of the symmetric-multilinear model structure of Biedermann and Röndigs [6, Theorem 5.20]. Let \(W_n \) be the topological category with objects \(n \)–tuples of spaces in \(W \) and morphisms spaces \(W(X_1, Y_1) \wedge \cdots \wedge W(X_n, Y_n) \) for \((X_1, \ldots, X_n) \) and \((Y_1, \ldots, Y_n) \) in \(W^n \). There are a pair of obvious \(\textbf{Top} \)-enriched functors, \(\Delta \) and \(\wedge \), between this category and \(W \) given by

\[
\begin{align*}
\Delta: W & \to W^n \\
X & \mapsto (X, \ldots, X) \\
\wedge: W^n & \to W \\
(X_1, \ldots, X_n) & \mapsto X_1 \wedge X_2 \wedge \cdots \wedge X_n \\
f: X \to Y & \mapsto [(f, \ldots, f)] \\
((f_1, \ldots, f_n)) & \mapsto f_1 \wedge f_2 \wedge \cdots \wedge f_n.
\end{align*}
\]
There is a less obvious Top-enriched functor from W_n to W^n, which we call ob–diag. It is the diagonal on objects and the identity on morphism spaces. That is,

$$\text{ob–diag} : W_n \rightarrow W^n \quad X \mapsto (X, \ldots, X)$$

$$W_n(X, Y) = \bigwedge_{i=1}^n W(X, Y) \quad \text{Id} \mapsto W_n(X, Y) = \bigwedge_{i=1}^n W(X, Y)$$

Recall the functor map–diag, defined in the proof of Proposition 6.2. The diagonal functor Δ as given above is the composite $\text{ob–diag} \circ \text{map–diag}$.

Let $\text{Sym–Fun}(W^n, \text{Top})$ denote the category of symmetric functors from W^n to Top. An n-variable functor F is symmetric precisely when, for each $\sigma \in \Sigma_n$, there is a natural isomorphism $F(X_1, \ldots, X_n) \cong F(X_{\sigma(1)}, \ldots, F(X_{\sigma(n)})$. When F is symmetric and $X_i = X$ for all i, $F(X, \ldots, X)$ has an action of Σ_n. Using this action and pre-composition with ob–diag, we obtain a functor from $\text{Sym–Fun}(W^n, \text{Top})$ to $\Sigma_n \wr W^n \text{Top}$ which we call ob–diag*. We can also consider cr_n as a functor from $W \text{Top}$ to $\text{Sym–Fun}(W^n, \text{Top})$. Since the cross effect precomposed with the diagonal is the functor diff_n, we have the following commutative diagram of functors.

We use this diagram to relate our work and that of Biedermann and Röndigs [6]. They develop a symmetric multilinear model structure on $\text{Sym–Fun}(W^n, \text{Top})$, a modification of their hf (“homotopy functor”)-model structure. In $W \text{Top}$, all of our functors are homotopy functors and the hf-model structure is then the projective model structure. We modify their statements (see [6, Definition 5.19]) accordingly:

Theorem 7.1 There is a model category $\text{Sym–Fun}(W^n, \text{Top})_{ml}$ whose underlying category is the category of symmetric functors from W^n to Top. The weak equivalences are the maps f such that $P_{1,\ldots,1}(f)$ is an objectwise weak homotopy equivalence, called multilinear equivalences; the cofibrations are the projective cofibrations; and the fibrations are the objectwise fibrations $f : F \rightarrow G$ such that either (and hence both) of the following squares

$$\begin{align*}
F & \rightarrow P_{1,\ldots,1}F \\
P_{1,\ldots,1}(f) & \downarrow \\
G & \rightarrow P_{1,\ldots,1}G
\end{align*}$$

$$\begin{align*}
F & \rightarrow T_{1,\ldots,1}F \\
T_{1,\ldots,1}(f) & \downarrow \\
G & \rightarrow T_{1,\ldots,1}G
\end{align*}$$

is an objectwise homotopy pullback square. Moreover, the fibrant objects are the symmetric multilinear functors.

In proving this result, it is helpful to have a different, but equivalent, description of the category. This alternate description (adjusted to our setting) is given below, see [6, Lemma 3.6].

Definition 7.2 The wreath product category $(\Sigma_n \wr W^n)$ has objects the class of n-tuples (X_1, \ldots, X_n) of objects of W. The morphisms from $X = (X_1, \ldots, X_n)$ to $Y = (Y_1, \ldots, Y_n)$ are given by

$$(\Sigma_n \wr W^n)(X, Y) = \bigvee_{\sigma \in \Sigma_n} \bigwedge_{i=1}^n W(X_i, Y_{\sigma^{-1}(i)})$$

with composition defined as for the wreath product of groups.
Given the model structure of Theorem 7.1, we may now establish the following formal comparison of our work with that of [6].

Theorem 7.3 The functor \(\text{ob–diag}^* \) is a right Quillen adjoint, and induces a Quillen equivalence between \(\text{Sym–Fun}(W^n, \text{Top})_{\text{mll}} \) and \(\Sigma_n \times (W_n \text{Top}) \) with the stable model structure.

Proof. Recall that in the stable model structure on \(\Sigma_n \times (W_n \text{Top}) \) (Proposition \[4.12\]) the fibrations are those maps \(f : F \to G \) which are objectwise fibrations, such that square below is an objectwise homotopy pullback.

\[
\begin{array}{ccc}
F & \overset{\Omega^n F(- \wedge S^1)}{\longrightarrow} & \Omega^n F(- \wedge S^1) \\
\downarrow_{f} & & \downarrow_{f(- \wedge S^1)} \\
G & \overset{\Omega^n G(- \wedge S^1)}{\longrightarrow} & \Omega^n G(- \wedge S^1)
\end{array}
\]

The functor \(\text{ob–diag}^* \) preserves objectwise (acyclic) fibrations. Moreover if the right hand square of Theorem 7.1 is an objectwise pullback square, then \(\text{ob–diag}^* \) sends it to a square of the same form as the above. Therefore, \(\text{ob–diag}^* \) is a right Quillen functor.

The functor \(\text{diff}_n \) is the right adjoint of a Quillen equivalence by Theorem 6.6 whereas \(\text{cr}_n \) is the right adjoint of a Quillen equivalence by [6, Corollary 6.17]. Since \(\text{ob–diag}^* \circ \text{cr}_n = \text{diff}_n \), it follows that \(\text{ob–diag}^* \) is also part of a Quillen equivalence. \(\blacksquare \)

References

26

