Human body shadowing in cellular device-to-device communications: channel modeling using the shadowed κ−μ fading model

Published in:
IEEE Journal on Selected Areas in Communications

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright the authors 2015. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Human Body Shadowing in Cellular Device-to-Device Communications: Channel Modeling Using the Shadowed $\kappa - \mu$ Fading Model

Simon L. Cotton, Senior Member, IEEE

Abstract—Using device-to-device communications as an underlay for cellular communications will provide an exciting opportunity to increase network capacity as well as improving spectral efficiency. The unique geometry of device-to-device links, where user equipment is often held or carried at low elevation and in close proximity to the human body, will mean that they are particularly susceptible to shadowing events caused not only by the local environment but also by the user’s body. In this paper, the shadowed $\kappa - \mu$ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels. In this model, the statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, a dominant signal component with arbitrary power may exist. The resultant dominant signal component, which is formed by the phasor addition of these leading contributions, is assumed to follow a Nakagami-$\mu \kappa$ distribution. The probability density function, moments, and the moment-generating function are also derived. The new model is then applied to device-to-device links operating at 868 MHz in an outdoor urban environment. It was found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. Overall, the shadowed $\kappa - \mu$ fading model is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.

Index Terms—Device-to-device communications, shadowing, channel measurements, channel modeling, $\kappa - \mu$ distribution.

I. INTRODUCTION

The ever increasing demand for high data rate applications on the move has meant that cellular network and mobile hardware designers continue to vigorously push the boundaries on the maximum rate at which information can be transmitted over wireless communications channels. One method of supplementing cellular communications, which is currently gaining significant momentum through IMT-Advanced [1], is to use network users themselves as relays by employing device-to-device (D2D) communications [2]–[9]. In this device-to-device model, existing cellular infrastructure can be used to setup, control and manage short direct communications links between nearby cellular device users within an operator’s network [2]. It has been proposed that the actual level of involvement of cellular operators may range from full control of D2D communications—where the cellular network has responsibility for control plane and data plane functions through to loosely controlled D2D communications—where operators perform access authentication only, thus allowing localized devices to setup and start D2D communications autonomously [3].

Loosely controlled D2D communications will most likely use technologies operating within the unlicensed Industrial Scientific and Medical (ISM) bands centered at 2.45 GHz and 5.8 GHz as most smart devices now come with wireless chipsets that will support at least one of these two frequencies. In this part of the spectrum, D2D users will have to compete with other wireless users, for example those using Bluetooth, Wi-Fi, ZigBee and other proprietary technologies to communicate. As highlighted in [10], another potential drawback of using established ad hoc networking protocols for D2D communications is that they may require direct user intervention to establish network connections, a feature which is likely to prove unpopular with end users. In contrast, fully controlled D2D communications will almost certainly use cellular frequencies, as the network operator will need to regulate all aspects of the D2D connection. One of the key advantages of using licensed cellular frequency allocations for D2D communications is that they can be effectively managed using current infrastructure to limit potential interference from other nearby users. An architecture for this was proposed in [2], where D2D communications were considered as an underlay for a Long Term Evolution (LTE) Advanced network. Using dedicated signaling for session setup and the automatic handover of network routed traffic to D2D links, it was shown that even for the worst case scenario of interference limited D2D communications an increase in the total throughput in a local cell area can be achieved.

Reducing interference in D2D communications will require judicious adaptive power control that not only aims to reduce interference with other cellular users, but also takes into account fading and User Equipment (UE) mobility. This will be essential to ensuring that D2D links can be practically maintained and assist with the decision as to whether a link should be abandoned and data rerouted through another UE or off-loaded to the base station (BS), or equivalently evolved NodeB (eNB) in the case of LTE. Optimal power control for D2D communications [1], [11]–[13] will therefore require an intricate knowledge of the channel between co-located D2D
In conventional cellular communications the BS is fixed, typically elevated and often relatively free of local scattering. However in D2D channels, both the transmitter and receiver are in close proximity to the human body (e.g., in a pocket or held), often in motion and at relatively low elevation compared to base stations. Due to the nature of human behavior, D2D communications links will be subject to stochastic shadowing events caused by the user’s body [14], [15] intersecting and shadowing the direct line of sight (LOS) signal path between UEs. Furthermore, as humans may spend a significant amount of time in populated environments, these links will also be heavily susceptible to shadowing and scattering caused by differing pedestrian densities as well as being affected by other obstacles such as vehicles, buildings and vegetation.

In this paper a novel, very general statistical model is proposed in which the resultant dominant component is subject to random shadowed fading. The utility of the new model for characterizing signal reception in D2D communications is then validated through field measurements. In this model clusters of multipath are assumed to have scattered waves with identical powers, alongside the presence of selective dominant signal components—a scenario which is identical to that observed in $\mu - \mu$ fading [16]. The $\kappa - \mu$ distribution is an extremely versatile fading model which contains as special cases other important distributions such as the One-Sided Gaussian, Rice (Nakagami-m), Nakagami-m and Rayleigh distributions. While the model proposed here inherits all of this generality, the critical difference between this model and that of $\kappa - \mu$ fading is that the resultant dominant component, formed by phasor addition of the individual dominant components is assumed to be random. In particular it is assumed that this resultant dominant component follows a Nakagami-m distribution. Hence the model proposed here is appropriately named as the shadowed $\kappa - \mu$ fading model.

The remainder of this paper is organized as follows. Section II presents a discussion of the main propagation phenomena likely to be associated with shadowed fading in D2D channels. The complex signal model proposed for shadowed $\kappa - \mu$ fading in wireless communications channels is introduced in Section III. Novel expressions for the probability density function (PDF), moments and moment generating function (MGF) of the shadowed $\kappa - \mu$ fading model are also derived in Section III. Section IV presents the measurement setup used for the experimental part of this study. In Section V, an empirical validation of the proposed model is provided using a range of experiments aimed at replicating the shadowing conditions likely to be encountered in outdoor D2D channels. Finally, Section VI finishes the paper with some concluding remarks.

II. SIGNAL RECEPTION IN SHADOWED D2D COMMUNICATIONS CHANNELS

In the closely related research area of body centric communications, where wireless devices are also used in close proximity to the human body, the impact of shadowing upon physical layer links is reasonably well established [15], [17], [18]. For example in a low multipath environment [15], it was observed that the link between a chest worn patch antenna operating at 2.45 GHz and an identical antenna placed on a non-conductive pole at the same elevation deteriorated by 50 dB when the user’s body turned to obstruct the main LOS path at a separation distance of 1 m. Clearly, shadowing caused by the human body can have a considerable effect upon the communications channel. This will be particularly prevalent in D2D communications, where the UE is often held in the user’s hand, operated close to the head and positioned next to the user’s body (e.g., in a pocket). Therefore, to engineer not only robust power control mechanisms but also hardware such as antennas and transceiver circuitry and optimize protocols to be used in D2D communications, the impact of human body shadowing should be included in physical layer models used to describe signal reception.

For small changes in separation distance (i.e., on the order of wavelengths), Fig. 1 highlights the main propagation mechanisms encountered at ultra-high frequencies (from 300 MHz to 3 GHz) for device-to-device links in which the direct link between UEs is shadowed by the human body. If we initially consider the link between UE$_1$ and UE$_2$, here both devices are located in a pocket at the respective user’s waist. As we can see the main LOS signal path from UE$_1$ to UE$_2$ is obscured by the second user’s body. In this instance, if we initially ignore specular and multipath signal components generated by the local surroundings, the D2D link will be formed by a combination of reflected, diffracted, surface wave propagation [19] and non-homogeneous scattering from the second user’s body in which none, one or more of these processes may instantaneously dominate the signal reception. To complicate matters further, due to physiological and biomechanical processes associated with the human body, the shadowing effect caused by the body will quite often be non-deterministic and must be treated as a random process.

As well as the propagation mechanisms discussed above, for the D2D link between UE$_3$ and UE$_4$ (Fig. 1), multipath generated by the local environment is also present which contributes to the overall signal reception. In this scenario, multipath clusters produced by the building and car will help mitigate

1It should be noted that the resultant dominant component here can be made up of leading signal components that arrive at the receiver by mechanisms other than just line of sight propagation.
the shadowing effect of the body. Within each of the clusters
generated by the local surroundings, a signal component of
arbitrary power may exist (e.g., caused by a specular reflection),
which dominates over all of the scattered waves in that cluster.
Given the proposed physical propagation phenomena described
above, it seems plausible to assume that the received signal
in shadowed D2D channels undergoes the same propagation
mechanisms as that encountered in $\kappa - \mu$ fading [16] except
in this instance the resultant dominant component, which is
formed by the phasor addition of the leading signal components
in the channel, is a random variable.

III. THE SHADOWED $\kappa - \mu$ FADING MODEL

Shadowed fading of the received signal has been observed in
other areas of communications outside D2D communications
such as land mobile satellite channels [20], [21]. Here shad-
owing of the LOS signal component is caused by complete or
partial blockage of the LOS by environmental factors such as
buildings, trees, hills and mountains etc., which in turn make
the amplitude of the LOS component a random variable [20].
In [21], it is assumed that the short-term signal variation is due
to Rice fading, in which the LOS component is shadowed and
modeled by a lognormal distribution. This approach, however,
can lead to statistical formulations which are difficult to ma-
nipulate analytically, and in the case of Loo’s shadowed fading
model [21] an expression which has no closed form. Following
[20] the resultant dominant signal component in the model
proposed here to represent shadowed fading in D2D commu-
nications is considered as being Nakagami-m distributed due
to its ability to approximate the lognormal distribution [22] and
its mathematical tractability.

The complex received signal envelope $R \exp(j\theta)$ for this new
model may be written as the sum of the resultant scattered waves
(W) and the resultant dominant component (Δ) such that

$$R \exp(j\theta) = W \exp(j\phi) + \Delta \exp(j\phi_0)$$ (1)

where W, as shown in [16], follows a Nakagami-m distribution
and Δ is also assumed to be Nakagami-m distributed. In this
model, ϕ_0 is the phase of the resultant dominant component
and ϕ is the stationary random phase process associated with
W [23] distributed over the range $[-\pi, \pi]$. If Δ is initially held
constant, then the conditional probability density function of R
is given by

$$f_{R|\Delta}(r|\delta) = \frac{r^\mu}{\sigma^2 \delta \mu - 1} \exp\left(-\frac{r^2 + 2\sigma^2}{2\sigma^2}\right) I_{\mu - 1}\left(\frac{\delta r}{\sigma^2}\right)$$ (2)

which is that of the $\kappa - \mu$ distribution [16] parameterized in
terms of δ, σ, and μ, and $I_{\nu}(\bullet)$ is the modified Bessel
function of the first kind, order ν. Here κ is related to δ, σ, and μ through the relationship [16]

$$\kappa = \frac{\delta^2}{2\mu^2}$$ (3)

which is simply ratio of the total power of the dominant com-
ponents (δ^2) to the total power of the scattered waves ($2\mu^2$)
where $\mu > 0$ is related to the multipath clustering and the mean
power is given by [16]

$$E[R^2] = \delta^2 = 2\mu^2$$ (4)

To determine the distribution of R when Δ varies according to
the Nakagami-m distribution we now calculate the conditional
mathematical expectation $f_r^\infty f_{R|\Delta}(r|\delta)/f_{\Delta}(\delta)d\delta$ which gives

$$f_r(r) = \frac{r^\mu}{\sigma^2} \frac{1}{\mu - 1} \exp\left(-\frac{r^2 + 2\sigma^2}{2\sigma^2}\right) I_{\mu - 1}\left(\frac{\delta r}{\sigma^2}\right) f_{\Delta}(\delta)d\delta$$ (5)

where

$$f_{\Delta}(\delta) = \frac{2m^m}{\Omega^m \Gamma(m)} \delta^{2m - 1} \exp\left(-\frac{m\delta^2}{\Omega}\right)$$ (6)

In (6), $\Gamma(\bullet)$ is the gamma function and $m = E[\Delta^2]/
var[\Delta^2]$ is the Nakagami parameter where $\var[\Delta^2]$ is the var-
iance [24]. In this instance, $\Omega = E[\Delta^2]$ is the average power
of the resultant dominant component. In a similar fashion to
[20], in the model proposed here, m is allowed to take any
value in the range $m \geq 0$ where $m = 0$ corresponds to complete
shadowing of the resultant dominant component and $m \to \infty$ corresponds to no shadowing of the resultant dominant
component. As noted in [20], the extreme cases of $m = 0$ and
$m = \infty$ cannot be met in reality. Using [25, p. 273, Equation 4],
and after some mathematical manipulation, (5) can now be written as

$$f_r(r) = \frac{2^{2m - 1}}{\Gamma(\mu)} \left(\frac{\mu(1 + \kappa)}{\hat{r}^2}\right)^\mu \left(\frac{m\sigma^2}{\mu(1 + \kappa)\Omega + m\sigma^2}\right)^m \exp\left(-\frac{\mu(1 + \kappa)r^2}{\hat{r}^2}\right) F_1\left(m; \mu; \frac{\Omega(\mu(1 + \kappa)r^2)}{2\hat{r}^2(\mu(1 + \kappa)\Omega + m\sigma^2)}\right)$$ (7)

where $F_1(\bullet; \bullet; \bullet; \bullet)$ is the confluent hypergeometric function.
Using equations (2) and (3) to perform a substitution of
variables, it becomes possible to express (7) in terms of $\kappa,
\mu, \hat{r}, m$ and Ω as given in (8), shown at the bottom of the page.
The closed-form PDF in (8) is a new result, which models \(\kappa - \mu \) fading in which the resultant dominant component is distributed according to the Nakagami-\(\mu \) PDF. It is a general model which will find application in other areas of communications such as land mobile satellite channels \([20, 21]\). Indeed Abdi’s model, which assumes a shadowed Rice PDF, appears as a special case of (8) which is obtained by setting \(\mu = 1 \). Because of this relationship, (8) may also be used to approximate the model proposed in \([21]\) which assumes that the LOS amplitude follows a lognormal distribution. Fig. 2 shows the PDF of the shadowed \(\kappa - \mu \) fading model for increasing values of \(\mu \) using the average parameter estimates for land mobile satellite channels given in \([20, Table III]\). Also shown for comparison are the PDFs for Abdi \([20]\) and Loo’s \([21]\) models respectively. As we can see for the case when \(\mu = 1 \) (with \(\mu = 2.968 \) and \(\bar{f} = 1 \)), the new model proposed here matches Abdi’s model exactly and gives an excellent approximation of Loo’s model. Using \([27, p. 822, Equation 4]\), the moments of the shadowed \(\kappa - \mu \) fading PDF given in (8) can be expressed as (9), shown at the bottom of the previous page, where \(n \) represents the \(n^{th} \) moment of the distribution such that \(n = 0, 1, 2, \ldots \) and \(2F_1(a; b; z) = (1 - z)^{-a} \) \([26, Equation 15.1.8]\), for \(\eta \geq 0 \) the MGF of the model proposed here can be derived as

\[
M_S(\eta) = \frac{(\eta \rho^2 + 1)^{m-\eta}(m \rho^2)^m}{(\eta \rho^2 + 1)(m \rho^2 + \Omega - \Omega^m)}
\]

(\text{11})

\(S = R^2 \) represent the instantaneous power in the proposed model, the power probability density function can be written as (10), shown at the bottom of the previous page.

A useful function related to (10) is the moment generating function which is defined as \(M_S = E[\exp(-\eta S)] \). It plays an important role in the calculation of the bit error rate (BER) and symbol error rate (SER) of different modulation schemes over fading channels \([20]\). Letting \(\rho = 1/\mu(1 + \kappa) \) and again using \([27, p. 822, Equation 4]\) along with the relationship \(2F_1(a; b; b; z) = (1 - z)^{-a} \) \([26, Equation 15.1.8]\), for \(\eta \geq 0 \) the MGF of the model proposed here can be derived as

\[
M_S(\eta) = \frac{(\eta \rho^2 + 1)^{m-\eta}(m \rho^2)^m}{(\eta \rho^2 + 1)(m \rho^2 + \Omega - \Omega^m)}
\]

(\text{11})

\(S = R^2 \) represent the instantaneous power in the proposed model, the power probability density function can be written as (10), shown at the bottom of the previous page.

A useful function related to (10) is the moment generating function which is defined as \(M_S = E[\exp(-\eta S)] \). It plays an important role in the calculation of the bit error rate (BER) and symbol error rate (SER) of different modulation schemes over fading channels \([20]\). Letting \(\rho = 1/\mu(1 + \kappa) \) and again using \([27, p. 822, Equation 4]\) along with the relationship \(2F_1(a; b; b; z) = (1 - z)^{-a} \) \([26, Equation 15.1.8]\), for \(\eta \geq 0 \) the MGF of the model proposed here can be derived as

\[
M_S(\eta) = \frac{(\eta \rho^2 + 1)^{m-\eta}(m \rho^2)^m}{(\eta \rho^2 + 1)(m \rho^2 + \Omega - \Omega^m)}
\]

(\text{11})
was determined prior to all experiments and the average was found to be -103 dBm. Two primary on-body positions for the UE were considered, namely the head and pocket. For all head measurements the UE was held at a 45 degree angle to the vertical against the respective person’s right ear to imitate a voice call. The pocket location for person 1 was a front right trouser pocket, while for person 2 it was the front right pocket (at waist level) of a jacket. The elevation above ground level for each of the positions was as follows: UE$_1$ head, 1.65 m; UE$_1$ pocket, 0.80 m; UE$_2$ head, 1.42 m; UE$_2$ pocket, 0.85 m.

V. CHANNEL MEASUREMENTS AND MODELING

The results presented in this Section were obtained from experiments performed in an outdoor urban environment. As shown in Fig. 4, the measurements were conducted in an open space between three buildings in a built up residential area in the suburbs of Belfast in the United Kingdom. Buildings 1 and 3 were two storey dwellings and had the same structural dimensions, while building 2 was a one storey structure. It should be noted that as well as the structural dimensions indicated in Fig. 4, buildings 1 and 3 had a height of 5.10 m from ground level to the lowest point of the roof level, while building 2 had a height of 2.40 m for the same dimension. The construction of all three buildings was typical of that encountered in the United Kingdom for these types of dwelling, with a brick and concrete block cavity wall structure, a number of double glazed exterior windows and a mixture of wooden and unplasticized polyvinyl chloride (uPVC) doors. In particular, building 1 featured 4 double glazed windows (spread over the ground and first floor levels) and a single uPVC door all situated on the wall adjacent to where the measurements were conducted (AB in Fig. 4). Building 2 had a single double glazed exterior window and a wooden door on the wall neighboring the measurement area (CD in Fig. 4), while building 3 featured two double glazed windows on the first floor level of the bounding wall. In the sequel, a number of different scenarios encompassing user rotation, random movements and mobility were considered. These activities were deemed representative of channel conditions likely to be encountered in everyday D2D links.

A. Shadowed Fading Due to User Rotation and Random Movements

To assess the impact of user rotation in D2D links, UE$_1$ was initially held at person 1’s head while they performed several repeated full 360 degree rotations directly in front of UE$_2$ at separation distances of 1 m, 5 m, 10 m, and 15 m (Fig. 4). Person 2 remained stationary for the duration of the measurements, facing in the direction of person 1, with UE$_2$ positioned at their head. This process was then repeated for UE$_1$ positioned in person 1’s right trouser pocket and then again for UE$_2$ in person 2’s front right jacket pocket. As a baseline, and to observe the potential impact of the human body in determining the received signal characteristics in D2D channels, Fig. 5 shows a 30 second segment of the received signal power time series when both UE$_1$ and UE$_2$ were positioned 5 m apart in free space using non-conductive stands. To allow a direct comparison with the UE$_1$ head to UE$_2$ head channel, the UEs were mounted on the stands using the same orientation i.e., at a 45 degree angle to the vertical with the same elevation from ground level. It should be noted that the very slight variation in the long-term mean signal level recorded for the baseline measurements was caused by local weather conditions on the day of measurements, which were windy.

Fig. 5 also shows the received signal power time series for the UE$_1$ head to UE$_2$ head channel when the user performed several repeated rotations at the same 5 m separation distance. The quasi-periodic variation of the received waveform caused by the movement (and associated shadowing) of the human body is clearly evident. What is more striking is that when the UEs were held in close proximity to the human body, peak-to-trough fade depths at this frequency can be as great as 30 dB. As shown in Fig. 5, this trend was also repeated when UE$_1$ was placed in person 1’s trouser pocket. From these results alone, it is quite clear that human body shadowing will have a significant impact upon fading characteristics in D2D communications.
The resultant dominant component.

Considering the data set in which the test subject performed a number of positions, the empirical PDF was constructed from a continuous pattern of signal variation from maxima (direct LOS) to minima (maximum shadowing) can be identified. However it can also be seen that due to slight differences in the test subject’s gait while repeating the rotational movement, the received signal waveform varies between repetitions, in the process introducing different signal modes.

Also shown inset in Fig. 6 is the distribution of the resultant dominant component for each of the links plotted using equation (6). As we can see from Fig. 6, the characteristics of the shadowed fading of the resultant dominant component vary considerably, dependent upon whether UE1 is positioned at the head or pocket. Although not shown due to space limitations, for the other rotational measurements (i.e., 1 m, 10 m, and 15 m), the estimated m parameter of the resultant dominant component was typically less than 0.5. This suggests that during user rotation, the resultant dominant component in outdoor D2D links will be subject to heavy shadowing.

For the random movements, person 1 stood at the 10 m position and person 2 took up their normal position as shown in Fig. 4. Both persons were initially stationary, in direct LOS and had the UEs positioned at their heads. They were then instructed to move around randomly within a circle of radius 1 m from their starting points while imitating a voice call. Fig. 7(a) shows the received signal power time series for the UE1 head to UE2 head channel while the users performed random movements. Due to the constantly changing orientation and posture of both persons, this channel was subject to considerable shadowed and multipath fading. This was confirmed by the parameter estimates for (8), here \(\hat{\kappa} \) and \(\hat{\mu} \) were found to be 1.78 and 0.55 respectively which suggested both clustering of the multipath components and strong shadowing of the resultant dominant component. As we can see from Fig. 7(b), the PDF of the shadowed \(\kappa - \mu \) fading model given in (8) provides an excellent fit to the measured data, while Fig. 7(c) shows the shadowing characteristics of the resultant dominant component.

B. Shadowed Fading Due to User Mobility

The next set of outdoor experiments were conducted along a 15 m straight line walk path, 1.7 m from the side of building 1 as shown in Fig. 4. For these measurements, the UEs were either positioned at the person’s head or in their pocket as before. Person 2 again stood stationary, with their arms by their sides, facing in the direction of person 1. Person 1 then walked from the 15 m point to the point 1 m directly in front of person 2 before returning to the 15 m starting point. Prior to assessing the impact of UE mobility in D2D channels, the influence of the local environment upon the received signal characteristics was investigated. In a similar fashion to the baseline measurements detailed above, UE1 and UE2 were again mounted on
TABLE I

ESTIMATED PARAMETERS FOR ALL MOBILE D2D CHANNELS

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Shadowed Fading</th>
<th>Local Mean</th>
<th>Path Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\kappa}$</td>
<td>$\bar{\mu}$</td>
<td>$\hat{\rho}$</td>
</tr>
<tr>
<td>Free Space</td>
<td>481</td>
<td>0.01</td>
<td>0.98</td>
</tr>
<tr>
<td>UE1 on trolley towards UE2</td>
<td>39.5</td>
<td>0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>UE1 at head walking towards UE2</td>
<td>1.21</td>
<td>3.22</td>
<td>1.40</td>
</tr>
<tr>
<td>UE1 in pocket walking towards UE2</td>
<td>6.70</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>UE1 in pocket walking away from UE2</td>
<td>4.03</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>UE1 browsing walking towards UE2</td>
<td>1843</td>
<td>0.01</td>
<td>0.93</td>
</tr>
<tr>
<td>UE1 browsing walking away from UE2</td>
<td>14.5</td>
<td>0.45</td>
<td>1.00</td>
</tr>
<tr>
<td>UE2 Front Jacket Pocket</td>
<td>8.52</td>
<td>0.48</td>
<td>1.00</td>
</tr>
<tr>
<td>UE1 at head walking towards UE2</td>
<td>1.08</td>
<td>3.13</td>
<td>1.42</td>
</tr>
<tr>
<td>UE1 in pocket walking towards UE2</td>
<td>40.6</td>
<td>0.58</td>
<td>0.98</td>
</tr>
<tr>
<td>UE1 in pocket walking away from UE2</td>
<td>1.24</td>
<td>0.72</td>
<td>1.04</td>
</tr>
<tr>
<td>UE1 browsing walking towards UE2</td>
<td>48.1</td>
<td>0.78</td>
<td>1.00</td>
</tr>
<tr>
<td>UE1 browsing walking away from UE2</td>
<td>47.4</td>
<td>0.10</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*\(n\) relates to an estimated \(m\) value which is extremely large i.e. the resultant dominant component is deterministic

Fig. 8. Received signal power time series with received power level estimated using path loss and slow fading component for (a) UE1 and UE2 mounted on non-conductive stands and UE1 head to UE2 head while person was (b) walking towards person 2 and (c) walking away.

non-conductive stands with the hypothetical smart phones oriented to imitate being held at both users’ head. The stand supporting UE1 was then attached to a non-conductive trolley and moved along the walk path in the direction of UE2.

Fig. 8(a) shows the measured received signal power time series for UE1 and UE2 oriented in the same configuration as a UE1 head to UE2 head channel however without the effect of the human body. As we can quite clearly see, when UE1 was moved towards UE2 there was a slow (or large-scale) fading component superimposed on the received signal by the local surroundings. Fig. 8(a) also shows the estimated received signal power which was determined from the measurements by converting the approximate velocity of the trolley to a distance and then fitting the log-distance path loss, \(P_{dB}(d_0) = P_{dB}(d_0) + 10n \log_{10}(d/d_0)\) to the data. Here, the path loss exponent is represented by \(n\) and the reference distance \(d_0\) was taken to be 1 m. As shown in Table I, for this environment \(n\) was found to be 2.1 which is close to that for free space. The slow fading component, was then found by calculating the local mean over a distance of 5 wavelengths. Here, as elsewhere [30], the slow fading amplitude, \(X\), is modeled as a lognormal process which is distributed according to

\[
 f_X(x) = \frac{1}{x\beta\sqrt{2\pi}} \exp \left[-\frac{(\ln x - \alpha)^2}{2\beta^2} \right] \tag{12}
\]

where \(\alpha\) and \(\beta\) are the location and scale parameters respectively. For all mobile measurements presented below, the same data treatment was applied. This process enabled the extraction of the shadowed fading which was due to the human body.

Figs. 8(b) and 8(c) show an example of the received signal power time series for the UE1 head to UE2 head channels as person 1 walked towards and then away from person 2 respectively. Also shown for comparison is the estimated received signal power based on the path loss and local mean signal level. The parameter estimates for \(n\), \(P_{dB}(d_0)\) and \(\alpha\) and \(\beta\) are given in Table I. Fig. 9 shows the empirical and theoretical PDFs for the UE1 head to UE2 head channel as person 1 walked towards and then away from person 2. As we can see, the PDF of the shadowed \(\kappa - \mu\) fading model given in (8) provides an excellent fit to the data proving the utility of the model for mobile D2D links. From Fig. 9 it is also evident that when person 1 walked in the direction of person 2, there was a strong resultant dominant component which was virtually unshadowed. However, when person 1 turned to walk
Possibly due to the geometry of the scenario in which UE dominant components were recorded for all of these channels scenario are provided in Table I. As we can see, quite strong 2’s head or front right pocket. The parameter estimates for this head to UE parameter estimates are given in Table I.

Also shown inset is the distribution of the resultant dominant component. All parameter estimates are provided in Table I.

A thorough knowledge of the D2D communications channel will be essential not only for the design of UE hardware, but also robust power control mechanisms and the optimization of protocols to be used in future D2D communications. This paper has focused on a small, but significant, part of this wide-ranging research problem by investigating the impact of human body shadowing in D2D links. To this end, a novel statistical model for shadowed fading in wireless communications channels has been proposed, namely the shadowed \(\kappa - \mu \) fading model. In this new model the potential clustering of multipath components is considered alongside the presence of elective dominant signal components—a scenario which is similar to that observed in traditional \(\kappa - \mu \) fading. One key difference between \(\kappa - \mu \) fading and the model proposed here is that the resultant dominant component, formed by the phasor addition of the principal signal components, is subject to Nakagami-\(m \) fading. The PDF, moments and MGF of this model have been derived and are given in a convenient closed-form solution. The MGF in particular will be essential for calculating the BER and SER of different modulation schemes over shadowed fading channels. Although this new model was derived for the purpose of modeling shadowed fading in D2D communications, it will find application in many communications scenarios in which the received signal is subject to shadowed fading. For example, it will be immediately useful in the study of land mobile satellite communications and body centric communications where the main signal paths may also be subject to random shadowing.

The utility of the shadowed \(\kappa - \mu \) fading model for outdoor D2D channels has been thoroughly validated through a series of experiments conducted for typical usage scenarios. It has been found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. For instance in D2D links in which one of the user’s rotate, the dominant signal component can be heavily shadowed with the received signal power level varying by as much as 30 dB. In the majority of the D2D links studied here, when one UE is mobile, irrespective of whether the user is moving towards or away from the opposite end of the link, a dominant component can be observed in the statistics of the received signal. A range of the parameter estimates for the shadowed \(\kappa - \mu \) fading model have been provided. These will be useful for those working on D2D communications as it will enable the simulation of the received signal for the testing of new D2D technologies.
As a final point, it is worth mentioning that while the characterization of shadowing in D2D channels is an important step towards a fuller understanding of this emerging type of wireless channel, there are many other open research questions relating to the D2D channel. One such issue is the prevalence of frequency selectivity which is known to occur in macro cellular environments. This knowledge will be vital for the successful implementation of technologies for multiuser D2D systems such as chunk-based resource allocation [31], which use orthogonal frequency division multiple access (OFDMA). Therefore a direct extension of the experimental work conducted in this study will be to investigate the correlation between neighboring frequencies used to support OFDMA for D2D communications.

ACKNOWLEDGMENT

The author would like to thank Mrs. Teresa Cotton and Ms. Lauryn Cotton for their assistance with the channel measurements conducted in this study.

REFERENCES

Simon L. Cotton (S’04–M’07–SM’14) received the B.Eng. degree in electronics and software from the University of Ulster, Ulster, U.K., in 2004 and the Ph.D. degree in electrical and electronic engineering from Queen’s University of Belfast, Belfast, U.K., in 2007. He is currently a Lecturer in wireless communications and an EPSRC/Royal Academy of Engineering Research Fellow with the Institute of Electronics, Communications and Information Technology (ECIT), Queen’s University Belfast. He is also a Co-founder of and the Chief Technology Officer with ActivWireless Ltd, Belfast, U.K. He has authored and coauthored over 80 publications in major IEEE/IEE journals and refereed international conferences, two book chapters, and two patents. Among his research interests are cellular device-to-device, vehicular, and body-centric communications. His other research interests include radio channel characterization and modeling and the simulation of wireless channels. Dr. Cotton was awarded the H. A. Wheeler Prize, in July 2010, by the IEEE Antennas and Propagation Society for the best applications journal paper in the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION during 2009. In July 2011, he was awarded the Sir George Macfarlane Award from the U.K. Royal Academy of Engineering in recognition of his technical and scientific attainment since graduating from his first degree in engineering.