Transforming the inferior metal alloy by electroless Ni-P/SiC deposit

Franco, M., Sha, W., Malinov, S., See, T. L., Liu, H., Liu, Z., ... Çimenoğlu, H. (2015). Transforming the inferior metal alloy by electroless Ni-P/SiC deposit. Poster session presented at Queen’s University Poster Competition, Belfast, United Kingdom.

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 The Authors

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
1. Introduction

Surface modification by metal deposition onto inferior material is of paramount importance for many engineering applications. A type of metal coating by electroless technique is versatile owing to its promising material properties and characteristics. Heat treatment of electroless nickel coating is important owing to the properties enhancement such as increase in microhardness, tribology, and phase transformation [1].

1.1. What is the purpose?

For automotive and aerospace industries light weight aluminum alloys are the back bone for any great designs and structure. But these alloys are vulnerable to wear, erosion, and corrosion. Electroless nickel coating reinforced with hard particles can transform the surface behavior of the substrate. With optimal heat treatment the coating properties can further be enhanced.

1.2. Research aims

The present work aims to develop and understand the composite coating Ni-P/SAc by electroless technique. The characterization such as phase structure, morphology and Properties like microhardness, friction and wear are investigated experimentally.

Aluminum alloy LM50 (Al-8%Si-0.5%Cu) alloy was used as substrate. It underwent post treatment as shown in Table 1. Each step is followed by tap water washing and deionized water running. The composite coating process parameters are shown in Table 2. The hard particles were introduced and stirred for 30 minutes prior to the plating process started. Upward and downward of the pH adjustment was done using ~50 % NH₄OH and ~10 % H₂SO₄, respectively.

Heat treatment was done in furnace and for vacuum all the samples were sealed in glass before placing in the furnace. XRD analysis on coated samples was carried out at room temperature using PANalytical X-ray diffractometer applying CuKα radiation. The step size of scans was 0.02°. Energy dispersive X-ray (EDX) map by Autoeco verna 2.0 software was used for chemical composition analysis. Microhardness by microhardness tester using load of 100 gf. Tribology behavior was tested using wear tower with load of 30 N rotating in a circular track of 8 mm diameter at a rotational speed of 200 rpm with the ball diameter of 7 mm. And also in air (200°C) monitoring using 2% load with ball diameter of 6 mm and truck diameter of 15 mm was performed using different pin-on-disc wear tower.

2. Results and discussion

The coating uniformity and the distribution of the reinforcing particles are shown in Fig. 1. The particles are evenly distributed in the coating which also follows the contour of the substrate [7].

![Fig. 1. Cross section of the coatings of different SiC concentrations A (0 g/l), B (2 g/l), C (6 g/l) and D (18 g/l)](image)

2.1. Phase structure

The broad peak for the as-deposited state (AD) of the coating shows the amorphous structure for all the samples. The heat treated state in both an atmospheric (AHT) and vacuum (VHT) conditions show well defined sharp peaks mainly from the crystalline Ni and Ni₃P and SiC peak for composite coatings. Oxide peaks are not observed for the two types of heat treated samples.

![Fig. 2. XRD patterns for samples A, B, C and F](image)

2.2. Microhardness

Fig. 3. Microhardness for bare aluminium, grey cast iron and coated samples (heart treated in light grey colour).

![Fig. 3. Microhardness for bare aluminium, grey cast iron and coated samples (heart treated in light grey colour).](image)

Fig. 4. Friction responses over sliding time.

There are substantial fluctuations in the friction graph especially in the early stage of the wearing time and then the friction becomes stable and smooth after this period of wearing time for atmospheric conditions. Large significant difference is exhibited before and after a threshold. Such observation does not occur in the friction graph for the sample heat treated in vacuum condition (Fig. 4). However, some irregularities of friction are seen which gradually fade away as the wearing proceeds. The main differences in the friction behavior obtained with different heat treatment conditions could be due to the considerable layer of oxide formation. The Bashir appearance (visual inspection) on the surface of samples heat treated in atmospheric condition is not seen for vacuum heat treated samples is an indication of the oxide formation. In-situ engine simulation (200°C) friction responses suggest the coated samples exhibit lower friction as compared to grey cast iron as shown in Fig. 5.

![Fig. 4. Friction responses over sliding time.](image)

![Fig. 5. In-situ friction responses at high temperature](image)

3. Wear characteristics of the bare aluminium and the coatings in terms of wear rate is tabulated in Table 3. Wear rate is lower after the coating. Wear resistance is improved on heat treatment as compared to as-deposited state.

![Table 3. Tribology data from wear testing](image)

4. Concluding remarks

- Deposition of composite Ni-P/SAc onto aluminum alloy shows uniform coating and even distribution of reinforcing particles. SIC content increases on increasing SiC concentrations in the plating solutions.
- XRD profile shows crystalline peaks from Ni and Ni₃P, and SiC peaks for composite samples in heat treated conditions and amorphous phase in as-deposited state.
- Microhardness increase after coating as compared to uncoated aluminum. Heat treatment further enhances the microhardness.
- Instability of the friction during the early stage of sliding is noticeable for atmospheric environment annualized samples of electroless nickel coated. No abrupt changes in the friction are found for vacuum heat treated samples.
- High temperatures friction of near engine environment shows lower friction for coated samples as compared to grey cast iron. Wear performance in better for coated samples in terms of lower wear rate. Heat treated samples exhibit better wear resistance as compared to as-deposited state.

Acknowledgement

The funding from Queen’s University Belfast as International studentship towards the doctoral project is acknowledged. The technical help from Dr. Mark Russell, Jim Keen and their team of University are gratefully appreciated.

References