The use of water soluble mucoadhesive gels for the intravesical delivery of epirubicin to the bladder for the treatment of non-muscle invasive bladder cancer


Published in:
Journal of Pharmacy and Pharmacology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 Royal Pharmaceutical Society
This is the peer reviewed version of the following article: Chatta, D., Cottrell, L., Burnett, B., Laverty, G. and McConville, C. (2015), The use of water-soluble mucoadhesive gels for the intravesical delivery of epirubicin to the bladder for the treatment of non-muscle-invasive bladder cancer. Journal of Pharmacy and Pharmacology, 67: 1355–1362, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/jphp.12441/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Figure 3

A

Cumulative release (%) vs. Time (min) for different concentrations of HEC (1%, 1.5%, 2%, 2.5%, 3% HEC).

B

Cumulative release (%) vs. Time (min) for different concentrations of HPMC (1%, 1.5%, 2.0%, 2.5%, 3% HPMC).

C

Time to achieve 30% drug release vs. Viscosity (Pa.S) with R² = 0.99.

D

Time to achieve 30% drug release vs. Viscosity (Pa.S) with R² = 0.99.