Bridge weigh-in-motion system and Structural Health Monitoring using fiber optic sensors

Queen’s University Belfast
Dr Myra Lydon – Intelligent Infrastructure group

Bridge weigh-in-motion system and Structural Health Monitoring using fibre optic sensors

22nd June 2016
Structural Health Monitoring (SHM)

SHM is a means to enable a structure to generate and communicate information concerning changes in its structural health condition, potential damage and deterioration.
Structural Health Monitoring (SHM)

Detect
Recognise
Localise
Quantify

Pain

Exam and Diagnosis

Cure

Detect
Inform

Defect

Inspect

Diagnosis

Repair

Dr Myra Lydon – Queens University Belfast
Bridge Weigh-in-Motion (B-WIM)

Bridge WIM Concept:

\[M^\text{th}_A = W_1 \times I_1 + W_2 \times I_2 + \ldots \]
WHY?
Increased loading:

• A large amount of the bridges across the world are reaching the end of their design lives
• the intensity and type of loading induced is very different from those anticipated at design stage
• There is a requirement to retain infrastructure for longer and enhance its capacity
Structural Challenges:

- Materials have inbuilt imperfections/flaws
- Degradation and wear from corrosion, fatigue or systemic overloading
Structural Challenges:

- Some older structures were not designed for modern demands
- Changes in the environment impose higher loads such as wind loads
- Extreme events such as impact damage, flooding or vandalism
Our Solution
Bridge site Loughbrickland, Co. Down:
B-WIM System development

- Lab trials and Finite Element modelling carried out to determine critical sensor locations and predict bridge behaviour
B-WIM Installation layout

Dr Myra Lydon – Queens University Belfast
B-WIM Installation

Dr Myra Lydon – Queens University Belfast
B-WIM Calibration

DVA Weigh Station

Bridge Site
$B(10)$

Dr Myra Lydon – Queens University Belfast
Successful new method of axle detection

Dr Myra Lydon – Queens University Belfast
THANK YOU

Dr Myra Lydon – Queens University Belfast