The Nuclear Oncogene SET Controls DNA Repair by KAP1 and HP1 Retention to Chromatin

Published in:
Cell Reports

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 The Authors
This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
The Nuclear Oncogene SET Controls DNA Repair by KAP1 and HP1 Retention to Chromatin

Graphical Abstract

Highlights

- SET is recruited to DNA breaks to limit uncontrolled DDR and HR
- SET interacts with KAP1 and induces its retention on the chromatin
- SET overexpression induces chromatin compaction and inhibits repair by HR
- HP1γ inhibits DNA repair by limiting resection and HR factors’ recruitment

Authors

Alkmini Kalousi, Anne-Sophie Hoffbeck, ..., Vassilis G. Gorgoulis, Evi Soutoglou

correspondence

evisou@igbmc.fr

In Brief

Kalousi et al. show that SET is recruited to double-strand breaks to moderate the DNA damage response and inhibit resection and homologous recombination (HR) through increased retention of KAP1 and HP1γ on chromatin.

Kalousi et al., 2015, Cell Reports 11, 149–163

April 07, 2015 ©2015 The Authors

http://dx.doi.org/10.1016/j.celrep.2015.03.005
The Nuclear Oncogene SET Controls DNA Repair by KAP1 and HP1 Retention to Chromatin

Alkmini Kalousi,1,8 Anne-Sophie Hoffbeck,1,8 Platonas N. Selemenakis,2 Jordan Pinder,3,4 Kieran I. Savage,5,9 Kum Kum Khanna,6 Laurent Brino,1 Graham Dellaire,3,4 Vassilis G. Gorgoulis,2,6,7 and Evi Soutoglou1,*

1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
2Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
3Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
4Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
5Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
6Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
7Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
8Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
9Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS), UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, Strasbourg, France

*Correspondence: evisou@igbmc.fr
http://dx.doi.org/10.1016/j.celrep.2015.03.005
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A) as a modulator of DNA damage response (DDR) and repair in chromatin surrounding double-strand breaks (DSBs). We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR). SET interacts with the Kruppel-associated box (KRAB)-associated co-repressor KAP1, and its overexpression results in the sustained retention of KAP1 and Heterochromatin protein 1 (HP1) on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR.

INTRODUCTION

Various types of agents from either exogenous or endogenous sources constantly assay DNA (Ciccia and Elledge, 2010; Hoeijmakers, 2001). DNA double-strand breaks (DSBs) are together with interstrand cross-links among the less frequent but the most toxic lesions because interaction between DNA ends from different DSBs can produce tumorigenic chromosome translocations (Misteli and Soutoglou, 2009). DSBs are paired by two main pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR) (Goodarzi and Jeggo, 2013). NHEJ is used by cells to join broken ends by simple re-ligation (Wang and Lees-Miller, 2013). HR takes advantage of the information encoded by the homologous template of the sister chromatid to repair the DSB in an error-free manner (Krejci et al., 2012).

DSBs trigger a complex cascade of signaling events known as the DNA damage response (DDR). During the DDR, DNA damage triggers the activation of phosphatidylinositol 3-kinases (PI3Ks) and phosphoinositide-dependent kinase 1 (PDK1) (Krejci et al., 2012). The activation of cell-cycle checkpoint kinases, which in turn pause the cell cycle until the DNA lesion is repaired (Bartek and Lukas, 2007).

DNA in the eukaryotic cell is complexed with histone proteins to form chromatin. Therefore, DNA repair generally occurs in the context of highly structured chromatin and, as a result, the cell has evolved mechanisms to open the chromatin structure and facilitate repair (Lemaître and Soutoglou, 2014; Soria et al., 2012). Emerging evidence suggests that the ability of repair factors to detect DNA lesions is determined by histone modifications around the lesion and involves chromatin-remodeling events (Polo and Jackson, 2011). The most prominent DNA-damage-induced histone modification in DNA DSB repair (DSBR) is the phosphorylation of the C-terminal tail of H2AX, referred to as γH2AX (Rogakou et al., 1998). Other chromatin proteins, such as the Kruppel-associated box (KRAB)-associated co-repressor KAP1, are also phosphorylated by ATM in response to DNA DSBs to further facilitate the decondensation of chromatin and allow efficient repair (Goodarzi et al., 2008; Ziv et al., 2006). Although there is increasing evidence that chromatin alterations are essential for efficient DSBR, the mechanisms underlying these chromatin changes are far from being fully understood.

In this study, we identified the oncoprotein SET as a modulator of the DDR using a small interfering RNA (siRNA)-based screen.

http://dx.doi.org/10.1016/j.celrep.2015.03.005
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
of chromatin-related proteins. We show that depletion of SET increases DDR and survival in the presence of radiomimetic drugs. On the other hand, SET overexpression impairs DDR, DNA break processing, and consequent repair by HR. SET interacts with the co-repressor KAP1, and its overexpression leads to the sustained retention of KAP1 and HP1 on chromatin. Our results suggest a model in which this retention triggers an inhibition of resection, impairing HR regulation.

RESULTS

The Nuclear Oncogene SET Is a Modulator of DDR in Chromatin Surrounding DSBs

To evaluate the impact of high-ordered chromatin structure in DDR and DNA repair in an unbiased way, we performed an siRNA screen using a library with chromatin-related proteins and their interaction partners. We identified the nuclear oncogene SET as a modulator of DDR since downregulation of SET resulted in a significant increase in levels of γH2AX foci remaining at 16 hr following Neocarzinostatin (NCS) treatment. This is similar to the DNA repair defect observed in cells depleted for XRCC4 (Figure 1A). Depletion of SET by two different siRNAs validated the phenotype observed in the primary screen (Figure 1B). The knockdown efficiency was monitored by qRT-PCR and western blot analysis (Figures S1A and S1B).

To validate the screen results in another cell type, we performed western blot analysis in control U2OS cells and in cells depleted for SET. We indeed observed higher damage-induced γH2AX levels in cells where SET was downregulated (Figure 1C). Interestingly, the level of γH2AX was increased immediately upon DNA damage and was sustained at a higher level until 8 hr later (Figure 1C). These results point to two different possibilities. First that depletion of SET results in persistent DNA damage, suggesting a role of SET in facilitating repair of DNA lesions. Another possible explanation is that downregulation of SET recruitment in the laser microirradiation experiments prompted us to investigate whether the recruitment of SET is cell cycle specific. To this end, we performed ChIP experiments using SET antibody in cells arrested in G1/S or G2, and we observed that the recruitment of SET is more pronounced in cells arrested in G2 (Figures 1G and S1F).

All of the above results suggest that SET is recruited to DSBs to regulate DDR activation.

SET Overexpression Impedes DDR and Recruitment of HR Factors to Collapsed Forks and DSBs

The above findings support a potentially deleterious effect of high levels of SET. Indeed, SET is found to be highly overexpressed in a variety of cancers (Christensen et al., 2011; Li et al., 2012). To assess the impact of SET overexpression in genomic instability, we established a cellular model for SET overexpression in U2OS cells (Figures S2A–S2C). We generated U2OS stable cell lines overexpressing SET fused to GFP.
To first test whether SET overexpression limits DDR, we evaluated γH2AX induction in GFP and GFP–SET cells upon NCS treatment. Interestingly, although, the DDR mounting in asynchronous SET-overexpressing cells was quite similar to control cells, γH2AX upon SET overexpression was significantly affected in cells arrested in G2 (Figure 2A). This observation is in line with the enhanced recruitment of SET in DNA lesions occurring in G2 (Figure 1G).

To assess the impact of SET overexpression in genomic instability, we performed clonogenic survival assays in U2OS GFP and GFP–SET cells in the presence of different damaging agents. We observed that cells overexpressing SET are mainly sensitive to the replication stress agent camptothecin and not phleomycin (Figures 2D and S3A) in cells overexpressing SET. These observations of HR factor recruitment, SET overexpression had an impact on resection and recruitment of HR factors when SET is overexpressed has an impact on resection of these breaks, we assessed recruitment of CtIP and phosphorylation of RPA upon tethering of SET at the lacO chromatin. Indeed, SET tethering affected the recruitment of CtIP and the phosphorylation of RPA at I–SceI breaks (Figure 4D). Similarly, SET tethering did not change the cell-cycle profile (Figure S4A).

To test whether the defect in resection and recruitment of HR factors when SET is overexpressed leads to a defect in HR, we used the DR–GFP system (Figure S4B; Pierce et al., 1999). As expected, depletion of BRCA1 led to a decrease in the HR efficiency (Figures 4E and S4C). In accordance with the previous observations of HR factor recruitment, SET overexpression decreased significantly the efficiency of HR without altering the cell-cycle patterns, and depletion of SET had the opposite effect (Figures 4E, S4C, and S4D).

Next we investigated whether the role of SET on HR had an impact on NHEJ. As depicted in Figure 4F, SET overexpression increased NHEJ levels. This result at the same time excluded the possibility of defective I–SceI cutting efficiency in the HR experiment due to increased chromatin compaction after SET overexpression. To study the role of SET in NHEJ, we checked the kinetics of recruitment of 53BP1 at the I–SceI breaks (Figures S4E–S4H). Interestingly, although the percentage of cells that exerted 53BP1 colocalization with the lacO/I–SceI locus was not different between control cells and cells overexpressing SET at a time point when there was peak DDR, inducible expression of I–SceI demonstrated that 53BP1 was recruited earlier in cells that overexpressed SET (Figures S4G and S4H).

SET Interacts with KAP1 and Facilitates KAP1 and HP1 Retention to Chromatin

To investigate the mechanism of action of SET, we searched for potential interaction partners. SET immunoprecipitation followed by mass spectrometry revealed co-repressor KAP1 (KRAB-associated protein-1) as an interacting partner of SET. To verify this interaction, we performed GFP-Trap immunoprecipitation experiments using the previously described U2OS GFP and GFP–SET cell lines. We observed an interaction between SET and KAP1 that did not depend on the presence of DNA damage (Figure 5A). Furthermore, the addition of Benzonase at the CoIP
demonstrated that the interaction of SET and KAP1 is DNA independent (Figure S5A).

To further explore the functional significance of SET and KAP1 interaction, and to test whether KAP1 is involved in any of the phenotypes related to SET overexpression, we examined its localization in cells overexpressing SET. Immunofluorescence staining showed similar KAP1 nuclear localization in U2OS cells overexpressing GFP-SET or GFP (Figure 5B). On the other hand, when immunofluorescence was performed under conditions in which all soluble proteins were pre-extracted before fixation, we observed a dramatic increase of KAP1 retention to chromatin when SET was overexpressed (Figure 5B, bottom, quantified in Figure 2. Overexpression of SET Affects Survival, Cell-Cycle Progression, and DDR Signaling during G2 and after Induction of Replication Stress

(A) Western blot analysis of asynchronous G1/S or G2-arrested U2OS GFP and U2OS GFP-SET cells treated with 50 ng/ml NCS for 15 min and released for the indicated time points is shown.

(B) Clonogenic survival of U2OS cells stably overexpressing GFP or GFP-SET with increasing concentrations of camptothecin. SEM represents the errors from three independent experiments.

(C) Cell-cycle analysis of U2OS GFP (left) and U2OS GFP-SET (right) cell lines after treatment with 10 mM HU for 24 hr (arrests cells in the border of G1-S) and release for the indicated time points is shown (analyzed using propidium iodide staining).

(D) Western blot analysis of U2OS GFP and U2OS GFP-SET cells treated with 10 mM HU for 24 hr and released for the indicated time points is shown.
Figure 3. Overexpression of SET Impairs Recruitment of HR Factors on Collapsed Replication Forks and Endonuclease-Induced DSBs

(A and B) Immunofluorescence staining of U2OS GFP and GFP-SET cells with RAD51 and BRCA1 after treatment with 10 mM HU for 24 hr and release for another 8 hr (top) (scale bar represents 10 μm). Quantification is given of RAD51-foci-positive cells (>3 foci per cell) or BRCA1-foci-positive cells (>5 foci per cell) after

Figure 5C). The enhanced retention of KAP1 to chromatin in GFP-SET cells also was observed by biochemical cell fractionation (Figure 5D). To further strengthen this observation, we tested the chromatin retention of exogenously expressed cherry-KAP1 in GFP and GFP-SET cells after pre-extraction. We observed that, although the levels of cherry-KAP1 in GFP and GFP-SET cells were pretty similar (Figure S5B), the retention of cherry-KAP1 to chromatin after pre-extraction was enhanced in SET-overexpressing cells (Figures S5C and S5D). These results point to a role of SET in KAP1 chromatin retention.

KAP1 is known to mediate gene silencing by recruiting the methyltransferase SETDB1, which specifically tri-methylates histone H3 at Lys-9 (H3K9me3) (Schultz et al., 2001, 2002). To examine whether KAP1 chromatin retention in SET overexpression leads to increased H3 K9 methylation, we performed immunofluorescence in U2OS GFP and GFP-SET cells after pre-extraction of soluble proteins. Following the pattern of KAP1, H3K9me3 levels were also higher in SET-overexpressing conditions (Figure 5E, quantified in Figures 5F and S5E, right).

KAP1-mediated gene silencing also involves the recruitment of Heterochromatin protein 1 (HP1s: HP1α, β, and γ) through direct protein-protein interaction with KAP1, or through binding to H3K9me3 mark (Nielsen et al., 1999; Ryan et al., 1999). In line with the previous observations, SET overexpression led to a higher retention of HP1s in chromatin (Figure 5G). This phenomenon was particularly pronounced with HP1γ, which appeared globally perturbed, being more pan-nuclear than in the heterochromatic foci, and was not observed in another chromatin-bound protein like TBP (Figures 5G and S5F).

In line with the above observations, tethering of SET at the lacO led to the retention of KAP1 and HP1s at the locus (Figures 6A, 6B, S6A, and S6B). Among the HP1s, the most significant effect was observed with HP1γ (Figure 6B). Similar results were obtained when an I-SceI DSB was induced adjacent to the lacO locus. It is noteworthy that HP1γ colocalization with the array exerted a 40% reduction upon induction of the I-SceI break in cells expressing the lac repressor alone (Figure 6B), showing that HP1γ is evicted from the lacO chromatin upon DNA damage. Interestingly, upon SET tethering eviction of HP1γ was not observed, suggesting that SET inhibits the eviction of HP1γ and retains it stably bound to chromatin (Figure 6B).

Chromatin Compaction Inhibits Resection and Recruitment of HR Factors

Retention of HP1s in chromatin is likely to result in chromatin compaction. Indeed, cells overexpressing GFP-SET had smaller nuclear size compared to cells that expressed GFP (Figures S6C and S6D). Moreover, GFP-SET cells exerted resistance to micrococcal nuclease (Mnase) accessibility compared to GFP cells (Figure 6O), another indication of chromatin compaction. In agreement with this observation, detailed quantification of replication patterns in GFP and GFP-SET cells demonstrated that, although cells that overexpress SET have the same number of cells in S phase, they have a higher population of cells in late S phase than control cells, and SET-depleted cells have the reverse phenotype with less cells in late S (Figures S6E–S6H). These observations altogether point to a role of SET in chromatin compaction.

To investigate whether the chromatin compaction mediates the SET-dependent defect in loading of HR factors in DNA lesions, we alleviated chromatin compaction using Trichostatin A (TSA) (Toth et al., 2004) and assessed RAD51 and BRCA1 foci formation at lacO/l-SceI breaks after SET tethering. As shown in Figure 6D, TSA treatment rescued the defect on BRCA1 and RAD51 at lacO/l-SceI breaks. Furthermore, TSA treatment rescued the recruitment of CtIP and RPA phosphorylation at the lacO/l-SceI locus, suggesting that chromatin compaction impacts resection (Figure 6E). Similarly, TSA treatment rescued the decrease observed in γH2AX at collapsed forks upon HU treatment (Figure 6F).

To test whether retention of KAP1 to chromatin is sufficient to induce the effects seen by SET tethering, we fused KAP1 to mCherry-lacI and tethered it to lacO. Interestingly, KAP1 tethering to lacO resulted in impairing the recruitment of RAD51, BRCA1, and CtIP after break induction with I-SceI (Figure S6B), which is in total accordance with the results coming from SET tethering on the chromatin. Moreover, tethering of KAP1 on the lacO array accumulated all three HP1s on the chromatin, but HP1γ seemed to be the one that was present almost 100% along with KAP1 (Figure S6J).

As HP1γ is the most pronounced at the lacO chromatin among all HP1s when SET is tethered, we investigated whether HP1γ retention could be part of the mechanism leading to the resection impairment observed in SET-overexpressing conditions. Therefore, we asked whether HP1γ tethering to the lacO array by fusion with lac repressor and with GFP could recapitulate the SET-tethering phenotype (Figures 7A and S7A–S7C). Tethering of HP1γ at the lac array resulted in a substantial decrease in BRCA1, RAD51, CtIP, and phosphorylated RPA recruitment upon l-SceI break induction compared to the lac repressor alone (Figures 7A and 7B). This phenotype was specific to HP1γ since it was not observed upon tethering of HP1α or β (Figures 7A and 7B).

To further investigate the involvement of HP1γ in SET-dependent functions, we assayed resection and loading of BRCA1 and RAD51 at the lacO/l-SceI break upon SET tethering in control cells and cells depleted for HP1γ. Although when SET was tethered to chromatin CtIP, BRCA1, RAD51 loading, and treatment with 10 mM HU and release for the indicated time points. Photos of at least 100 cells were analyzed for each condition. SEM represents the errors from three independent experiments.

(C) Schematic representation of the lacO-lacI/l-SceI system. An array of 256 repeats of the lacO sequence flanked by an I-SceI site is stably integrated into an U2OS cell line.

(D) Immunofluorescence of the GFP lacI-lacO U2OS cells with γH2AX in the presence or absence of I-SceI, indicating the colocalization of γH2AX foci with the lacO array in the presence of I-SceI (scale bar represents 10 μm), is shown.

(E) Quantification of the colocalization of RAD51, BRCA1, and P-RPA foci with the lacO array in at least 100 GFP lacI-lacO U2OS cells transfected with FLAG or FLAG-SET in the presence or absence of I-SceI. SEM represents the errors from three independent experiments.
Figure 4. Tethering of SET on the Chromatin Impairs Resection and HR and Enhances NHEJ

(A) Schematic representation of SET tethering on the lacO-lacI/I-SceI system is shown.

(B) Immunofluorescence staining of the lacO U2OS cells transfected with mCherry-lacI-SET with γH2AX antibody in the presence or absence of I-SceI, indicating the colocalization of γH2AX foci with the lacO array in the presence of I-SceI (scale bar represents 10 μm), is shown.

(C and D) Quantification of the colocalization of RAD51, BRCA1, CtIP, and P-RPA32 S4/8 foci with the lacO array in at least 100 lacO U2OS cells transfected with mCherry-lacI or mCherry-lacI-SET in the presence or absence of I-SceI. SEM represents the errors from three independent experiments.

(legend continued on next page)
phosphorylated RPA at the lacO/I-SceI was decreased compared to cells that expressed mCherry-lacI alone, downregulation of HP1 partially rescued this defect (Figures 7C and S7E). Downregulation of HP1α or β did not show any rescue and, on the contrary, affected resection and loading of HR proteins (Figure S7F), as shown previously (Baldeyron et al., 2011; Lee et al., 2013; Soria and Almouzni, 2013). The depletion of HP1s by siRNA was tested by western blot (Figure S7G). These findings point to a role of SET in KAP1 and HP1 retention on chromatin, and, when this is exaggerated, it results in impaired HR. Depletion of SET in conditions where HP1γ was tethered to lacO chromatin did not rescue the recruitment of BRCA1 and...
Figure 6. SET Tethering on Chromatin Induces Compaction through KAP1 and HP1γ Retention and TSA-Induced Relaxation Rescues Resection and HR Factors’ Recruitment

(A and B) Quantification is given of the colocalization of KAP1 (A) and HP1γ (B) foci with the lacO array in at least 100 lacO U2OS cells transfected with mCherry-lacI or mCherry-lacI-SET in the presence or absence of I-SceI.

(legend continued on next page)
RAD51, suggesting that HP1γ is downstream of SET and, once tethered to chromatin by other means, can exert its function (Figure S7D).

Finally, the tight relationship among SET, H3K9me3, and HP1γ was examined by immunohistochemical and immunofluorescent means in serial sections from head and neck and colon cancers. SET had low expression in normal tissues, whereas its detection in cancerous lesions was evident (data not shown). Most importantly and in accordance with our model, the serial section analysis clearly depicted a correlation in increased levels of SET, H3K9me3, and HP1γ (Figures 7D and 7E).

Our results altogether propose a model in which SET associates with DNA breaks to moderate DDR and DNA repair by HR in the surrounding chromatin by regulating chromatin compaction. SET binds KAP1 and its overexpression leads to amplification of its normal function due to increased retention of KAP1 and HP1s to chromatin, leading to a repressive micro-environment for HR as the inefficient chromatin opening can inhibit resection and recruitment of major DNA repair factors (Figure 7F).

DISCUSSION

SET/TAF-Ib, also known as I2PP2A and INHAT, was originally identified as a translocated gene in acute undifferentiated leukemia (Adachi et al., 1994). It is a multi-tasking protein and it was shown to be a potent inhibitor of phosphatase 2A (PP2A) (Li et al., 1996). It belongs to the NAP1 family of histone chaperones (Kawase et al., 1996; Muto et al., 2007). Other studies have shown that SET/TAF-Ib binds to nucleosomal histones and inhibits histone acetylation by masking histone tails as a component of the INHAT complex (Kutney et al., 2004; Schneider et al., 2004). Here we describe a novel function of SET in DDR and DNA repair. We have found that SET is an endogenous modulator of DDR and, when depleted, enhances DDR and survival in radiomimetic drugs. In addition, we show that SET overexpression impairs DDR and HR and reduces survival in response to damaging agents. In line with our observations, SET depletion also was found to increase γH2AX in a high-content screen for chromatin-related proteins that affect DDR upon ionizing radiation (IR) (Floyd et al., 2013). The functions of SET in our study are independent from its role at the INHAT complex, since pp32, another component of the complex, did not exert similar functions in DDR and DNA repair as SET (data not shown).

In search of a potential mechanism of action of SET, we found that it interacts with KAP1 and mediates its retention to chromatin. Our results altogether suggest a model in which SET-dependent KAP1 chromatin retention leads to the retention of its interaction partner, the methyl-transferase SETDB1, and an increase in its target histone modification (Figures 5B–5F and 7E). Consequently, this heterochromatic mark triggers increased retention of the HP1 proteins to chromatin. In the presence of DNA damage, KAP1 and HP1s are not properly released from chromatin in SET-overexpressing cells, leading to inaccessibility of DNA repair factors and subsequent repair defect (Figure 4E). Given that the characterization of the interaction domain(s) of SET with KAP1 was not the focus of this study, future studies are necessary to uncover how SET recruits KAP1 and if its histone chaperone activity is connected with it.

Recent studies have highlighted the importance of KAP1 phosphorylation in HP1 and CHD3 release from heterochromatin to allow chromatin relaxation and access to DNA repair factors, leading to the efficient repair of heterochromatic lesions (Ayoub et al., 2008; Bolderson et al., 2012; Garvin et al., 2013; Goodarzi et al., 2011; White et al., 2012). For HP1β, this release was dependent on its phosphorylation by casein kinase II (Ayoub et al., 2008). On the other hand, all three HP1 isoforms are shown to accumulate in DNA lesions through their chromoshadow domain (Luijsterburg et al., 2009; Soria and Almouzni, 2013). These contradictory findings can be reconciled to a model in which HP1 mobilization from DSBs is followed by its accumulation at these or other sites of damage. In accordance with this bimodal behavior of HP1s, although ATM is activated to induce chromatin relaxation by KAP1 phosphorylation immediately after damage, it was shown that, in breaks in which resection had occurred, ATM activity was diminished, pointing to a need for chromatin reconstitution for late steps of HR to occur (Geuting et al., 2013). Our results are in agreement with the necessity of open chromatin for DDR and DNA end resection.

Our results reveal distinct behavior of HP1 isoforms in response to DNA damage. First, we show that exclusively HP1γ, and not α or β, is released from l-Scl-induced breaks. Moreover, persistent binding of HP1γ to chromatin inhibits resection and subsequent strand invasion, exemplified by the defective recruitment of RAD51 and BRCA1 (Figures 7A and 7B). Our observations are in line with recent data that revealed differences in how the HP1 isoforms regulate HR (Soria and Almouzni, 2013). Although, HP1α and HP1β promote RPA phosphorylation, recruitment of RAD51, and HR stimulation, HP1γ plays an inhibitory role, suggesting that its release is necessary for efficient repair by HR. Also, the effect of chromatin compaction on DNA end resection observed by SET overexpression is in keeping with recent studies, which found that HR is activated at DSBs located within actively transcribed genes that reside in euchromatin (Aymard et al., 2014; Jha and Strahl, 2014; Pai et al., 2014).

One study described SET as a chaperone of histone H1 and demonstrated that SET is regulating the eviction of histone H1 from chromatin (Kato et al., 2011). Moreover, knockout of some of the histone H1 isoforms leads to an increase in DDR due to chromatin decondensation (Murga et al., 2007). Our data show that SET overexpression leads to chromatin compaction and reduced DDR that fits more with enhanced binding of H1 to chromatin than enhanced eviction. Possible explanations for this discrepancy are that prolonged overexpression of SET leads...
to an imbalance of the different histone H1 isoforms, leading to complex phenotypes, or that the functions of SET on DSB repair are independent of its histone chaperone activity.

SET is highly overexpressed in various types of cancers (Adachi et al., 1994; Christensen et al., 2011; Jiang et al., 2011; Leopoldino et al., 2012; Li et al., 2012; Ouellet et al., 2006), and in certain cases SET levels correlate with disease severity (Christensen et al., 2011). Although, it was proposed that SET leads to tumorigenesis because it inhibits the tumor suppressor PP2A or metastasis suppressor NM23-H1 (Switzer et al., 2011), our results suggest that defective DNA repair by HR in cells that overexpress SET also might contribute to the initiation of carcinogenesis and/or progression.

Moreover, SET has been shown to interact with the tumor suppressor p53 (Kim et al., 2012). SET inhibits p53 acetylation thus repressing transcription of its target genes, leading to impairment of p53-dependent cell-cycle arrest and apoptosis. These results are fitting with the observation that SET is overexpressed in cancer. Although, we haven’t directly tested the activation of p53 target genes in our system, the reduced cell survival upon DNA damage in SET-overexpressing cells could be attributed to impaired apoptosis and cell-cycle arrest.

Therefore, SET represents an attractive therapeutic target for cancer therapy. In keeping with this, recent studies have reported the development of peptides like COG112 (Switzer et al., 2013) that inhibit the binding of SET with PP2A or metastasis suppressor NM23-H1 (Switzer et al., 2011), and in certain cases SET levels correlate with disease severity (Christensen et al., 2011). Although, it was proposed that SET leads to tumorigenesis because it inhibits the tumor suppressor PP2A or metastasis suppressor NM23-H1 (Switzer et al., 2011), our results suggest that defective DNA repair by HR in cells that overexpress SET also might contribute to the initiation of carcinogenesis and/or progression.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfections

U2OS and U2OS-lacO-I-SceI-Tet19 cells were cultured at 37°C in DMEM supplemented with glucose (4.5 g/l), 10% fetal calf serum, and gentamycin (40 µg/ml). U2OS GFP and U2OS GFP-SET cells were cultured as U2OS cells with the addition of 0.8 g/ml G418. FuGene 6 (Promega) and Interferin (Polyplus Transfection) were used for transient transfections of plasmids and siRNA transfections (20 nM final concentration of siRNA), respectively.

Laser Microirradiation

For 405-nm UV-laser irradiation, experiments were carried out as described by Kruhlak et al. (2006).

ChIP

The ChIP was performed as previously (Lemaitre et al., 2014) with a few changes as described in the Supplemental Experimental Procedures.

GFP-Trap

U2OS GFP and GFP-SET cells were collected in lysis buffer (10 mM Tris/Cl [pH 7.5], 150 mM NaCl, 0.5 mM EDTA, 0.5% NP40, and protease inhibitor cocktail [Roche]), incubated for 20 min on ice and centrifuged for another 20 min (14,000 rpm, 4°C). The supernatant was incubated with GFP-trap beads (Chromotek) for 2 hr at 4°C under rotation. Beads were washed and eluted in SDS sample buffer.

Biochemical Fractionation

Biochemical fractionation was carried out as previously described (Andegeko et al., 2001).

HR and NHEJ Assay

DR-GFP cells (HR) and GCV6 cells (NHEJ) (Rass et al., 2009) were transfected with pcDNA-FLAG or pcDNA-FLAG-SET or the appropriate siRNAs in combination with either BFP-C1 or BFP-C1-I-SceI. Then 72 hrs after transfection, the cells were collected and fixed with 4% paraformaldehyde in PBS for 10 min at room temperature. Samples were submitted to fluorescence-activated cell sorting (FACS) analyzed by FlowJo.

MNase Assay

The assay was carried out as previously described with a few changes (Ziv et al., 2006). In brief, cells were harvested and nuclei immediately isolated using hypotonic buffer. Freshly isolated nuclei were digested for 30 s at 25°C with MNase (Roche) at a concentration of 10 U per 75 µl digestion buffer (15 mM Tris-HCl [pH 7.4], 60 mM KCl, 15 mM NaCl, 0.25 M sucrose, 1 mM CaCl2, and 0.5 mM DTT). Genomic DNA was purified and separated by electrophoresis in 1.2% agarose gel.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and seven figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.03.005.

AUTHOR CONTRIBUTIONS

A.K. and A.-S.H. designed and performed experiments. P.N.S., J.P., and K.I.S. performed experiments. K.K.K., L.B., G.D., and V.G.G. supervised experiments. E.S. conceived the study and designed experiments. A.K. and E.S. wrote the paper.

ACKNOWLEDGMENTS

We thank Thomais Papamarcaki (University of Ioannina) for the GFP-SET plasmid. A.K. was supported by the Fondation ARC; A.-S.H. was supported by Association Presidence fellowship and Fondation pour la Recherche Médicale (FRM); and research in the E.S. laboratory is funded by the Human Frontiers Science Program.
strand breaks provides heterochromatin reconstitution to facilitate homologous recombination.

REFERENCES

Heterochromatin protein 1 is recruited to various types of DNA damage. J. Cell Biol. 185, 577–586.

