An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers


Published in:
Breast Cancer Research

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 Blein et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers


* Correspondence: david.cox@lyon.unilyon1cancer.fr
Deceased
1INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
2Université de Lyon, 69000 Lyon, France
Full list of author information is available at the end of the article

© 2015 Blein et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species (ROS), a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.85; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.

Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.
oxidative stress markers [12]. Mitochondrial dysfunction recently was shown to promote breast cancer cell migration and invasion through the accumulation of a transcription factor, hypoxia-inducible factor 1α, via increased production of ROS [13].

Human mitochondrial DNA (mtDNA) has undergone a large number of mutations that have segregated during evolution. Those changes are now used to define mitochondrial haplogroups. Some of these changes slightly modify metabolic performance and energy production; thus, not all haplogroups have identical metabolic capacities [14]. It has been hypothesized that the geographic distribution of mitochondrial haplogroups results from selection of metabolic capacities driven mainly by adaptation to climate and nutrition [15,16].

Mitochondrial haplogroups have been associated with diverse multifactorial diseases, such as Alzheimer's disease [17], hypertrophic cardiomyopathy [18], retinal diseases [19] or age-related macular degeneration [20]. Variations in mtDNA have also been linked to several types of cancer, such as gastric cancer [21] or renal cell carcinoma [22]. Interestingly, variations in mtDNA have been linked to several types of female cancers, including endometrial [23], ovarian [24] and breast cancer [25,26]. A recent study underlined the possibility that mtDNA might be involved in the pathogenic and molecular mechanisms of familial breast cancer [27].

The Collaborative Oncological Gene-environment Study [28] (COGS) is a European project designed to improve understanding of genetic susceptibility to breast, ovarian and prostate cancer. This project involves several consortia: the Breast Cancer Association Consortium (BCAC) [29], the Ovarian Cancer Association Consortium [30], the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) [31] and the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) [32]. CIMBA is a collaborative group of researchers working on genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers. As part of the COGS project, more than 200,000 single-nucleotide polymorphisms (SNPs) were genotyped for BRCA1 and BRCA2 female mutation carriers on the iCOGS chip, including 129 mitochondrial polymorphisms. The iCOGS chip is a custom Illumina™ Infinium genotyping array (Illumina, San Diego, CA, USA) designed to test, in a cost-effective manner, genetic variants related to breast, ovarian and prostate cancers.

In this study, we explored mitochondrial haplogroups as potential modifiers of breast cancer risk in women carrying pathogenic BRCA1 or BRCA2 mutations. Our study includes females diagnosed with breast cancer and unaffected carriers belonging to CIMBA. We used an original analytic phylogenetics-based approach implemented in a homemade algorithm and in the program ALTtree [33,34] to infer haplogroups and to detect associations between haplogroups and breast cancer risk.

Methods

Ethics statement

A signed informed written consent form was obtained from all participants. All contributing studies involved in CIMBA received approvals from the institutional review committees at their host institutions. Ethical committees that approved access to the data analyzed in this study are listed in Additional file 1.

BRCA1 and BRCA2 mutation carriers

Final analyses included 7,432 breast cancer cases and 7,104 unaffected BRCA1 mutation carriers, as well as 3,989 invasive breast cancer and 3,689 unaffected BRCA2 mutation carriers, all belonging to CIMBA. Supplementary specifications regarding inclusion profiles and studies belonging to CIMBA are available in the reports by Couch et al. [35] and Gaudet et al. [36]. All analyses were conducted separately on CIMBA BRCA1 and BRCA2 mutation carriers (abbreviated pop1 and pop2, respectively). Eligible female carriers were aged 18 years or older and had a pathogenic mutation in BRCA1 and/or BRCA2. Women with both BRCA1 and BRCA2 mutations were included in downstream analyses. Data were available for year of birth, age at study recruitment, age at cancer diagnosis, BRCA1 and BRCA2 mutation description and self-reported ethnicity. Women with ovarian cancer history were not excluded from analyses, and they represented 15% and 7% of BRCA1 and BRCA2 mutation carriers, respectively. Information regarding mastectomy was incomplete and was therefore not used as an inclusion or exclusion parameter.

Genotyping and quality filtering

Genotyping was conducted using the iCOGS custom Illumina Infinium array. Data from this array are available to the scientific community upon request. Please see [37] for more information. Genotypes were called using Illumina's proprietary GenCall algorithm. Genotyping and quality filtering were described previously [35,36]. Initially, 129 mitochondrial SNPs were genotyped for both BRCA1 and BRCA2 mutation carriers. SNPs fulfilling the following criteria were excluded from downstream analyses: monoallelic SNPs (minor allele frequency = 0), SNPs with more than 5% data missing, annotated as triallelic, or having probes cross-matching with the nuclear genome. Heterozygous genotypes were removed from analyses, and we further filtered out SNPs having more than 5% of heterozygous calls to limit the potential for heteroplasmy affecting our results. We also did not retain SNPs representing private mutations. These mutations are rare, often restricted to a few families, and not sufficiently prevalent in the general population to be included in the reference
mitochondrial evolutionary tree (see below). This last step of filtration yielded 93 and 92 SNPs for the pop1 and pop2 analyses, respectively (see Additional file 2). Only individuals with fully defined haplotypes (that is, non-missing genotypes for the 93 and 92 SNPs selected for pop1 and pop2, respectively) were included in downstream analyses (14,536 and 7,678 individuals, respectively).

### Mitochondrial genome evolution and haplogroup definition

Analyses were based on the theoretical reconstructed phylogenetic tree of the mitochondrial genome (mtTree) known as PhyloTree [38] (v.15). The mtTree is rooted by the Reconstructed Sapiens Reference Sequence (RSRS). RSRS has been identified as the most likely candidate to root the mtTree by refining human mitochondrial phylogeny by parsimony [39]. Each haplogroup in mtTree is defined by the set of mtDNA SNPs that have segregated in RSRS until today in the mitochondrial genome. Each haplogroup is fully characterized by the 16,569-bp sequence resulting from the application of all the substitutions that are encoded by the corresponding SNPs in the RSRS sequence.

### Haplogroups imputation

The phylogenetic approach used to infer haplogroups is described in Figure 1. Mitochondrial genome sequences can be reconstructed at each node of mtTree, given the

---

**Figure 1** Simplified representation of the phylogenetic method used to infer haplogroups. (a) Full-length haplotypic sequences are reconstructed at each node of the reference tree. (b) Haplotypes are then restricted to available loci. Sequences of the same color are identical. (c) Unique short haplotypes are matched directly with the corresponding haplogroup. (d) Sequences that match with several haplogroups are associated with their most recent common ancestor haplogroup. RSRS, Reconstructed Sapiens Reference Sequence.
substitutions that have segregated in RSRS. Each haplogroup therefore has a corresponding full-length mitochondrial sequence. However, the full-length mitochondrial sequence is not available in the data, because the iCOGS platform captured only 93 and 92 SNPs for *pop1* and *pop2*, respectively. Thus, for each of the 7,864 nodes of the phylogenetic tree, the corresponding short haplotype (that is, the full-length sequence restricted to available loci) was defined. Some of the short haplotypes are unique, and they can be matched with their corresponding haplogroup directly. However, most of the time, given the small number of SNPs analyzed, several haplogroups correspond to the same short haplotype. Consequently, a unique haplogroup cannot confidently be assigned to each short haplotype. Therefore, each short haplotype was assigned the most recent common ancestor of all the haplogroups that share the same short haplotype. Once this matching was done, short haplotypes were reconstructed in the same way for each individual in our dataset and were assigned the corresponding haplogroup. The accuracy of the method used was assessed by application to a set of 630 mtDNA sequences of known European and Caucasian haplogroups (see Additional file 3).

**Association detection**

This phylogenetic approach is based on the identification of subclades in the reference phylogenetic tree of the mitochondrial genome differentially enriched for cases and unaffected controls compared with neighboring subclades. We used ALTree [33,34] to perform association testing. ALTree—standing for Association detection and Localization of susceptibility sites using haplotype phylogenetic Trees—is an algorithm used to perform nested homogeneity tests to compare distributions of affected and unaffected individuals in the different clades of a given phylogenetic tree. The objective is to detect if some clades of a phylogenetic tree are more or less enriched in affected or unaffected individuals compared with the rest of the tree. There are as many tests performed as there are levels in the phylogenetic tree. The *P*-value at each level of the tree is obtained by a permutation procedure in which 1,000 permutations are performed. Individual labels (“affected” or “unaffected”) are permuted 1,000 times to see to what extent the observed distribution of affected or unaffected is different from a random distribution. A procedure to correct for multiple testing adapted to nested tests [40] is implemented in ALTree. The objective of ALTree is to detect an enrichment difference at the level of the whole tree. To conserve computational time and resources, only the most significant *P*-value obtained for all tests performed on one tree is corrected.

**Handling genetic dependency**

ALTree is used to perform homogeneity tests to detect differences in enrichment or depletion of affected or unaffected individuals between clades in the phylogenetic tree. This kind of test can be performed only on independent data. However, because some individuals in the CIMBA dataset belong to the same family, we constructed datasets with genetically independent data by randomly selecting one individual from among all those belonging to the same family and sharing the same short haplotype. To take into account the full variability of our data, we resampled 1,000 times. The results of the analysis pipeline are obtained for each resampling independently and then averaged over the 1,000 resamplings to obtain final results.

**Character reconstruction at ancestral nodes**

Before the ALTree localization algorithm was launched, ancestral sequences were reconstructed at each internal tree node; that is, short haplotypes were inferred with maximum likelihood at all nodes that were not leaves. We used the software PAML [41] to perform the reconstruction at ancestral nodes using a maximum likelihood method. The phylogeny model used was the general time-reversible model (either GTR or REV).

**Localization of susceptibility sites**

ALTree also includes an algorithm used to identify which sites are the most likely ones to be involved in the association detected. For each short haplotype observed, the ALTree add-on *altree-add-S* adds to the short haplotype sequence a supplementary character called *S*, which represents the disease status associated with this short haplotype. Are individuals carrying this short haplotype more often affected or unaffected? *S* is calculated based on the affected and unaffected counts, the relative proportion of affected and unaffected in the whole dataset, and sensibility parameter $\epsilon$, which is set to its default value, which is 1. After *S* character computation, haplotypes including character *S* are reconstructed at ancestral nodes. Susceptibility site localization is achieved with ALTree by computing a correlated evolution index calculated between each change of each site and the changes of the character *S* in the two possible directions of change. The sites whose evolution are the most correlated with the character *S* are the most likely susceptibility sites.

**Selected subclades**

The analyses were carried out on the full evolutionary tree. However, the more haplogroups there are at each level, the less statistical power homogeneity tests have. Therefore, analyses were also applied to subclades extracted from the tree. Subclades were defined using counts of individuals in each haplogroup of the clade to maximize statistical power. The chosen subclades
and corresponding affected and unaffected counts are presented in Table 2.

Statistical analysis
We quantified the effect associated with enrichment discovered by applying ALTree by building a weighted Cox regression in which the outcome variable is the status (affected or non-affected) and the explicative variable is the inferred haplogroup. Analyses were stratified by country. Data were restricted to the clades of interest. The uncertainty in haplogroup inference was not taken into account in the model. The weighting method used takes into account breast cancer incidence rate as a function of age [42] and the gene containing the observed pathogenic mutation (that is, BRCA1 or BRCA2). Familial dependency was handled by using a robust sandwich estimate of variance (R package survival, cluster() function).

Results
Haplogroup imputation
In Additional file 4, absolute and relative frequencies are recapitulated for each haplogroup imputed in BRCA1 and BRCA2 mutation carriers. For BRCA1 mutation carriers, we reconstructed 489 distinct short haplotypes of 93 loci from the genotypes data. Only 162 of those 489 short haplotypes matched theoretical haplotypes reconstructed in the reference mitochondrial evolutionary tree. These 162 haplotypes represented 13,315 of 14,536 individuals. Thus, 91.6% of BRCA1 mutation carriers were successfully assigned a haplogroup. For BRCA2 mutation carriers, we reconstructed 350 distinct short haplotypes of 92 loci from our genotype data. Only 139 of those 350 short haplotypes matched theoretical haplotypes reconstructed in the reference mitochondrial evolutionary tree. These 139 haplotypes represented 6,996 of 7,678 individuals. Thus, 91.1% of BRCA2 mutation carriers were successfully assigned a haplogroup. Because more BRCA1 than BRCA2 mutation carriers were genotyped (14,536 vs. 7,678 individuals), we logically observed more distinct haplotypes in pop1 than in pop2 (489 vs. 350 haplotypes).

The accuracy of the main haplogroup inference method used was estimated at 82% and reached 100% for haplogroups I, J, K, T, U, W and X. Given the set of SNPs we disposed of, our method has difficulty differentiating between H and V haplogroups (see Additional file 3).

Association results
For both populations of BRCA1 or BRCA2 mutation carriers, as well as for the full tree as for all selected subclades (see Table 1), we extracted the mean corrected \( P \)-value for association testing over all resamplings performed (see Table 2). The only corrected \( P \)-value that remained significant was that obtained for subclade T (abbreviated T* in the population of individuals of BRCA2 mutation carriers (\( P = 0.04 \)). The phylogenetic tree of subclade T (see Figure 2a) contains only three levels; thus, only three tests were performed within this clade. Raw \( P \)-values were examined to determine at which level of the tree ALTree detects a difference of enrichment in affected or unaffected individuals (see Table 3). Only the \( P \)-value associated with the test performed at the first level of the tree is significant. We looked more closely at the mean frequencies of affected and unaffected individuals in the tree at this level (see Figure 2b). In the T1a1 subclade, the mean count of affected and unaffected are 32 and 47, respectively. In the T2* subclade, we observed, on average, 217 and 148 affected and unaffected individuals, respectively, whereas in the T subclade, we observed, on average, 13 and 11 affected and unaffected individuals, respectively. The ranges observed for each of these values over the 1,000 resamplings are represented in Figure 2b. On the basis of these observations, we conclude that subclade T1a1 is depleted in affected carriers compared with the neighboring subclades T and T2.

### Table 1 Counts of participants in selected subclades

<table>
<thead>
<tr>
<th>Subclade</th>
<th>BRCA1 mutation carriers</th>
<th>BRCA2 mutation carriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>U8</td>
<td>1,458</td>
<td>863</td>
</tr>
<tr>
<td>T</td>
<td>1,243</td>
<td>651</td>
</tr>
<tr>
<td>J</td>
<td>1,270</td>
<td>630</td>
</tr>
<tr>
<td>J1</td>
<td>1,043</td>
<td>513</td>
</tr>
<tr>
<td>H</td>
<td>3,706</td>
<td>1,967</td>
</tr>
<tr>
<td>H1</td>
<td>582</td>
<td>337</td>
</tr>
<tr>
<td>U5</td>
<td>868</td>
<td>458</td>
</tr>
<tr>
<td>X1′2′3</td>
<td>221</td>
<td>103</td>
</tr>
<tr>
<td>K1a</td>
<td>608</td>
<td>364</td>
</tr>
</tbody>
</table>

### Table 2 Mean corrected \( P \)-values for association testing with ALTree

<table>
<thead>
<tr>
<th>Subclade</th>
<th>pop1 corrected ( P )-value</th>
<th>pop2 corrected ( P )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>0.830</td>
<td>0.681</td>
</tr>
<tr>
<td>U8</td>
<td>0.146</td>
<td>0.626</td>
</tr>
<tr>
<td>T</td>
<td>0.285</td>
<td>0.040</td>
</tr>
<tr>
<td>J</td>
<td>0.718</td>
<td>0.112</td>
</tr>
<tr>
<td>J1</td>
<td>0.621</td>
<td>0.150</td>
</tr>
<tr>
<td>H</td>
<td>0.747</td>
<td>0.930</td>
</tr>
<tr>
<td>H1</td>
<td>0.268</td>
<td>0.804</td>
</tr>
<tr>
<td>U5</td>
<td>0.829</td>
<td>0.747</td>
</tr>
<tr>
<td>X1′2′3</td>
<td>0.416</td>
<td>0.629</td>
</tr>
<tr>
<td>K1a</td>
<td>0.170</td>
<td>0.162</td>
</tr>
</tbody>
</table>

*pop1, BRCA1 mutation carrier; pop2, BRCA2 mutation carrier. Bold indicates a significant \( P \)-value.
Localization results
We performed a localization analysis with ALTree. The correlated evolution index for all non-monomorphic sites observed in short haplotype sequences of subclade T are displayed in Additional file 5. The higher the correlated evolution index, the more likely it is that corresponding sites will be involved in the observed association. Three short haplotype sites numbered 44, 57 and 72 and corresponding to SNPs T988C, G11812A/rs4154217 and G13708A/rs28359178, respectively, clearly distinguish themselves, with correlation index values of 0.390, 0.324 and 0.318, respectively, whereas the correlation index values of all other sites ranged from −0.270 to −0.101. Table 4 shows the details for these three loci.

Effect quantification
The ALTree method is able to detect an association, but cannot to quantify the associated effect. We estimated the risk of breast cancer for individuals with the T1a1 haplogroup compared with individuals with another T subclade haplogroup in the population of BRCA2 mutation carriers using a more classical statistical method, a weighted Cox regression. We found a breast cancer HR of 0.55 (95% CI, 0.34 to 0.88; \( P = 0.014 \)). We also tested haplogroup T1a1 and compared it with other T* haplogroups and the H haplogroup (the main haplogroup in the general population), and we found a breast cancer HR of 0.62 (95% CI, 0.40 to 0.95; \( P = 0.03 \)).

Discussion
We employed an original phylogenetic analytic method, coupled with more classical molecular epidemiologic analyses, to detect mitochondrial haplogroups differentially enriched for affected BRCA1/2 mutation carriers. We successfully inferred haplogroups for more than 90% of individuals in our dataset. After haplogroup imputation, the ALTree method identified T1a1 in the T clade as differentially enriched in affected BRCA2 mutation carriers, whereas no enrichment difference was found for BRCA1 mutation carriers. The T subclade is present in 4% of African populations compared with 11% in Caucasian and Eastern European populations [43]. In our data, the T subclade represented 9.34% of BRCA1 mutation carriers and 9.30% of BRCA2 carriers. The ALTree method also identified three potential breast cancer susceptibility loci in mtDNA. The main goals of using the phylogenetic method we used were to improve statistical power by regrouping subclades according to genetic considerations, to limit the number of tests performed and to precisely quantify this number. ALTree identified three SNPs of interest. Whereas the association we observed could possibly be driven by a single SNP, no difference was observed between multivariate and univariate cox models including the three SNPs identified by ALTree (data not shown).

In this study, we investigated to what extent mtDNA variability modified breast cancer risk in individuals...
Table 4 Description of loci identified as potential susceptibility sites by ALTree

<table>
<thead>
<tr>
<th>Site</th>
<th>SNP name</th>
<th>Position</th>
<th>Direction of change</th>
<th>Correlated evolution index</th>
<th>Major allele</th>
<th>Minor allele</th>
<th>MAF in pop2</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>MitoT9900C</td>
<td>9,899</td>
<td>T → C</td>
<td>0.390</td>
<td>T</td>
<td>C</td>
<td>0.016</td>
</tr>
<tr>
<td>57</td>
<td>rs41544217</td>
<td>11,812</td>
<td>G → A</td>
<td>0.324</td>
<td>A</td>
<td>G</td>
<td>0.071</td>
</tr>
<tr>
<td>72</td>
<td>rs28359178</td>
<td>13,708</td>
<td>G → A</td>
<td>0.318</td>
<td>G</td>
<td>A</td>
<td>0.111</td>
</tr>
</tbody>
</table>

MAF, Mean allele frequency; pop2, BRCA2 mutation carrier.

carrying pathogenic mutations in BRCA1/2. A large proportion of breast cancer heritability still remains unexplained today [44]. Different methods exist to study genomic susceptibility to a disease, such as linkage analyses (which identified the BRCA1 and BRCA2 susceptibility genes) or genome-wide association studies (GWASs). However, classical linkage analysis cannot be applied to the haploid mitochondrial genome. Furthermore, commercial GWAS chips do not adequately capture the majority of mtDNA SNPs. A non-genome-wide and mtDNA-focused approach was required to explore how mtDNA variability influences breast cancer risk. Here we have shown that BRCA2 mutation carriers with the subclade T1a1 have between 30% and 50% less risk of breast cancer than those with other clades, which, if validated, is a clinically meaningful risk reduction and may influence the choice of risk management strategies.

The association we observed among BRCA2, but not BRCA1, mutation carriers may reveal a functional alteration that would be specific to mechanisms involving BRCA2-related breast cancer. Today, it is established that BRCA1- and BRCA2-associated breast cancers are not phenotypically identical. These two types of tumors do not harbor the same gene expression profiles or copy number alterations [45]. Breast cancer risk modifiers in BRCA1/2 mutation carriers have already been identified [46]. However, most of them are specific from one or the other type of mutation carried [47]. It is therefore not surprising that this observation is observed in BRCA2 mutation carriers only.

Our inability to assign haplogroups to 9% of study participants could have three main explanations. First, given the high mutation rate in the mitochondrial genome, observed combinations of mtDNA SNPs might have appeared relatively recently in the general population, and the corresponding haplotypes might not yet be incorporated into PhyloTree. Second, only one genotyping error could lead to chimeric haplotypes that do not exist, although, given the quality of our genotyping data, this is unlikely. Third, the mitochondrial reference evolutionary tree PhyloTree is based on phylogeny reconstruction by parsimony, and, for some subclades, it might be suboptimal, especially for haplogroups relying on few mitochondrial sequences, as is the case for African haplogroups [48]. In cases of uncertainty, the choice we made to assign the most recent common ancestor to the studied haplotype enabled us to improve statistical power without introducing a bias in the detected association. For the association detected between T, T1* and T2* subclades, the haplogroup inference method used did not bias the counts of affected and unaffected individuals in these subclades. More details are presented in Additional file 6. Furthermore, on the basis of the haplogroup inference with our method of 630 European and Caucasian mtDNA sequences whose haplogroup is known, we successfully assigned the correct main haplogroup and subhaplogroup of 100% of sequences belonging to T, T2* and T1a1* haplogroups.

We quantified the effect corresponding to the detected association by using a more classical approach. We built a weighted Cox regression including inferred haplogroup as an explicative variable. However, the uncertainty in haplogroup inference was not taken into account in this model. Nevertheless, based on haplogroup assignment and regrouping performed in clade T, affected and unaffected counts of individuals in this clade were not biased.

With only 129 loci genotyped over the 16,569 nucleotides composing the mitochondrial genome, we certainly did not explore the full variability of mitochondrial haplotypes. A characterization of individual mitochondrial genomes would require more complete data acquisition methods to be used, such as next-generation sequencing. However, next-generation sequencing has its own limits and challenges, because some regions of the mitochondrial genome are not easily mappable, owing to a high homology with the nuclear genome, among other factors, and important bioinformatics treatment is necessary to overcome sequencing technology biases. Finally, even for a relatively short genome of “only” 16,569 bp, mtDNA sequencing of more than 20,000 individuals would represent a major increase in cost relative to genotyping 129 SNPs.

ALTree identified T9899C, G11812A/rs41544217 and G13708A/rs28359178 as three potential susceptibility sites for the discovered association (see Additional file 7). These three SNPs are located in the coding part of genes MT-CO3, MT-ND4 and MT-ND5, respectively. When looking at PhyloTree, T9899C seems to be involved in T1 subclade definition, whereas G13708A and A11812G are involved in T2 subclade definition. Whereas T98899C and
G11821/rs41544217 are synonymous SNPs, G10398A leads to a change of amino acid in the final protein (from alanine to threonine). These two synonymous SNPs have never been described in a disease context in the literature. G13708A is also known for being a secondary mutation for Leber’s hereditary optic neuropathy (LHON) and multiple sclerosis [49]. Although the role of secondary mutations in LHON is still controversial, G13708A could be associated with impairment of the respiratory chain in this pathology. G13708A has also been described as a somatic mutation in a breast cancer tumor, whereas it was not present in adjacent normal tissue or in blood leukocytes [50]. A high proportion of mitochondrial somatic tumor-specific variants are also known mtDNA SNPs, which is consistent with the hypothesis that tumor cells are prone to acquire the same mutations that segregate into mtDNA by selective adaptation when humans migrated out of Africa and confronted new environments [51]. Interestingly, the germine variant G13708A has already been shown to be inversely associated with familial breast cancer risk (with the same direction of the association), with a breast cancer odds ratio of 0.47 (95% CI, 0.24 to 0.92) [52]. None of these SNPs have been described in the context of ovarian cancer.

The corrected $P$-value obtained using ALTree in studying clade T is 0.02, which is not highly significant. A replication step should be performed to validate these results. However, it will be difficult to include enough women in this replication step, given the specific profile studied here. In fact, the estimations of BRCA2 pathogenic mutations in the general population range from 0.068% [5] to 0.69% [53]. T1a1 represents only a small percentage of European haplogroups (from 1% to 2%). The number of women who have this association is therefore low. However, women carrying such mutations are confronted with drastic choices regarding the prevention of breast cancer, notably prophylactic mastectomy or complete hysterectomy. If breast cancer risk is really reduced by a factor of 2 for women with T1a1, this could be an important fact to take into account for breast cancer prevention.

Conclusions
This study and our results suggest that mitochondrial haplogroup T1a1 may modify the individual breast cancer risk in BRCA2 mutation carriers. For now, this observation cannot be extended to the general population. Further investigation of the biological mechanism behind the associations we observed may further reinforce the hypothesis that the mitochondrial genome is influential in breast cancer risk, particularly among carriers of BRCA2 mutations, and, if validated, is of a level to influence cancer risk management choices.

Additional files

| Additional file 1: | List of ethical committees that approved the access to the data analyzed in this study. |
| Additional file 2: | SNPs selected for downstream analyses. |
| Additional file 3: | Description and results of the procedure used to estimate the accuracy of our haplogroup inference methodology. |
| Additional file 4: | Absolute and relative frequencies of imputed haplogroups by population. Table containing absolute and relative frequencies of imputed haplogroups for BRCA1 and BRCA2 mutation carriers. |
| Additional file 5: | Correlated evolution index for all non-monomorphic sites observed in short haplotype sequences of subclade T. Table containing correlated evolution index for all non-monomorphic sites observed in short haplotype sequences of subclade T. |
| Additional file 6: | Details of haplogroups inference results for subclade T. |
| Additional file 7: | Methods used to compute coevolution index. |

Abbreviations
BCAC: Breast Cancer Association Consortium; CI: Confidence interval; CIBRA: Consortium of Investigators of Modifiers of BRCA1/2; COGS: Collaborative Oncological Gene-environment Study; DSB: Double-strand break; GWAS: Genome-wide association study; HR: Hazard ratio; LHON: Leber’s hereditary optic neuropathy; MAF: Mean allele frequency; mtDNA: Mitochondrial DNA; mtTree: Phylogenetic tree of the mitochondrial genome; OCAC: Ovarian Cancer Association Consortium; pop1: BRCA1 mutation carrier; pop2: BRCA2 mutation carrier; PRACTICAL: Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome; ROS: Reactive oxygen species; RSRS: Reconstructed Sapiens Reference Sequence; SNP: Single-nucleotide polymorphism.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Acknowledgements
Collaborative Oncological Gene-environment Study (COGS): This study would not have been possible without the contributions of the following: Per Hall (COGS); Kyriaki Michalidou, Manjuk Kalia and Qin Wang (Breast Cancer Association Consortium (BCAC)); Rosalind A Eles, Ali Amin Al Olama, Zsophia Kote-Jarai and Sara Benlioch (PRACTICAL); Alison M Dunning, Craig Luczakir, Michael Lush and the staff of the Centre for Cancer Genetic Epidemiology; Simard and Daniel C Tessier, Francois Bacot, Daniel Vincent, Sylvie Laboissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre; and Julie M Cunningham, Sharon A Windebank, Christopher A Hilliker, Jeffrey Meyer and the staff of Mayo Genotyping Core Facility.

Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA): Maggie Angelakos, Judi Maskell, Gillian Dite and Helen Tsimiklis; members of and participants in the New York site of the Breast Cancer Family Registry.
members of and participants in the Ontario Familial Breast Cancer Registry for their contributions to the study; Vilus Rudatis, Laimonas Grinkevičius, Drs Janis Eligis, Anna Kiltova and Aivars Stengrevics; the families who contribute to the BRCA1-gene mutations and breast cancer in South African women (BMBSA) study; Chun Ding and Linda Steele; Alicia Barroso, Rosario Alonso, Guillermo Pita, Alessandra Viel and Lara delta Puupa of the Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy; Laura Papi of the University of Florence, Florence, Italy; Monica Barile of the Istituto Europeo di Oncologia, Milan, Italy; Liliana Vareso of the IRCCS AOI San Martino – IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy; Stefania Tormassu, Brunella Pilato and Rossana Lambo of the Istituto Nazionale Tumori “Giovanni Paolo II” – Bari, Italy; Aline Martayan of the Istituto Nazionale Tumori Regina Bena, Rome, Italy; Maria Grazia Tibilitti of the Ospedale di Circolo Università dell’Insubria, Varese, Italy; and the personnel of the Cogentech Cancer Genetic Test Laboratory, Milan, Italy.

**Epidemiological Study of BRCA1 and BRCA2 Mutation Carriers (EMBRACE):** coordinating center, Cambridge, UK: Debra Frost, Steve Ellis, Elena Fineberg and Radka Platte; North of Scotland Regional Genetics Service, Aberdeen, UK; Zsuzsa Leeb; Northern Ireland Regional Genetics Service, Belfast, UK; Patrick Morrison and Lisa Jeffer; West Midlands Regional Clinical Genetics Service, Birmingham, UK; Trevor Cole, Kai-ren Ong and Jonathan Hoffman; South West Regional Genetics Service, Bristol, UK; Alan Donaldson and Margaret James; East Anglian Regional Genetics Service, Cambridge, UK; Marc Tischkowitz, Joan Paterson and Amy Taylor; Medical Genetic Services, Cardiff, UK; Alexandra Murray, Mark T Rogers and Emma McCann; St James’s Hospital, Dublin, and National Centre for Medical Genetics, Dublin, Ireland: M. John Kennedy and David Barton; South East of Scotland Regional Genetics Service, Edinburgh, UK; Mary Porteous and Sarah Drummond; Peninsula Clinical Genetics Service, Exeter, UK; Carole Brewer, Emma Kivuva, Anne Searle, Selina Goodman and Kathryn Hill; West of Scotland Regional Genetics Service, Glasgow, UK: Rosemary Davidson, Victoria Murray, Nicola Bradshaw, Lesley Snaddon, Mark Longmuir, Catherine Watt, Sarah Gibson, Eishika Haque, Ed Tobias and Alexs Duncan; South East Thames Regional Genetics Service, Guy’s Hospital London: Louise Izatt, Chris Jacobs and Caroline Langman; North West Thames Regional Genetics Service, Harrow, UK: Huw Dorkins; Leicestershire Clinical Genetics Service, Leicester, UK: Julian Banwell; Yorkshire Regional Genetics Service, Leeds, UK: Julian Adlard and Gemma Serra-Fellu; Cheshire & Merseyside Clinical Genetics Service, Liverpool, UK; Ian Ellis and Catherine Houghton; Manchester Regional Genetics Service, Manchester, UK: D Gareth Evans, Fiona Laloo and Jane Taylor. North East Thames Regional Genetics Service, NE Thames, London: Lucy Side, Alison Male and Cheryl Berlin; Nottingham Centre for Medical Genetics, Nottingham, UK: Jacqueline Eason and Rebecca Collier; Northern Clinical Genetics Service, Newcastle, UK: Fiona Douglas, Oonaq Gaber and Irene Jobson; Oxford Regional Genetics Service, Oxford, UK: Lisa Walker, Diane McLeod, Dorothy Halliday, Sarah Durell and Barbara Stayner; The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London: Ros Eeles, Susan Shanley, Nazneen Rahman, Richard Houlston, Elizabeth Bancroft, Elizabeth Page, Audrey Ardem-Jones, Kelly Kohut, Jennifer Wiggins, Elena Castro, Emma Killick, Sue Martin, Gillian Rea and Anjana Kulkarni; North Trent Clinical Genetics Service, Sheffield, UK: Jackie Cook, Oliver Quarral and Kathryn Bardsley; South West Thames Regional Genetics Service, London: Shirley Hodgson, Sheila Goff, Glen Brice, Lizze Winchesthe, Charlotte Eddy, Vishalika Tripathi, Virginia Attard and Anna Lehmann; Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK: Diana Eccles, Anne Lyras, Ben Goff, Gillian Crawford, Donna Mekdizian and Sarah Smalley; and JoEllen Weaver and Dr Betsy Bove for their technical support.

**Genetic Modifiers of Cancer Risk in BRCA1/2 Mutation Carriers (GEMO) study:** National Cancer Genetics Network UCNCancer Genetic Group, France; GEMO Collaborating Centers: coordinating centers, Unité Mixte de Génétique Constituante des Cancers Fœtiques, Hospices Civils de Lyon – Centre Léon Bérard, and équipe Génétique du cancer du sein, Centre de Recherche en Cancérologie de Lyon; Olga Sinilnikova, Sylvie Mazoyer, Francesca Damilola, Laure Barjoux, Carole Verny-Prélet, Alain Calender, Sophie Giraud and Mélanie Léoné; and Service de Génétique Oncologique, Institut Curie, Paris: Dominique Stoppa-Lyonnet, Marion Gauthier-Villars, Bruno Buecher, Claude Houdayer, Virginie Moncoutier, Muriel Belotti, Carole Tirapo, Antoine de Pauw; Institut Gustave-Roussy, Villejuif, France: Frédérique Bresc-Baumann and Olivier Caron; Centre Jean Perrin, Clermont-Ferrand, France: Yves-Jean Bignon and Nancy Uhrhammer; Centre Léon Bérard, Lyon, France: Christine Lasset, Valérie Bonadona and Sandrine Handallou; Centre Français Baclesse, Caen, France: Agnès Hardouin and Pascaleine Berthe; Institut Paoli Calmettes, Marseille, France: Hagay Sobol, Violaine Bourdon, Tetsuro Noguchi, Audrey Remenieras and François Esiriger; Centre Hospitalier Régional Universitaire Arnaud-de-Villeneuve, Montpellier, France: Isabelle Couperie and Pascal Pujol; Centre Oscar Lambret, Lille, France: Jean-Philippe Peyrat, Joëlle Fournier, François Révillou, Philippe Vennin and Claude Aderin; Hospital René Huguenin, Institut Curie, Saint-Cloud, France: Etienne Rouleau, Rosette Lidereau, Liliane Demange and Catherine Nogues; Centre Paul Strauss, Strasbourg, France: Danielle Muller and Jean-Pierre Fricker; Institut Bergonie, Bordeaux, France: Emmanuelle Barouk-Simonet, Françoise Bonnet, Virginie Bubien, Nicolas Sevnen and Michel Longy; Institut Claudius Regaud, Toulouse, France: Christine Toulou, Rosine Guimbaud, Laurent Gladieff and Viviane Feille; Centre Hospitalier Universitaire de Grenoble, Grenoble, France: Dominique Leroux, Hélène Dreyfus, Christine Rebischung and Magalie Peyssalon; Centre Hospitalier Universitaire de Dijon, Dijon, France: Fanny Conor and Laurence Faivre; Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France: Fabienne Prieur, Marine Lebrun and Caroline Kientz. Hôpital Dieu Centre Hospitalier, Chambéry, France: Sandra Fert Ferrer, Centre Antoine Lacassagne, Nice, France: Marc Fréray, Centre Hospitalier Universitaire de Lille, Lille, France: Marie-Agnès Collonge-Rame and Alexandre Damette, Creighton University, Omaha, USA; HE, USA: Henry T Lynch and Carrie L Snyder; the technical support of Ise Coene en Brecht Crombe; and the investigators of the Australia New Zealand Gynaecological Oncology Group (ANZOG). We acknowledge Alicia Tosar for her technical assistance; Taru A Musunen, Drs Carl Blomqvist and Kirsani Aaltonen, and registered nurses Ija Ekkilä and Virpi Palos for their help with the Helsinki Breast Cancer Study (HERCS) data and samples.

The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON): collaborating centers: Netherlands Cancer Institute, Amsterdam: MA Rookoo, FBL Hogervorst, FE van Leeuwen, S Verhoef, MK Schmidt, JL de Lange and R Wijnhoud; Erasmus Medical Center, Rotterdam, the Netherlands: JM Collée, AMM van den Ouwel, M Hoonking, C Seynave, CHM van Deurzen and IM Obdeijn; Leiden University Medical Center, Leiden, the Netherlands: CJ van Asperen, JT Winjien, RAEM Tollenaar, PD Fleeve and TCTEF van Cronenburg; Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands: CM Kets and AR Mensenkamp; University Medical Center Utrecht, Utrecht, the Netherlands: MEGM Aumes and RB van der Luiit; Amsterdam Medical Center, Amsterdam: CM Aals and TAM van Os; VU University Medical Center, Amsterdam: JIP Gille, Q Waistiz and HEJ Meijers-Heijboer; University Hospital Maastricht, Maastricht, the Netherlands: EB Gómez-Garcia and MJ Blok; University Medical Center Groningen, Groningen, the Netherlands: JC Oosterwijk, AH van der Hout, MJ Mounts and GH de Bock; The Netherlands Foundation for the Detection of Hereditary Tumors, Leiden, the Netherlands: HF Vassen; The Netherlands Cancer Registry: S Siesling; The Dutch Pathology Registry (PALGA): LJH Overbeek; Hong Kong Sanatorium & Hospital for their continual support; Janos Papp, Tibor Vaszkó, Aniko Bozik, Timea Pozo, Judit Franko, Maria Balogh, Gabriella Domokos, Judit Ferenczi (Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study; The Oncogenetics Group and the High Risk and Cancer Prevention Unit of the University Hospital Vall d’Hebron, Barcelona, Spain, led by Dr J Balmaña; the ICO Hereditary Cancer Program team led by Dr Gabriel Capella; Dr Martine Dumont and Martine Tranchant for sample management and skilful technical assistance; JS and PS were part of the quality control and genotyping coordinating group of iCOGS (BCAC and CIMBA); Drs Ana Periotxo, Catarina Santos, Patricia Rocha and Pedro Pinto for their skillful contributions to the study; Heather Thorne, Eveline Niedermayr, all the KConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the clinical follow-up study (which has received funding from the National and Health Medical Research Council (NHMRC), the National Breast Cancer Foundation, Cancer Australia and the National Institutes of Health (Bethesda, MD, USA) for their contributions to this resource; and the many families who contribute to the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (KConFab); Lenka Foretova and Eva Machackova (Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, and the Medical Faculty, Masaryk University, Brno, Czech Republic).
Czech Republic); Michal Zikan, Petr Pohlereich and Zdenek Klebl (Oncogynecologic Center and Department of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic); Anne Lincoln and Lauren Jacobs; the National Israeli Cancer Control Center (NICC) National Familial Cancer Consultation Service team led by Sara Dishon; the laboratory team led by Dr Flavio Leblakovics; and the research field operations team led by MiaPinchev; members and participants in the Ontario Cancer Genetics Network for their contributions to the study. Leigha Senter, Kevin Sweet, Caroline Caven and Michelle O’Connor were instrumental in accrual of study participants, ascertainment of medical records and database management; The Ohio State University Human Genetics Sample Bank; the Merav Breast Center team at the Sheba Medical Center, Åke Borg, Håkan Olsson, Helena Jerntorp, Karin Hennerström, Katja Harbst, Maria Soller and UK Kristoffersson; Sahlgrenska University Hospital, Gothenburg, Sweden: Anna Överholm, Margareta Nording, Per Karfsson and Zakaria Einberg, Stockholm and Karolinska University Hospital, Stockholm: Anna von Wachenfeld, Annelie Liljegren, Annika Lindblom, Brita Arver, Gisela Barbany Buxitza and Johanna Ranttala; Umé University Hospital, Uméå, Sweden: Beatrice Melin, Christina Edwinsdotter Ardor and Monica Emanuelsson; Uppsala University, Uppsala, Swede, on behalf of the Swedish Breast Cancer Study (CBCS) was supported by the NEYE Foundation; the Mathilda Foundation; The Finska Vetenskapsakademiens Allmänna Stiftelse; the Swedish Cancer Society; the Leksell Foundation; Marcus Lindeman, Richard Rosenquist; Linköping University Hospital, Linköping, Sweden: Marie Stenmark-Aksamih and Sigrun Liedgren; Cecilia Zvocer, Qin Niu, and physicians, genetic counselors, research nurses and staff of the Comprehensive Cancer Risk and Prevention Clinic of University of Chicago Medicine, Chicago, IL, USA, for their contributions to this resource; Joyce Selden, MS, and Lorna Kwan, MPH; Dr Robert Nussbaum and the following genetic counselors: Beth Crawford, Kate Loranger, Julie Mak, Nicola Stewart, Robin Lee, Annie Blanco and Peggy Conrad; Salina Chan; Paul DP Pharoah, Simon Gayther, Susan Ramos, Carole Pye, Patricia Harrington and Eva Wozniak for their contributions to the UK Familial Ovarian Cancer Registry (UFOCR); Geoffrey Lindeman, Marion Harris, Martin Delatycki of the Victorian Familial Cancer Trials Group; and Sarah Sawyer, Rebecca Diesen and Ella Thompson.

Funding

Higher-level funding: The COGS project is funded through a European Commission Seventh Framework Program grant (agreement number 223175: HEALTH-F2-2009-223175). The COGB data management and data analysis were supported by Cancer Research UK grants C12292/A11174 and C1287/A10118. SH is supported by a National Health and Medical Research Council (NHMRC) program grant (to GCT).

Individual researcher support: ACA is a Cancer Research UK Senior Cancer Research Fellow (C12292/A11174). DFE is a Principal Research Fellow of Cancer Research UK GC; MCS and IC are supported by the National Health and Medical Research Council (NHMRC). BK holds an American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN). MHG and PLM were supported by funding from the Intramural Research Program of the National Cancer Institute, National Institutes of Health. OIO is an American Cancer Society Clinical Research Professor. JS is Chairholder of the Canada Research Chair in Oncogenetics.

Funding of constituting studies: The Breast Cancer Family Registry (BCFR) was supported by grant U11 CA164920 from the National Cancer Institute, National Institutes of Health. The content of this article does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the BCRF, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government or the BCRF. The Baltic Familial Breast Ovarian Cancer Consortium (BFBCOC) is partly supported by Lithuania (BFBCOC-LT); Research Council of Lithuania grant LIG-07/2012; BFBCOC-LV (Latvia) is partly supported by LSC grant 10.0012.1/08 and in part by a grant from the European Social Fund number 2009/020/1DP/1.1.2.0/09/APIA/010/016 and the Liepāja City Council, Liepāja, Latvia; Beth Israel Deaconess Medical Center Cancer Center is supported by the Breast Cancer Research Foundation; BRCA-gene mutations and breast cancer in South African women (WBMSA) was supported by grants from the Cancer Association of South Africa (Cansa) to Elizabeth J van Rensburg; SLN (Bekman Research Institute, City of Hope, Duarte, CA, USA) was partially supported by the Morris and Horowitz Families Professorship in Cancer Etiology and Outcomes Research; the Copenhagen Breast Cancer Study (EBCS) was supported by the NEYE Foundation; the Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncológicas (CNIO)) was partially supported by the Spanish Association against Cancer (Asociación Española Contra el Cáncer AECC08), Thematic Network Cooperative Research in Cancer (Red Temática Investigación Cooperativa en Cáncer (RTICC), Centro de Investigación Cáncer, Salamanca, Spain) RTICC 06/0020/106, Spanish Ministry of Science and Innovation grants FIS PI08 1120 (Fondo de Investigación Sanitaria (FIS)) and SAF2010-20493, and the Fundación Mutua Madrileña (FMM); the City of Hope Clinical Cancer Genetics Community Network and the Hereditary Cancer Research Group (CON-CGOGN), supported in part by award number RC4A153828 (Principal Investigator: JMM) from the National Cancer Institute and the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CONsortio Studi Italiani sui Tumori Ereditari Alla Mammella, Italy (CONSIT Team): Funds from Italian citizens who allocated the “5 x 1,000” share of their tax payment in support of the Fondazione RCEG (Istituto Nazionale Tumori), according to Italian laws (Istituto Nazionale dei Tumori (INT) institutional strategic project “5 x 1,000”) (to SM); the Italian Association for Cancer Research (ARCI) (to LO); National Centre for Scientific Research “Demokritos” has been cofinanced by the European Union (European Social Fund (ESF)) and Greek national funds through the “Education and Lifelong Learning” operational programme of the National Strategic Reference Framework (NSRF) – Research Funding Program of the General Secretariat for Research and Technology: ARISTEIA; “Heraclito II: Investing in knowledge society through the European Social Fund”; the DFKZ study was supported by the Deutsches Krebsforschungszentrum (DKFZ); Epidemiological Study of BRCA1 and BRCA2 Mutation Carriers (EMBRACE) is supported by grants C1287/A11190; DGE and FL are supported by a National Institute for Health Research (NIHR) grant to the Biomedical Research Centre, Manchester, UK, the investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London; RE and EB are supported by Cancer Research UK grant CS047/A8385; Kansas University Medical Center. The authors acknowledge support from The University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program; AKG was funded by grants 5U01 CA113916 and R01 CA140323 and by the Chancellors Distinguished Chair in Biomedical Sciences Professorship; The German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC) is supported by German Cancer Aid (grant 109076) (to RKS) and by the Center for Molecular Medicine Cologne (CMMC); GC-HBOC is deeply grateful to Dr Sabine Preisler-Adam for providing information and samples; the GEMO Study was supported by the Ligue Nationale contre le Cancer, the Association “Le cancer du sein, parlons-en!” Award; and the Canadian Institutes of Health Research for the CIHR Team in Familial Risks of Breast Cancer program; G-FAST: KDL is supported by GOA grant BOF10/GOA/019 (Ghent University) and spearhead funding of Ghent University Hospital; the Gynecologic Oncology Group (GOG) was supported by National Cancer Institute grants to the GOG Administrative Office and Tissue Bank (grant CA 27469), the GOG Statistical and Data Center (grant CA 37517) and GOG’s Cancer Prevention and Control Committee (grant CA 101169); HSCC was supported by grants R01/00369/00016 and 12/00339 from Instituto de Salud Carlos III (ISCIII), Madrid, Spain, partially supported by European Regional Development Fund (Fonds européen de développement régional (FEDER) funds; the Helsinki Breast Cancer Study (HEBCS) was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society and the Sigrid Juselius Foundation; HEBON is supported by the Dutch Cancer Society grant NK01999-1954; NK0204-3088 and NK0207-3756, the Netherlands Organization of Scientific Research grant NWO 11090024, the Pink Ribbon grant 110005 and Biobanking and Molecular Resource Infrastructure (BBMRI) grant NWO 184.021.007/CP46; HEBON thanks the registration teams of the Comprehensive Cancer Centre Netherlands and Comprehensive Centre South (together the Netherlands Cancer Registry) and PALGA (Dutch Pathology Registry) for part of the data collection, the High Risk Breast Cancer Program (HRBPC) is supported by the Hong Kong Hereditary Breast Cancer Family Registry and the Dr Ellen Li Charitable Foundation, Hong Kong; the Hungarian Breast and Ovarian Cancer Study (HUNBOCS) was supported by Hungarian Research and Technological Innovation Fund (KTIA)/Hungarian Scientific Research Fund (Oszlánus Tudományos Kutatási Alapprogramok (OTKA) research grants KTIA-OTKA CK-08745 and KTIA-OTKA K-12228); Institut Català d’Onkologia (ICO): contract grant sponsor: Asociación Española Contra el Cáncer, Spanish Health Research Foundation; Ramón Areces Foundation; Instituto de Salud
Carlos III (ISCIII), Catalon Health Institute; and Autonomous Government of Catalonia; contract grant numbers ISCIII/RETIC RD06/0020/1051, P09/02483, P110/01422, P110/00748, P113/00285, P113/00189 2009GR290 and P113/00189 2009GR283; the International Hereditary Cancer Center (Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland) was supported by grants from the Polish National Science Center (521022, 2009-2010); Landspitali – The National University Hospital of Iceland was supported by the Icelandic Association “Walking for Breast Cancer Research” and by the Landsfélfi University Hospital Research Fund; the Interdisciplinary Health Research Internal Team Breast Cancer Susceptibility Study (INHERIT) was supported by the Canadian Institutes of Health Research (CIHR) for the “CIHR Team in Familial Risks of Breast Cancer” program, Canadian Breast Cancer Research Alliance grant 019511 and Ministry of Economic Development, Innovation and Export Trade grant PSR-SIRI-701; the Instituto Oncológico Veneto Hereditary Breast and Ovarian Cancer Study (IOV-HBOCS) is supported by the Ministero della Salute and a “$ × 1,000” Instituto Oncologico Veneto grant; the Portuguese Oncology Institute–Porto Breast Cancer Study (IPBCS) was supported in part by Liga Portuguesa Contra o Cancro, KcimFoi is supported by a grant from the National Cancer Institute, the Norwegian Research Council (CA116201), a US Department of Defense Ovarian Cancer Idea award (WB1XWHM-10-1-3341), a grant from the Breast Cancer Research Foundation, a generous gift from the David F and Margaret T Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation; McGill University Jewish General Hospital Weekend to End Breast Cancer, Québec Ministry of Economic Development, Innovation and Export Trade; Modifier Study of Quantitative Effects on Disease (ModSeqUAD) was supported by the Ministry of Health of the Czech Republic to Maxaryk Memorial Cancer Institute (MH CZ – DRO) (MMC 00209805) and by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) (to LF), and by Charles University in Prague project ÚNCE204024/02 (M2); Memorial Sloan Kettering Cancer Center (MSKCC) was supported by grants from the Breast Cancer Research Foundation and Robert and Kate Niehaus Clinical Cancer Genetics Initiative; National Cancer Institute, National Institutes of Health: The research of MHG and PLM was supported by the Intramural Research Program of the National Cancer Institute and by support services contracts N02-CP-11019-50 and N02-CP-65504 with Westat, Inc. Rockville, MD, USA; the National Israeli Cancer Control Center (NICCC), an NCI Specialized Program of Research Excellence (SPORE) was supported by the Israel Cancer Association and the Breast Cancer Research Foundation (BCRF), New York, NY, USA; NN Petrov Institute of Oncology has been supported by the Russian Federation for Basic Research (grants 11-04-00227, 12-04-00928 and 12-04-01490) and the Federal Agency for Science and Innovations, Russia (contract 02.740.11.0780). The Ohio State University Clinical Cancer Genetics (OSUCGC) is supported by the Ohio State University Comprehensive Cancer Center, the Pisa Breast Cancer Study (PBCS) was supported by Istituto Toscano Tumori (ITT) grants 2011–2013. Sheba Medical Center was partially funded through a grant from the Israeli Cancer Association and funding for the Israeli Inherited Breast Cancer Consortium, the Swedish Breast Cancer Study collaborators were supported by the Swedish Cancer Society; The University of Chicago was supported by an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142906 and 1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Fund National Women’s Cancer Research Alliance and the Breast Cancer Research Foundation; University of California, Los Angeles Jonsson Comprehensive Cancer Center Foundation Breast Cancer Research Foundation; University of California, San Francisco Cancer Risk Program and Helen Diller Family Comprehensive Cancer Center; UK Familial Ovarian Cancer Registry (UKFOCR) was supported by a project grant from Cancer Research UK (to Paul DP Pharoah); the University of Pennsylvania: National Institutes of Health (NIH) grants R01 CA102776 and R01 CA083855; the Breast Cancer Research Foundation; the Susan G Komen for the Cure, Basser Center for BRCA; Victorian Familial Cancer Trials Group (VFCGT); Victorian Cancer Agency, Cancer Australia, National Breast Cancer Foundation; The Women’s Cancer Program (WCP) at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, is funded by the American Cancer Society Early Detection Professorship (SIO-P-06-258-01-COUN).

GEMO Study: National Cancer Genetics Network UNICANCER Genetic Group, France.

The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) coordinating center: Netherlands Cancer Institute, Amsterdam.

Author details
1INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France. 2université de Lyon, 69000 Lyon, France. 3Univ Lyon 1, 69100 Villeurbanne, France. 4UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive (LBBE), “Biométrie et Biologie Évolutive”, Université Claude Bernard Lyon 1, Bâtiment Géorger Mendel, 15 boulevard du 11 novembre 1918, 69622 Villeurbanne, cedex, France. 5Université Grenoble Alpes, UMR 5217, Laboratoire d’Informatique de Grenoble (LIG), équipe-projet Multi-programmation et Ordonnancement sur ressources pour les Applications Interactives de Simulation (MOAIS), 38041 Grenoble, France. 6INRA Rhône-Alpes, équipe-projet MOAIS, 38334 Saint Ismier, Cedex, France. 7New York State Cancer Genetics Unit and Primary Care, University of Cambridge, Cambridge, UK. 8Department of Genetics and Computational Biology, QIMR Berghofer, Brisbane, Australia. 9Centre de recherche du Centre hospitalier universitaire de Québec, Laval University, Charlesbourg, PQ, Canada. 10Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA. 11Department of Pediatrics, Columbia University, Breast Cancer Research Institute, New York University College of Physicians and Surgeons, New York, NY, USA. 12Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA. 13Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA. 14Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA. 15Department of Epidemiology, Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA 94538, USA. 16Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania. 17Department of Molecular and Regenerative Medicine, Centre for Innovative Medicine, State Research Institute, Vilnius, Lithuania. 18Latvian Biomedical Research and Study Centre, Rātsupes iela 1, Riga LV-1067, Latvia. 19Division of Hematology Oncology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Shapiro 9, Boston, MA 02215-5400, USA. 20Department of Genetics, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa. 21Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA. 22Division of Clinical Genetics, Righi hospitalet, Copenhagen University Hospital, Copenhagen, Denmark. 23Department of Oncology, Righi hospitalet, Copenhagen University Hospital, Copenhagen, Denmark. 24Center for Genomic Medicine, Righi hospitalet, Copenhagen University Hospital, Copenhagen, Denmark. 25Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain. 26Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain. 27Medical Oncology Service, Hospital Clinico Universitario Lozano Blesa, Avenida San Juan Bosco, 15, 50009 Zaragoza, Spain. 28Holy Cross Hospital, Michael and Dianne Bienes Comprehensive Cancer Network Center, Fort Lauderdale, FL, USA. 29Division of Clinical Cancer Genetics, City of Hope (for the Clinical Cancer Genetics Community Network), City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA. 30Clinical Genetics, Righi hospitalet, Copenhagen University Hospital, Copenhagen, Denmark. c/o Clinical Cancer Genetics Community Network Research, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA. 31Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy. 32Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale dei Tumori (INT), Via Venezian 1, 20133 Milan, Italy. 33Cogenentx Cancer Genetic Test Laboratory, Via Adamello 16, 20139 Milan, Italy. 34Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico (CRO), Via Franco Gallini 2, 33081 Aviano, Italy. 35Division of Cancer Prevention and Genetics, Instituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy. 36Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale dei Tumori (INT), Via Venezian 1, 20133 Milan, Italy. 37Unit of Hereditary Cancer, Department of Epidemiology.
Prevention and Special Functions, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliera Universitaria “San Martino” di Genova, IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, 10, 16132 Genoa, Italy. 43FiorGen Foundation for Pharmacogenomics, Via Luigi Sacco 6, 20019 Sesto Fiorentino, Italy. 44Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical Sciences of Florence, Florence, Italy. 45Department of Molecular Medicine, Sapienza University, Rome, Italy. 46Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece. 47Molecular Diagnostics Laboratory, INRATES, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi Attiki, Athens, Greece. 48Piana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. 49Molecular Genetics of Breast Cancer, Deutsches Krebszentrum, Berlin, Germany. 50Clinical Genetics Department, St Michael’s Hospital, Southwell Street, Bristol BS2 8EG, UK. 51North West Thames Regional Genetics Service, Kennedy-Galton Centre, Harrow, UK. 52Department of Clinical Genetics, Royal Devon & Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK. 53Menessey and Cheshire Clinical Genetics Service, Liverpool Women’s NHS Foundation Trust, Aintree Hospital, Liverpool L9 7LJ, UK. 54Manchester Regional Genetics Service, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 55Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK. 56Faculty of Medicine, University of Southampton, Southampton University Hospitals NHS Trust, Nightingale Way, Southampton SO16 6YD, UK. 57Institute of Human Genetics, Northern Genetic Service, International Centre for Life, Newcastle upon Tyne Hospitals NHS Trust, Central Parkway, Newcastle upon Tyne NE1 4EP, UK. 58Sheffield Clinical Genetics Service, Sheffield Children’s Hospital, Sheffield, UK. 59Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Old Medical School, Leeds LS9 7AL, UK. 60Leicestershire Clinical Genetics Service, Department of Clinical Genetics, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK. 61Oxford Regional Genetics Service, Churchill Hospital, Old Road, Headington, Oxford OX3 7EL, UK. 62Clinical Genetics Service, Guy’s and St Thomas’ NHS Foundation Trust, 7th Floor, Borough Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK. 63North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, Barlby House, 37, Queen Square, London WC1N 3BH, UK. 64Academic Unit of Clinical and Molecular Oncology, Trinity College Dublin, Dublin, Ireland. 65Medical Oncology Service, St James’s Hospital, James’s Street, Dublin 8, Ireland. 66Department of Clinical Genetics, East Anglian Regional Genetics Service, Addenbrooke’s Hospital, Level 6, Addenbrooke’s Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK. 67All Wales Medical Genetics Service, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK. 68South East Scotland Regional Genetic Service, Western General Hospital, David Brock Building, Crewe Road South, Edinburgh EH4 2XU, UK. 69Centre for Cancer Research & Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK. 70Department of Medical Genetics, St George’s University of London, Cranmer Terrace, London SW7 2UE, UK. 71West Midlands Regional Genetics Service, Birmingham Women’s Hospital Healthcare NHS Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TG, UK. 72Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA. 73Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20057, USA. 74Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium. 75Division of Tumor Genetics, Department of Gynaecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany. 76Center of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institut für Humangenetik, Bozemann, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. 77Center for Hereditary Breast and Ovarian Cancer, Medical Faculty, Center for Integrated Oncology (CIO) Cancer Center Cologne, University Hospital Cologne, Cologne, Germany. 78Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany. 79Department of Human Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany. 80Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany. 81Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany. 82Institute of Cell and Molecular Pathology, Centre for Pathology and Forensic and Genetic Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany. 83Institute of Human Genetics, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, D-24105 Kiel, Germany. 84Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus of Dresden, Technical University Dresden, Dresden, Germany. 85Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, D-24105 Kiel, Germany. 86Department of Medical Genetics and Human Genetics, Campus Virchow-Klinikum, Charité Berlin – Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. 87German Consortium of Hereditary Breast and Ovarian Cancer (GC-BBOC), Cologne, Germany. 88Institute of Human Genetics, University Hospital Münster, Vesselsweg 12-14, 48149 Münster, Germany. 89Department of Obstetrics, University of Nottingham, Queen’s Medical Centre, Nottingham University Hospitals, NG7 2UH, UK. 90Hospital of Ulm, Ulm, Germany. 91Department of Tumour Biology, Institut Curie, 26 rue d’Ulm 75248, Paris cedex 05, France. 92Unité de Prévention et d’Épidémiologie Génétique, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France. 93Génétique Clinique, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043, Grenoble cedex 9, France. 94Institut Albert Bonniot – Inserm U823, Université Joseph Fourier, Rond-point de la Croix Rousse, 38051, South Africa. 95Academic Unit of Oncogenetics, Hôpital René Huguenin, Institut Curie, 35 rue Daily, 92210 Saint-Cloud, France. 96Department d’Oncogénétique, Centre Jean Perrin, Université de Clermont-Ferrand, 58 rue Montaigut, BP 392, 63011 Clermont-Ferrand, France. 97Gynaecological Oncology, Sydney Cancer Centre, Royal Prince Alfred Hospital and University of Sydney, Missenden Road, Camperdown, NSW 2050, Australia. 98Gynecologic Oncology Group, Department of OB/GYN, University of North Carolina at Chapel Hill, 103B Physicians’ Office Building, CB 7572, Chapel Hill, NC 27599-7572, USA. 99Gynecologic Oncology Group Statistical and Data Center, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA. 100Women & Infants Hospital, 1 Blackstone Place, Providence, RI 02905, USA. 101Molecular Oncology Laboratory, Health Research Institute of the San Carlos Clinical Hospital (BIDSC), 28040 Madrid, Spain. 102Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Biomedical Helsinki, PO Box 700, 00229 Helsinki, Finland. 103Department of Clinical Genetics, Helsinki University Central Hospital, Biomedicum Helsinki, 1 Haartmaninkatu 8, 00290 Helsinki, Finland. 104Department of Medical Oncology, Family Cancer Clinic, Erasmus University Medical Center, PO Box: 2040, 3000 CA, Rotterdam, the Netherlands. 105Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, the Netherlands. 106Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands. 107Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands. 108Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands. 109Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, the Netherlands. 110Department of Clinical Genetics, VU University Medical Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands. 111Department of Genetics, University Medical Center, Groningen, the Netherlands. 112Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands. 113Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, S4-P PO Box 9600, 2300 RC, Leiden, the Netherlands. 114Department of Clinical Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, S4-P PO Box 9600, 2300 RC, Leiden, the Netherlands. 115VU University Medical Center, PO Box 8126, 1081 EV Amsterdam, the Netherlands. 116Department of Clinical Genetics, Dutch Cancer Institute, Amsterdam, the Netherlands. 117Department of Molecular Genetics, National Institute of Oncology, Ráth György u 7-9, PO Box 1525 Budapest Pf 21112 Budapest, Hungary. 118Oncogenetics Group, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, Institut de recerca i Sanitat Universitaria (I3S) and Universitat Autònoma de Barcelona, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain. 119Genetic Counseling Unit, Hereditary Cancer Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL)-Catalan Institute of Oncology, Hospital Duran i Reynals, 3a planta - Gran Via de l’Hospitalet, 199, 08008 Hospitalet de Llobregat, Barcelona, Spain. 120Molecular Diagnostic Unit, Hereditary Cancer Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL)-Catalan Institute of Oncology, Hospital Duran i Reynals, 3a planta - Gran Via de l’Hospitalet, 199, 08008 Hospitalet de Llobregat, Barcelona, Spain. 121Department of Genetics and Pathomorphology, Faculty of Medicine and Dentistry, Pompeian Medical
University, al Powstaniec 77/2, 70-111 Szczecin, Poland. 144. Lansdown Hospital National University of Ireland and Faculty of Medicine, School of Health Sciences, University of Iceland, School of Medicine, Sæmundargøtu 2, 101 Reykjavik, Iceland. 145. Laboratoire de diagnostique génétique et Service d’Onco-hématologie, Les Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 place de l’Hôpital, BP 426, 67091 Strasbourg, France. 146. Department of Surgical Sciences, Oncology and Gastroenterology, Padua University, Clinical Surgery IL, via Giustianni 2, 35124 Padua, Italy. 147. Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV) – Istituto di Ricostruzione e Cura di Canestrali Scientifico (IRCCS), via Gattamelata 64, 35128 Padua, Italy. 148. Department of Genetics, Portuguese Oncology Institute (IPO-PORTO), Edifício dos Laboratórios, piso 6, 4200-072 Porto, Portugal. 149. Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Vítorio Ferreira 228, 4050-313 Porto, Portugal. 150. Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, 546 Pine Avenue West, Montreal, QC J0E 1W6, Canada. 151. Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. 152. Department of Health Sciences Research, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA. 153. Cleveland Clinic Research Institute, National Institutes of Health, Building 31, Room 4809, 31 Center Drive, MSC 2152, 9000 Rockville Pike, Bethesda, MD 20892-2152, USA. 154. Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. 155. Clinical Genetics Research Laboratory, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. 156. Department of Obstetrics and Gynecology, Comprehensive Cancer Center Vienna, Medical University of Vienna, Universitätsklinik für Frauenheilkunde, AKH – Wien, Währinger Gürtel 18-20, 1090 Vienna, Austria. 157. Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 158. National Israeli Cancer Control Center and Department of Community Medicine and Epidemiology, Clalit Health Services Carmel Medical Center, Haifa, Israel. 159. Noble and Ruth B.Rapaport Faculty of Medicine, Technion – Israel Institute of Technology, 2 Horev Street, 34362 Haifa, Israel. 160. National Petrov Institute of Oncology, 68 Leningradskaya Street, Pesochny 19755 Lyon, Cedex 08, France. 161. Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada. 162. Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael’s Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada. 163. Ontario Cancer Genetics Network, Cancer Care Ontario, 620 University Avenue, Toronto, ON M5G 2L7, Canada. 164. Lund University Hospital, Lund, Sweden. 165. Umeå University, Umeå, Sweden. 166. University of Connecticut, School of Medicine, Farmington, CT 06030, USA. 167. University of Copenhagen, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Box 580, Uppsala, Sweden. 168. Center for Cancer Genetics and Global Health, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA. 169. Department of Medicine and Genetics, University of California, San Francisco, CA, USA. 170. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Norris Comprehensive Cancer Center, NOR-4435, Los Angeles, CA 90089-9715, USA. 171. Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Suite 750, Philadelphia, PA 19104-3309, USA. 172. Department of Epidemiology and Biostatistics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Suite 750, Philadelphia, PA 19104-3309, USA. 173. Division of Cancer Medicine, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, PO Box 301439, Houston, TX 77230-1439, USA. 174. Sir Peter MacCallum Department of Oncology, Familial Cancer Centre, Peter MacCallum Cancer Centre, level 3, 3 St Andrews Place, East Melbourne, VIC 3002, Australia. 175. Sir Peter MacCallum Department of Oncology, The University of Melbourne, level 5, 161 Barry Street, Parkville 3010 VIC, Australia. 176. Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. 177. Service de génétique oncologique, Institut Curie, Inserm U830, 26 rue d’Ulm, 75248 Paris, France. 178. Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l’Hôpital de médecine, 75006 Paris, France. 179. Génétique médicale, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon, Cedex 08, France. 180. Institut National du Cancer (INCa), La Fondation Synergie Lyon Cancer, Centre Léon Bérard, 28 rue Lainénc, 69008 Lyon, Cedex 08, France. 181. Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. 182. Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA. 183. Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon – Centre Léon Bérard, 69373 Lyon, Cedex 08, France. 184. Clinical Cancer Genetics Community Research Network, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.

Received: 17 September 2014 Accepted: 27 March 2015
Published online: 25 April 2015

References


