Comparative study on the kinematic and static performance of two 1T2R parallel manipulators

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 The Author(s)

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Comparative study on the kinematic and static performance of two 1T2R parallel manipulators

Binbin Lian¹², Hélène Chanal³, Yan Jin¹

¹ School of Mechanical and Aerospace Engineering, Queen’s University Belfast, UK; email: b.lian@qub.ac.uk; y.jin@qub.ac.uk
² School of Mechanical Engineering, Tianjin University, China
³ Institut Pascal, Clermont Université, France; email: helene.chanal@ifma.fr

Abstract. Focusing on the potential of one translational and two rotational (1T2R) parallel kinematic machines (PKMs) for high precision manufacturing, this paper carried out the first time a comparative study on the kinematic and static performance of two promising Exechon variants, named PAW and PAW-II. PAW has the topology with 2RPU-SPR while the topology of PAW-II is 2RPU-RPS. Herein, R, U, P, S denote revolute joint, universal joint, actuated prismatic joint and spherical joint, respectively. After introducing their architectures and inverse kinematics, two key performance characteristics, i.e. workspace and stiffness were conducted for the two PKMs. Comparative results show that PAW has a smaller workspace but better stiffness performance comparing to PAW-II.

Key words: parallel manipulators, parallel kinematic machine, workspace analysis, stiffness modelling

1 Introduction

In the past three decades, parallel kinematic machines (PKMs) have become a research hotspot among academia and industry, because of their higher stiffness, higher accuracy and higher dynamic capability comparing to serial manipulators. In the fields like aerospace manufacture and assembly, PKMs show huge potential as machine tools to meet the requirements of high precision, high working load and high productivity [1]. Equipped with three degree-of-freedom (3-DoF) PKMs which provide one translational and two rotational (1T2R) motion DoFs, 5-axis hybrid manipulators such as Tricept mechanism [2,3] and Sprint Z3 head [4, 5] are successful applications of these PKMs.

Although a large number of 3-DOF PKMs have been produced [6, 7], the PKMs which can offer both translational and rotational DOFs have not been extensively studied. In particular, the PKMs with 1T2R DOFs have special importance in machine tools as they can possibly replace the existing problematic two serial rotational motion axes which bring negative effects on the response
speed and stiffness of 5-axis machine tools. Among these existing 1T2R PKMs, axial symmetrical 3RPS architecture and its variant 3PRS architecture are the main focus. Research has been conducted on their kinematic analysis and optimization [8, 9, 10, 11], dynamic performance [12, 13], accuracy [14] and stiffness [15]. It is obvious that 3RPS PKM and 3PRS PKM are constructed by the same set of kinematic joints but of different topology in each leg. Despite lots of work has been conducted on these two PKMs independently, there is no special focus on the effects of different joint arrangements to the performance of the whole mechanism, which is one of the important issues in designing PKMs.

Similar to the concept of 3PRS PKM, Neumann [16] invented a promising machine tool called Exechon which consists of a novel 1T2R PKM and a 2-DOF serial wrist. The unique over-constrained architecture enables Exechon to achieve rather high stiffness and accuracy [17]. Inspired by the Exechon PKM, its variants PAW and PAW-II are recently proposed [18]. PAW has a 2RPU-SPR architecture and PAW-II has a 2RPU-RPS architecture. According to the mobility analysis, both PAW and PAW-II PKMs have 1T2R motion DOF and over-constrained architectures which led to simpler mechanisms with less number of links and joints [18]. It is believed that these two variants of Exechon are especially suitable for aerospace manufacturing tasks along curved surface. In order to further understand their performances, this paper carries out the comparative study of the two novel PKMs. Specially, as the only disparity of PAW and PAW-II is from the joint sequence of the leg, the comparative study will also shed light to the effect of varied joint arrangement, which will provide insightful knowledge in PKM design.

Having outlined the challenges mentioned above, the reminder of the paper is organized as follows. Section 2 describes the architecture of PAW and PAW-II and establishes their inverse kinematics. In Section 3, the orientation workspaces of the two PKMs are investigated with the same set of geometrical parameters, while their end-effector deflections with applied efforts are formulated by strain energy and Castigliano’s theorem in Section 4. The conclusions are drawn in Section 5.

2 Architecture description and inverse kinematics

As shown in Fig. 1(a), PAW consists of fixed base, moving platform and three legs in between. Leg_1 and leg_3 are identical. Each of them has a RPU chain, with an R joint connected to the fixed base, linked to a linear actuator and a U joint to the moving platform. The two axes connected to the moving platform of the two U joints from leg_1 and leg_3 are collinear, while the other two axes of the two U joints are in parallel with the R joints on the base of the two legs. The topology of leg_2 is SPR and the R joint axis is parallel to the collinear axis of U joints. The three legs are all actuated by linear actuators. Fig 1(b) shows the architecture of PAW-II whose leg_2 is slightly different from PAW. Leg_2 of PAW-II is composed of one R joint on the base, followed by one linear actuator and one S joint connecting to the moving platform.
For the convenience to describe the motions, the same coordinate systems are defined for PAW and PAW-II. A_i and B_i ($i=1,2,3$) denote the joint centers to the base and moving platform respectively. The distance between point A_1 (B_1) to point A_3 (B_3) is l_1 (l_3). Point O is the middle point of A_1A_3 and the base coordinate system $\{O - X_bY_bZ_b\}$ is assigned to it, in which X_b is directed from point A_1 to point A_3, Y_b is from point O towards point A_2. Similarly, point O_e is the central point of B_1B_3. The platform coordinate system $\{O_e - X_eY_eZ_e\}$ is defined at point O_e, and X_e is directed from point B_1 to point B_3, Y_e from point O_e to point B_2. The distance between point O (O_e) to point A_2 (B_2) is l_2 (l_4).

Mobility analysis shows that both PAW and PAW-II have 1T2R DoF [18]. The posture of moving platforms can be expressed by three parameters α, β and z_e (See Fig. 2). α represents the angle of frame $\{O_e\}$ rotating about X_b measured from X_b to X_e, β denotes the angle between the platform and the plane formed by points A_1, B_1, B_3 and A_3. Let o_eR be the rotation matrix of frame $\{O_e\}$ to frame $\{O\}$, and it is formulated as

$$^o_eR = \begin{bmatrix} c\alpha & -c\beta \cdot s\alpha & -s\beta \cdot s\alpha \\ 0 & s\beta & -c\beta \\ s\alpha & c\beta \cdot c\alpha & s\beta c\alpha \end{bmatrix} \quad (1)$$

where s represents the sine function, and c the cosine function.

Fig. 1 Schematic diagram of (a) PAW (2RPU-1SPR) and (b) PAW-II (2RPU-1SPR)

For PAW, since point O_e is always moves within the plane formed by points...
A₁, B₁, B₃, A₃, vector \(\text{oO}_e \) can be expressed as \(\text{oO}_e = [x_e \ 0 \ z_e]^T \) in the base frame. Given the constraint offered by leg₂, the determination of \(x_e \) for the two PKMs are different. For PAW, as \(X_b \) is perpendicular to the plane formed by points \(A_2, B_2, O_e \), \(x_e \) is obtained as follow.

\[
x_e = -\tan \alpha \cdot z_e
\]

(2)

For PAW-II, as the R joint axis of leg₂ is perpendicular to \(A_2B_2 \), \(x_e \) is calculated as

\[
x_e = \cos \beta \cdot \sin \alpha \cdot l_2
\]

(3)

Therefore, when \(\alpha, \beta \) and \(z_e \) are known, the actuators’ displacements are obtained by

\[
q_i = |A_iB_i| = |\text{oO}_e + R^{-1}O_eB_i - OA_i|, \ (i = 1, 2, 3)
\]

(4)

As a result, both PAW and PAW-II have a unique inverse kinematic solution.

![Fig. 2 Parameter description of PAW and PAW-II](image)

3. Kinematic performance

Given the same dimensions to the two PKMs, as shown in Table 1, the workspace of PAW and PAW-II can be defined as the set of \(\alpha, \beta \) and \(z_e \) values, which can be obtained by examining the boundary formed by constraints via inverse
kinematics.

Table 1. Nominal values of dimensional parameters

<table>
<thead>
<tr>
<th></th>
<th>l_1</th>
<th>l_2</th>
<th>l_3</th>
<th>l_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1000 mm</td>
<td>635mm</td>
<td>353mm</td>
<td>106mm</td>
</tr>
</tbody>
</table>

![Fig. 3 Orientation workspace of PAW](image)

![Fig. 4 Orientation workspace of PAW-II](image)

For both PAW and PAW-II, the searching ranges of α, β and z_e are set as $[-90^\circ, 90^\circ]$, $[0, 180^\circ]$ and $[0.9m, 1.4m]$. The constraints of three legs are $0.8m \leq q_1 \leq 1.5m$, $0.8m \leq q_3 \leq 1.5m$ $0.9m \leq q_2 \leq 1.6m$, and the rotating...
angles between R joints (on the base) and Z_b axis are within $[20^\circ, 160^\circ]$.

The orientation workspaces for the two PKMs are shown in Fig. 3 and Fig. 4. It is obvious that the motion range of β could reach from 0° to 180°, while the motion range of α will become smaller with increasing z_e value for both PAW and PAW-II. Examining their architectures, the motion range of α is constrained by the lengths of leg$_1$ and leg$_3$, as well as the location of the spherical joint in leg$_2$. Since the spherical joint is on the moving platform rather than on the base, PAW-II has a much larger orientation capability in α than PAW. The orientation workspaces are symmetrical about $\alpha = 0$. This is because of their symmetrical architecture about the Y_bOZ_b plane at home position.

3 Static performance

Bonnemains et al. [19, 20] proposed energy based method for stiffness modeling, taking into account joint and leg deflections for over-constrained PKMs. In this paper, the same method is applied to PAW and PAW-II. Related stiffness characteristics of the two PKMs are listed in Table 2. By applying 1KN to point O_e in x, y, z directions respectively, the displacements in every direction is shown in Figures 4 - 9.

| Table 2. Stiffness characteristics of PAW and PAW II PKMs |
|---------------------------------|----------------------------|-----------------|
| Element | Stiffness characteristic | value |
| Bearing assembly | Radial stiffness | 1.04×10^9 N/m |
| screw | section | 0.001 m2 |
| rail | moments of inertia about x_1, y_1 | 8.2448×10^{-8} m2 |

Fig. 5 Displacements of point O_e for a 1kN effort in x direction and $z_e = 1m$ for PAW.
Fig. 6 Displacements of point O_e for a 1kN effort in x direction and $z_e = 1m$ for PAW-II

Note that δ_{ij} represents displacement of point O_e along axis j for an effort applied in i direction. Indeed, as PAW and PAW-II hold closed structures, an effort applied in a direction generates deflection in all the directions. As shown in Figures 5 - 6, with an effort of 1KN exerted in x direction, the biggest displacement are at the edge of workspace for both PAW and PAW-II. And the displacement of PAW is far smaller than that of PAW-II, which means that PAW is stiffer than PAW-II in x direction. Note that displacements are not symmetrical due to orientation of the load in positive direction of x-axis.

Fig. 7 Displacements of point O_e for a 1kN effort in y direction and $z_e = 1m$ for PAW

Fig. 8 Displacements of O_e for a 1kN effort in y direction and $z_e = 1m$ for PAW-II
For the effort applied in the y direction (see Fig 7 and Fig. 8), both PAW and PAW-II show symmetrical distributions about $\beta = 90^\circ$. For PAW, the maximum displacement is in the middle of the workspace while for PAW-II, it shows up at the workspace edge. Note that displacement of PAW along the y direction is slightly smaller, making the stiffness of PAW better than PAW-II.

In the z direction (see Fig 9 and Fig. 10), the biggest displacement of PAW is at the edges where β reaches its limits. PAW-II gets its peak value when α is maximum. Comparing the two PKMs, displacements of PAW along the z direction is smaller than PAW-II. Still, PAW has better rigidity than PAW-II in the z direction.

Based on the above analysis, conclusion is drawn that PAW has overall better rigidity than PAW-II. This is mainly because the stiffness transmission from linear actuator to the moving platform is well transferred through an R joint for PAW, but not so well transferred through a spherical joint for PAW-II.

4. Conclusion

This paper first time conducts a comparative study on kinematic and static performance of two Exechon variants, PAW and PAW-II which represent two important families of 1T2R PKMs. The two PKMs show disparity merely in joint arrangement, where PAW has a SPR topology for leg 2, while PAW-II has a RPS topology for leg 2. It is found that the location of the joint arrangement has a dramatic effect on the workspace and stiffness performance of these PKMs. As a result, PAW has smaller workspace but better stiffness performance comparing with PAW-II. Both PAW and PAW-II have unique inverse kinematic solution,
which will make ease for control. From this study, it is concluded that it is better to place a spherical joint on the base for achieving a better stiffness on the moving platform. For achieving better dexterity (larger orientation workspace), the spherical joint is better placed on the moving platform. Both two PKMs have great potential for machine tool applications, depending on the specific operation requirements.

Acknowledgments The first author likes to acknowledge the funding support from Chinese Scholarship Council. The third author likes to acknowledge the funding support from the Engineering and Physical Science Research Council in United Kingdom under project no. EP/K004964/1.

Reference