Recombinant Subgroup B Human Respiratory Syncytial Virus Expressing Enhanced Green Fluorescent Protein Efficiently Replicates in Primary Human Cells and Is Virulent in Cotton Rats

Recombinant Subgroup B Human Respiratory Syncytial Virus Expressing Enhanced Green Fluorescent Protein Efficiently Replicates in Primary Human Cells and IsVirulent in Cotton Rats

Ken Lemon, D. Tien Nguyen, Martin Ludlow, Linda J. Rennick, Selma Yüksel, Geert van Amerongen, Stephen McQuaid, Bert K. Rima, Rik L. de Swart, W. Paul Duprex

School of Medicine, Dentistry and Biomedical Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom; Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands; Tissue Pathology, Belfast Health and Social Care Trust, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom; Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA

ABSTRACT

Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV005) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV005-EGFP (5). The recombinant viruses replicated efficiently in both HEP-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP + cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies.

IMPORTANCE

Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.

Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants (1). HRSV infections are observed during seasonal outbreaks in winter or during the rainy season in the tropics (2). The virus usually causes a self-limiting upper respiratory tract (URT) infection, resulting in rhinorrhea and other common cold-like clinical signs (3). However, in a minority of cases the infection can also spread to the lower respiratory tract (LRT), resulting in severe pneumonia or bronchiolitis. Risk factors for developing severe LRT infections include prematurity, pulmonary or cardiac disease, compromised immunity, and old age (4). Current treatment options are limited, although a monoclonal antibody directed against the fusion (F) glycoprotein has been developed for prophylactic use (5). Despite significant efforts in vaccine development over the past 50 years, no HRSV vaccines are currently licensed (6). Limited availability of natural animal models of disease adds to the challenge of developing vaccines and antivirals.

HRSV is a member of the family Paramyxoviridae, subfamily Pneumovirinae, genus Pneumovirus (1). It is an enveloped virus with a negative-sense, single-stranded RNA genome containing 10 transcription units. The glyco- (G) proteins facilitate virus attachment and entry (1, 7), and the F glycoprotein is an important target of virus neutralizing antibodies (8). Molecular epidemiological studies have identified two HRSV subgroups (A and B),
which cause indistinguishable disease and cocirculate during, or alternate between, yearly outbreaks (9, 10).

An improved understanding of HRSV pathogenesis would facilitate the development of novel intervention strategies. This requires virulent, well-characterized virus strains of known provenance, which can be evaluated in disease-relevant in vitro and in vivo model systems. Well-differentiated (wd) normal human bronchial epithelial (wd-NHBE) cultures grown at air-liquid interface (ALI) have been identified as a useful in vitro model for HRSV as they contain ciliated cells which are natural HRSV targets (11–13). Such cells provide a valuable bridge from in vitro to in vivo studies. Cotton rats represent a highly susceptible small-animal model for HRSV pathogenesis studies (14). Recently, adult human volunteers were infected with wild-type A strains to assess the effectiveness of HRSV antivirals (15–17). Irrespective of the approach used, it is critical to use naturally circulating viruses to ensure that study outcomes can be correlated with clinical outcomes. A long-standing challenge in virology is that clinical isolates often fail to cause overt cytopathic effect (CPE) in primary cells and in vivo; thus, infected cells must be stained to monitor the infection. This is challenging in viro and magnified in vivo when low numbers of infected cells are present in tissues, which must be examined using ultrathin sections. These challenges have been addressed by generating recombinant (r) viruses from clinical samples and engineering them to express fluorescent proteins from an additional transcription unit (ATU), permitting novel insights into viral pathogenesis and targeted pathological assessment in appropriate cell lines and animal models (18). To extend these studies, we obtained the genome sequence of HRSVB05, a wild-type subgroup B strain. Assembly of a full-length molecular clone allowed the recovery of recombinant HRSVB05 (rHRSVB05) and insertion of an ATU containing the enhanced green fluorescent protein (EGFP) open reading frame (ORF) at position 5 between the phosphoprotein (P) and matrix (M) genes to generate the rHRSVB05EGFP plasmid. We characterized rHRSVB05 and rHRSVB05EGFP in vitro and show that it is virulent in vivo.

MATERIALS AND METHODS

Determination of a complete HRSV subtype B genomic sequence directly from clinical material. Deidentified clinical material was kindly provided by Peter Coyle (Royal Victoria Hospital, Belfast, Northern Ireland). The sample was obtained from a tracheal rinse of an HRSV-positive infant during the 2004–2005 HRSV season (HRSV05). Total RNA was extracted from clinical material (500 μL) using TRIzol LS reagent (Life Technologies). First-strand cDNA was generated using a SuperScript III first-strand synthesis system (Life Technologies) and negative-sense gene-specific primers based on conserved regions of the HRSV subtype B genome. PCR primers were designed to amplify the complete viral genome in six overlapping fragments. PCR was performed on the cDNA using Phusion High-Fidelity DNA Polymerase (New England BioLabs). PCR products were purified using a QIAquick PCR purification kit (Qiagen) and sequenced using primers spanning the viral genome. Sequences were assembled, and a consensus was determined using Lasergene, version 10 (DNASTAR). Primer sequences are available on request. rHRSV is a recombinant virus based on HRSV strain A2 (HRSV05), which expresses GFP from an ATU present at position 1 (promoter proximal of the genome (19)).

Construction of rHRSVB05 minigenomic and antigenomic plasmids. An HRSV minigenome plasmid, p(−)HRSVB05DI-EGFP, contained an EGFP open reading frame (ORF) flanked by the viral 3′ and 5′ termini and preceded upstream by a T7 promoter, guanine trinucleotide, and ribozyme and followed downstream by a hepatitis delta virus ribozyme and T7 terminator sequences. A negative-sense viral RNA was produced upon transcription by T7 RNA polymerase. The minigenome construct was synthesized by GeneArt Gene Synthesis (Life Technologies) and ligated into a modified pBluescript vector (20). HRSV N, P, M2-1, and L expression plasmids were constructed in pCG(MPB5) (21). A full-length, antigenomic HRSV plasmid, pHRSVB05, was constructed following restricting enzyme digestion and sequential ligation into the modified pBluescript vector (20). The viral genome sequence was oriented with respect to the T7 promoter to produce an antigenic RNA upon transcription. The full-length HRSV plasmid was modified to contain an ATU encoding EGFP located between the P and M genes, pHRSVB05EGFP (5).

Development of a minigenome assay and recovery of HRSV. Confident HEP-2 cells (ATCC, CCL-23) were infected with recombinant vaccinia virus MVA-T7 for 1 h at 37°C. Inoculum was aspirated, and Lipo- vectorium 89 (2000) (22). To determine glycosaminoglycan (GAG) indices, CHO cells expressing GAG or GAG-deficient cells were infected and analyzed by flow cytometry (23). wd-NHBE cells were cultured in 12-mm/0.4-μm-pore-size inserts (Corning) at ALI (24). The apical surfaces of cells (estimated to contain 105 cells exposed at the surface) were infected at 25 to 26 days after growth at ALI. After 1 h of incubation at 37°C, inoculum was removed, and the apical surfaces were washed three times with Dulbecco’s phosphate-buffered saline (DPBS) (500 μL). At 2 days postinfection (d.p.i.), DPBS (500 μL) was added to the apical compartment, and the cells were incubated at 37°C. After 10 min the DPBS and growth medium were harvested from the apical and basolateral compartments, respectively, for virus isolation and quantitative PCR (qPCR). Subsequently, automated whole-well scans were made by confocal laser scanning microscopy (CLSM) with an LSM700 system fitted on an Axio Observer Z1 inverted microscope (Zeiss), followed by semiautomated enumeration of EGFP-positive (EGFP+) cells (DotCount; MIT, Boston, MA). Viruses were titrated in HEP-2 cells using 10-fold (growth kinetics) or 3-fold (apical rinse) dilutions in flat-bottom 96-well plates and cultured for 5 to 7 days. The presence of HRSV genomes in samples was determined by TaqMan reverse transcription-PCR (RT-PCR) as previously described (25) with slight modifications. A quantified positive control for HRSV B (VirCell) was added to express the results in genome equivalents. The cycle threshold (Ct) value was calculated automatically when the fluorophore signal (6-carboxyfluorescein [FAM] for HRSV A and tetramethylrhodamine [TAMRA] for HRSV B) was detected above the background level and was used to give a quantitative indication of viral copy numbers. All in vitro experiments were performed at least three times. Statistical analyses were performed with SPSS, version 20.0.
HRSV immuno-plaque assay. Serial 10-fold dilutions of HRSV were prepared in OptiMEM. Confluent HEP-2 cells cultured in 24-well plates were infected with each dilution (200 μl) for 1 h at 37°C. Inoculum was aspirated, and 0.8% carboxymethylcellulose (2 ml) (Sigma), in OptiMEM containing 2% (vol/vol) FBS, was added. Overlay medium was removed at 4 to 5 d.p.i., and cells were fixed in cold 80% (vol/vol) methanol for 1 h at 4°C. Plates were washed in distilled water and blocked with 5% (wt/vol) containing 2% (vol/vol) FBS, was added. Following 1 h of incubation at room temperature with rocking, plates were washed in distilled water, and rabbit anti-goat horseradish peroxidase (HRP) conjugate (Ab6741; Abcam) diluted 1:100 in blocking solution (200 μl) was added. Following 1 h of incubation at room temperature, plates were rinsed, and binding of the HRP-conjugated antibody was detected using 4-chloro-l-naphthol (200 μl), which was converted to produce a gray/black pigment (Pierce).

In vivo infection experiment. Six groups of six female, 3- to 4-week-old cotton rats were infected intranasally with 10⁴ TCID₅₀ of HRSV in an inoculum volume of 10 μl or 10 μl to target the URRT or LRT predominantly (26). Animals (n = 3/group) were euthanized by exsanguination at 4 or 6 d.p.i. The right lung was inflated with 2% (wt/vol) agarose (Sigma-Aldrich), sliced, and submerged in medium (27). Postmortem nasopharyngeal washings were collected, and the left lung was prepared for qPCR. Nasal concha, nasal septum, and agarose-inflated right lung (27) were screened and scored for microscopic fluorescence (AxioVert 25; Zeiss). Mann-Whitney U tests were used to compare differences between groups, and a P value of ≤0.05 was considered statistically significant.

Immunohistochemical (IHC) analysis of formalin-fixed tissues. Paraffin-embedded tissues were processed as previously described (28). HRSV-infected cells were detected using a polyclonal rabbit antibody to EGFP (Invitrogen). All fluorescently stained slides were assessed, and digital fluorescent images were acquired with a Leica DF digital camera using Leica FW4000 software.

Confocal laser scanning microscopy. Nasal tissues and agarose-inflated lung slices were fixed with phosphate-buffered saline (PBS) containing 4% (wt/vol) paraformaldehyde, permeabilized with PBS containing 0.1% (vol/vol) Triton X-100 for 30 min, counterstained with the far-red nuclear counterstain TO-PRO3 (Invitrogen) or 4,6-diamidino-2-phenylindole (DAPI; Vectashield), and directly analyzed for EGFP fluorescence (AxioVert 25; Zeiss). Mann-Whitney U tests were used to compare differences between groups, and a P value of ≤0.05 was considered statistically significant.

Nucleotide sequence accession number. The complete genome sequence of HRSV805 is available from GenBank under accession number KF640637.

RESULTS

Generation of a wild-type, subgroup B BA rHRSV. Total RNA was extracted directly from a tracheal rinse sample obtained from an infant infected with HRSV, and high-fidelity RT-PCR and rapid amplification of cDNA ends (RACE) were used to generate ampiclons using previously described methods (29). The consensus genome sequence indicated that the virus belonged to the Buenos Aires (BA) genotype of HRSV subgroup B. This genotype was first detected in Argentina in 1999 and is characterized by a 60-nucleotide duplication in the G gene (30). Viruses of the BA genotype have become the dominant global HRSV subtype B genotype (31, 32), although why this is the case is unclear. Eukaryotic expression plasmids encoding HRSV805 nucleocapsid (N), phospho- (P), and M2-1 and large (L) proteins and a negative-sense minigenome (HRSV805-D1-EGFP) were constructed (Fig. 1A), and a replication/transcription assay was established to optimize the conditions required to generate HRSV805. Most negative-strand reverse genetics systems utilize T7 RNA polymerase to generate a full-length viral antigenomic RNA. Since T7 RNA polymerase initiates most efficiently on a stretch of guanine residues, efficient rHRSVA2 rescue has previously been achieved by inserting three guanine nucleotides between the T7 promoter and the HRSV leader (Le) sequence (33–35). However, it is not clear whether this sequence is copied during viral replication. To negate this possibility, a hammerhead ribozyme (36) was inserted after the T7 promoter and three guanine nucleotides, which, along with the hepatitis delta ribozyme at the other end of the minigenome, allowed posttranscriptional cleavage to generate precise, authentic trailer (Tr) and Le termini at the ends of the minigenome (Fig. 1A). EGFP cells were observed following transfection of the five plasmids into HEP-2 cells, indicating that the genomic termini and helper plasmids were functional (Fig. 1B). No EGFP-positive cells were observed when the L protein expression plasmid was omitted (Fig. 1B, −L), indicating that EGFP expression was driven exclusively by the viral RNA-dependent RNA polymerase (Fig. 1B). Based on these findings a positive-sense full-length genome plasmid (pHRSV805) was constructed, and rHRSV805 was recovered following transfection into HEP-2 cells (Fig. 1C). Importantly, it was not necessary to mutate nucleotide 4 of the Le sequence to achieve efficient rescue as has been described for rHRSV8A2 (33, 37), which demonstrates the biological importance of using authentic wild-type sequences. Full-genome consensus sequencing of the recombinant virus showed that no mutations had been introduced compared to the consensus sequence of the clinical specimen (data not shown). Indirect immunofluorescence (Fig. 1D and E) and in situ plaque staining (Fig. 1F and G) using an anti-HRSV F glycoprotein antibody permitted the detection of foci of infection. The full-length HRSV plasmid was modified by insertion of an ATU encoding EGFP at position 5 in the genome (Fig. 1H), and rHRSV805EGFP(5) was recovered (Fig. 1I). High levels of EGFP expression were obtained, and both single and fused infected cells were detected by UV microscopy (Fig. 1I). Thus, an rHRSV805 virus genetically identical to a clinical isolate was successfully generated that can be tracked in living cells in the absence of any overt CPE.

Growth characteristics of rHRSV805 in transformed and primary human cells. HEP-2 cells were infected with rHRSV805 or rHRSV805EGFP(5) at an equivalent multiplicity of infection (MOI). Both B05-based viruses displayed similar growth kinetics, reaching equivalent peak titers of 10⁶ TCID₅₀/ml (Fig. 1I). It has been reported that HRSV strains differ in their binding affinity to glycosaminoglycan (GAG) moieties on the cell surface (19, 23). Both rHRSV805 and rHRSV805EGFP(5) displayed low GAG dependency indices (Fig. 1K). In contrast, rGHSV had a high GAG dependency index.

Primary NHBE cells differentiated at ALI to form polarized ciliated, nonciliated, basal, and goblet cells with functional tight junctions. These w.d-NHBE cells were infected at an MOI of 0.01, 0.1, or 1, resulting in a dose-dependent number of infected cells 2 d.p.i. (Fig. 2A). Similar to previous observations with recombinant HRSV A2 strains in differentiated epithelial cells (12), CPE was not observed. Virus loads in apical rinses were determined both by virus isolation (Fig. 2B) and qPCR (Fig. 2C). No reproducible differences in virus loads were determined between cultures infected with rHRSV805 and rHRSV805EGFP(5). Virus loads determined by qPCR showed a good correlation with the numbers of EGFP⁺ cells. Neither released virus nor virus genome
was detected in the basolateral compartment (data not shown). This is consistent with the epitheliotropic nature of HRSV.

rHRSV^{B05} efficiently infects cotton rats. Cotton rats were infected intranasally with 10^4 TCID$_{50}$ of rHRSV^{B05} or rHRSV^{B05}EGFP(5) in a low volume (10 μl) to target the URT. Animals were sacrificed at 4 or 6 d.p.i., and unfixed respiratory tracts were screened by UV microscopy. High numbers of EGFP$^+$ cells were detected at 4 d.p.i. in the nasal cavity of rHRSV^{B05}EGFP(5)-infected animals (Fig. 3A). Discrete tracks of fluorescent cells were present in the epithelium of the nasal septum, reminiscent of what was previously observed in wd-NHBE cells (12). No EGFP$^+$ cells were detected microscopically in trachea or lungs. Pathological assessment and immunohistochemistry (IHC) in 7-μm formalin-fixed lung sections indicated that both viruses predominantly infected ciliated respiratory epithelial cells (Fig. 3B) and caused destruction of the epithelium (Fig. 3C).

In order to target both the URT and LRT, cotton rats were intranasally infected with 10^4 TCID$_{50}$ in a larger volume (100 μl) (26). Macroscopically, fluorescence levels in the nasal concha and nasal septum were indistinguishable between animals infected with the low- or high-volume inoculum, and no EGFP$^+$ cells were
the LRT was lower at 6 d.p.i. while only in animals inoculated intranasically that high viral loads were detected in the trachea. However, vastly different outcomes were observed when the lungs from infected animals were removed, inflated with agarose, sectioned, and screened for fluorescence. Infection with rHRSVB05EGFP(5) resulted in high numbers of EGFP+ cells at 4 d.p.i. in the epithelium of the bronchi and bronchioles in the lung slices (Fig. 3D). The number of EGFP+ cells in the LRT was lower at 6 d.p.i.

Virus loads were determined in nasal lavage samples (Fig. 3E and F) and lung tissue (Fig. 3G and H) by virus isolation (Fig. 3E) and qPCR (Fig. 3F and H) for animals infected with a low (Fig. 3, hatched columns) or high (Fig. 3, nonhatched columns) volume of intranasal inoculum. The results corroborated the macroscopic observations that high viral loads were detected in the URT of all animals (Fig. 3E and F) while only in animals inoculated with a high volume were significant virus loads detected in the LRT (Fig. 3G and H).

Detection of rHRSV_{B05}EGFP(5) in the respiratory tract by optical sectioning. The power of targeted pathology in understanding the spatial dynamics and pathological consequences of rHRSV^{B05}EGFP(5) infection is evident when standard IHC in formalin-fixed lung sections (Fig. 4A and B) is compared to optical sectioning of living tissues immediately after necropsy (Fig. 4C to G). More infected cells were detected in agarose-inflated lung slices reconstructed in three dimensions using confocal laser scanning microscopy (CLSM) than by IHC, and sheets of infected luminal epithelial cells of bronchi and bronchioles were present (Fig. 4C). Small numbers of individual cells in the parenchyma of the lung were also present (Fig. 4C, inset and asterisk). These cells could not be phenotypically characterized by IHC due to the section size and lower level of sensitivity due to background. Optical sectioning also allows greater cellular resolution since EGFP floods the cytoplasm of the cell, meaning that fine processes and cell-to-cell contacts were readily visible (Fig. 4D and E, arrow).

DISCUSSION

We have developed a reverse genetics system based on an HRSV subgroup B clinical isolate and generated rHRSVs with or without an additional transcription unit encoding EGFP to study viral pathogenesis in the cotton rat model. Use of rHRSV^{B05}EGFP(5) allowed sensitive detection of infected cells both in vitro and in vivo in the early stages of infection in the absence of CPE. HEP-2 cells were suitable for virus passage in vitro, and the genomes were genetically stable: after 10 serial passages in HEP-2 cells, consensus sequencing revealed no mutations. In addition, the growth kinetics of rHRSV^{B05} and rHRSV^{B05}EGFP(5) were comparable, suggesting that insertion of an ATU into the HRSV genome did not result in virus attenuation. Laboratory-adapted viruses generated by extensive passage through a variety of disease-relevant and -nonrelevant cells and tissues have traditionally been used to develop molecular clones (34, 38–40).

HRSV spread in differentiated human airway epithelial (HAE) cells has been described as a “comet-like” spread, driven by the directionality of the beat of the cilia (12). Equivalent “comets” were present in the nasal conchae of infected cotton rats, demonstrating that these are relevant in vivo and not an in vitro artifact. Such localized virus spread has significant implications for the development and delivery of HRSV antivirals. We used the model to mirror the 1 to 2% of human cases where virus triggers bronchiolitis or severe pneumonia by varying the inoculation volume to target mainly the URT or concurrently the URT and LRT. Interestingly, rHRSV^{B05}EGFP(5) predominantly infected cells throughout the main branches of the bronchial tree, resulting in illumination of the bronchial tree. This aspect of HRSV pathogenesis has not previously been recapitulated in an animal model of HRSV or, to the best of our knowledge, in animals infected with any virus. Preferential infection of bronchial and bronchiolar epithelial cells mirrors the natural target cells of HRSV in humans (41). Moreover, at 4 d.p.i. rHRSV^{B05}EGFP(5) titers were similar to those obtained from patients or volunteers infected with HRSV (15, 16, 42). This illustrates the strength of the cotton rat model and shows the power of targeted pathology using EGFP-expressing recombinant viruses, which is only feasible due to the possibility of identifying infected tissues for blocking and processing immediately after necropsy.

Whereas existing in vitro and in vivo models of HRSV have focused mainly on subgroup A viruses, our recombinant virus is based on a subgroup B strain (31). Antigenic differences between the two subgroups of HRSV are predominantly mediated by the highly variable G gene (10) and might facilitate evasion of host immune responses (43). Despite these differences, infections with HRSV of either subgroup cause indistinguishable disease (1). Although outside the scope of understanding primary pathogenesis, this system should permit fitness experiments between viruses with and without the insertion in the G protein. This could explain why the BA viruses have outcompeted all other subgroup B HRSVs.

Reverse genetics of nonsegmented negative-strand RNA viruses has come a long way in the last 20 years following the recovery of rabies virus (44). The challenges of generating recombinant viruses are far from trivial, and much has been achieved with the original rHRSV systems (19, 34). Given the significant investment...
of time in establishing reverse genetics systems, there tends to be a large activation energy required to develop second- or third-generation systems. This is particularly true for HRSV, and, although tractable second-generation systems have been developed (45, 46), no group has successfully generated a virulent rHRSV fully reflecting the sequence of a current, clinically relevant, wild-type strain and studied primary pathogenesis in this key small-animal model. In addition, in vitro and in vivo models employing subgroup B HRSV strains have been scarce; these will be of crucial importance for preclinical testing of the effectiveness of new intervention strategies. It is vital to extend ongoing studies and move in the direction of reverse genetics systems based on clinical isolates grown in disease-relevant cells. Only then will it be possible to understand HRSV pathogenesis fully and systematically to test novel interventions. The recombinant B05 viruses will help in this endeavor, and these
should be augmented by the establishment of equivalent sys-
tems for subgroup A clinical isolates.

ACKNOWLEDGMENTS
We thank Georgina Aron, Peter Coyle, Rory de Vries, Rachel Scheuer, and Joyce Verburgh. We thank Mark Peeples and Peter Collins for providing rgRSV as a positive control for the GAG index determination. This work was funded by MRC (grant number G0801001) and the VIRGO Consortium, funded by the Dutch Government (grant number FES0908).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES
1. Collins PL, Karron RA. 2013. Respiratory syncytial virus and metapneu-
tory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 76:5654–