Towards generalized Doherty power amplifier design for multiband operation

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Towards Generalized Doherty Power Amplifier Design for Wideband Multimode Operation

Ayman Barakat, Mury Thian and Vincent Fusco
The Queen’s University of Belfast
United Kingdom
a.barakat@qub.ac.uk; m.thian@qub.ac.uk

Abstract—This paper presents a new variant of broadband Doherty power amplifier that employs a novel output combiner. A new parameter α is introduced to permit a generalized analysis of the recently reported Parallel Doherty power amplifier (PDPA), and hence offer design flexibility. The circuit prototype of the new DPA fabricated using GaN devices exhibits maximum drain efficiency of 85% at 43-dBm peak power and 63% at 6-dB back-off power (BOP). Measured drain efficiency of >60% at peak power across 500-MHz frequency range and >50% at 6-dB BOP across 480-MHz frequency range were achieved, confirming the theoretical wideband characteristics of the new DPA.

Keywords—Broadband; combiner; Doherty; GaN HEMT; load modulation; multiband; power amplifier; transmission line.

I. INTRODUCTION

In Doherty power amplifier (DPA) design, the output combining network plays a pivotal role in facilitating load modulation through which high efficiency can be obtained not only at peak output power but also at back-off powers (BOPs). The conventional DPA (CDPA) architecture, Fig. 1(a), proposed in [1] is effective for single frequency band operations whereas recent research efforts [2]-[7] have focused on developing output combiners that are suited for multiband operations. Demonstrated in [2], the output combiner of the parallel DPA (PDPA) has capability to improve the bandwidth of the CDPA at BOP. This is achieved by reducing the transformation ratio of Z_T (the quarter-wave line at the Carrier PA output) by a factor of two, hence decreasing the loaded quality factor. However, two impedance transformer networks (ITNs), one at the Carrier path and one at the Peaking path, were required to match the standard output combining network system impedance (50Ω) to the nominal Class-E load resistance (25Ω) at peak power. Furthermore, the design procedures described in [2] require nonlinear optimization (tuning) of Z_T and Z_{TA} in order to obtain best achievable efficiency over an intended operating bandwidth.

In this paper, a new parameter α is first introduced to permit the analysis of generalized PDPA, termed here as Generalized DPA (GDPA), Fig. 1(b). The optimum value of α that would give best wideband performance is then determined. From the analysis, it turns out that $\alpha_{opt} = 0.5$ compared to $1/\sqrt{2}$ used in PDPA. Broader bandwidth performance achieved for $\alpha = 0.5$ is due to the fact that (i) the transformation ratio of Z_T at BOP is reduced by a factor of four with respect to CDPA or by a factor of two with respect to PDPA and (ii) Z_2 variation with frequency at peak power is minimized. Importantly, the new analysis allows the output combining network system impedance to be matched directly to the nominal Class-E load resistance at peak power, thereby dispensing the need for the aforementioned two ITNs.

II. OPERATING PRINCIPLE OF GENERALIZED DOHERTY POWER AMPLIFIER (GDPA)

Suppose two identical switch-mode PAs (such as Class E) are used as the Carrier and Peaking PAs and the optimum resistance required by these PAs to achieve maximum efficiency at peak power is R_{opt}. At 6-dB BOP, the Peaking PA is still turned off and the optimum resistance of the Carrier PA

This work has been supported by Marie Curie European Industrial Doctorate (EID) programme ARTISAN, grant no. 316426.
must be set to $2R_{opt}$ in order to satisfy the Doherty load modulation requirement.

The structure of the proposed GDPA is compared with the CDPA in Fig. 1. In CDPA, the combined impedance presented by the Peaking and Carrier branches (R_L) is fixed i.e. $R_{opt}/2$. An ITN is typically required at the output to transform $R_L = R_{opt}/2$ into the standard load impedance of 50 Ω (R_L'). To obtain a broadband performance, this ITN must comprise of multi-section quarter-wave lines resulting in increased circuit complexity and large physical size. In GDPA, two transmission lines (Z_{TA} and Z_{TB}) are added at the Peaking side. A 90° delay transmission line is inserted at the input of the Carrier PA so as to ensure the phase of the signal in the Carrier PA path match the phase of the signal in the Peaking PA path prior to them being combined. The operating principles of GDPA are explained as follows:

a) Analysis at back-off power

At 6-dB BOP, the Carrier PA is ON while the Peaking PA is still OFF. Since the Peaking PA current is zero, the impedance Z_2 is infinity. Owing to two quarter-wave lines Z_{TA} and Z_{TB}, the impedance Z_{TA} is also infinity. At the Carrier side, Z_1 must be set to $2R_{opt}$ to allow maximum efficiency at 6-dB BOP and hence Z_{TA} can be calculated as (1). Since $Z_{TA} = \infty$, the load resistance R_L is simply equal to Z_{1T}.

$$Z_{1T} = \frac{Z_T^2}{Z_1} = \frac{Z_T^2}{2R_{opt}} = R_L \tag{1}$$

b) Analysis at peak power

At peak power, both Carrier and Peaking PAs are ON. As shown in (2a) and (2b), the magnitudes of the Carrier and Peaking currents (I_{1T} and I_{2TA}) must be equal so as the parallel combination of Z_{1T} and Z_{2TA} can be directly matched to R_L.

$$Z_{1T} = R_L \left(1 + \frac{I_{2TA}}{I_{1T}}\right) = 2R_L \tag{2a}$$

$$Z_{2TA} = R_L \left(1 + \frac{I_{1T}}{I_{2TA}}\right) = 2R_L \tag{2b}$$

Z_1 and Z_2 must be set to R_{opt} to allow maximum efficiency at peak power and therefore

$$Z_1 = \frac{Z_T^2}{Z_{1T}} = R_{opt} \tag{3a}$$

$$Z_2 = \frac{Z_{TB}^2}{Z_{TA}^2}Z_{2TA} = R_{opt} \tag{3b}$$

Substitution (2a) into (3a) results in

$$Z_T^2 = 2R_{opt}R_L \tag{4}$$

Substitution (2b) into (3b) results in

$$\frac{Z_{TB}^2}{Z_{TA}^2} = \frac{R_{opt}}{2R_L} \tag{5}$$

From (4) and (5), we can obtain the following relationship

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT COMBINER PARAMETERS</td>
</tr>
<tr>
<td>GDPA</td>
</tr>
<tr>
<td>α</td>
</tr>
<tr>
<td>Z_T</td>
</tr>
<tr>
<td>R_L</td>
</tr>
<tr>
<td>$\frac{Z_{TB}}{Z_{TA}}$</td>
</tr>
</tbody>
</table>

Fig. 2. The relationship between the transformation ratio of Z_T and α at 6-dB BOP. An ultimate broadband performance is achieved when the ratio is unity.

$$\frac{Z_{TB}}{Z_{TA}} = \frac{Z_T}{2R_L} = \alpha \tag{6}$$

Note that α in (6) is constant. The component values of the GDPA can then be derived using (4)-(6) as follows:

$$Z_{TB} = \alpha Z_{TA} \tag{7}$$

$$Z_T = \frac{R_{opt}}{\alpha} \tag{8}$$

$$R_L = \frac{R_{opt}}{2\alpha^2} \tag{9}$$

Table I shows a comparison between GDPA, PDPA, and CDPA output combiner parameters, from which it can be seen that when $\alpha = 1/\sqrt{2}$ GDPA is reduced to PDPA and when $\alpha = 1$ GDPA is reduced to CDPA, implying that PDPA and CDPA are essentially a subset of GDPA. The operational bandwidth can be extended by properly selecting the value of α. For instance, if α is set to 0.5 rather than 1 as in CDPA, the transformation ratio of Z_T at the 6-dB BOP will be reduced by a factor of four (Fig. 2). Fig. 3 shows the effect of frequency variation on Z_2. As the operating frequency moves away from the centre frequency, the magnitude of Z_2 deviates from its optimal value i.e. R_{opt}. It can be observed that $|Z_2|$ variation with frequency is minimal when $\alpha = 0.5$.

$$\frac{Z_{TB}}{Z_{TA}} = \alpha \tag{6}$$
III. BROADBAND GDPA DESIGN METHODOLOGY

An example is given here to illustrate step-by-step design procedures of GDPA. Given $R_L = 50 \Omega$, $R_{opt} = 25 \Omega$, and operating frequency = 2.1-2.6 GHz (corresponds to 21% fractional bandwidth), the output combiner can be designed as follows:

Step 1: Calculate α using (9)

$$\alpha = \frac{R_{opt}}{2R_L} = 0.5$$

This value gives a unity transformation ratio of Z_T at the 6-dB BOP, resulting in an ultimate broadband performance. In addition, this will enhance the impedance matching of Z_2 to R_{opt} and increase the efficiency at peak power level.

Step 2: Calculate Z_T using (8)

$$Z_T = \frac{R_{opt}}{\alpha} = 50 \Omega$$

Step 3: Determine Z_{TA} and Z_{TB}

The value of Z_{TA} is obtained through an optimization using CAD tool to give minimal Z_2 variation with frequency (Fig. 4). Subsequently, the value of Z_{TB} can be computed using (7).

$$Z_{TA} = 70 \Omega$$

$$Z_{TB} = \alpha Z_{TA} = 35 \Omega$$

Fig. 5 shows the final values of the output combiner parameters.

IV. CIRCUIT IMPLEMENTATION AND MEASUREMENT

A circuit prototype was realized on Rogers RO4350B substrate that has a thickness of 0.508 mm, a dielectric constant of 3.66, and a loss tangent of 0.0037. A hybrid coupler 11306-3S from Anaren was used to provide two equal input powers to the Carrier and Peaking PAs as well as a 90° phase shift at the input of the Carrier amplifier. As a result, the 90° delay transmission line depicted in Fig. 1(b) is no longer required. The broadband Class-E PA employing reactance compensation technique reported in [2] was used for both cells. Two CGH40010F GaN HEMTs from Cree were used with drain-source voltage $V_{DC} = 28 V$ and gate voltages $V_{gt} = -2.7 V$ and $V_{gs} = -4.75 V$. Figs. 6 and 7 show the fabricated circuit prototype and measurement setup.

Characterizations using continuous wave (CW) input signal were carried out across 2.1-2.6 GHz frequency range at peak power (36-dBm input power) as well as back-off power (27.5-dBm input power). Measured output power, gain and drain efficiency at peak power level are plotted against frequency in Fig. 8. A maximum drain efficiency of 85.3% is obtained at 2.34 GHz. The Doherty PA exhibits a broadband performance, achieving a drain efficiency >70% within 380-MHz frequency range (2.18-2.56 GHz), >60% within 500-MHz frequency range (2.1-2.6 GHz). The PA delivered 43 ± 2 dBm peak output power over the entire bandwidth.
The circuit performance at 6-dB BOP level is depicted in Fig. 9. A maximum drain efficiency of 63% is observed at 2.22 GHz. The drain efficiency is >50% across 480-MHz bandwidth (2.12-2.6 GHz). Shown in Fig. 10 is the PA performance against output power in the 2.11-2.17 GHz UMTS band. A maximum drain efficiency of 68% and 63% were achieved at peak power (45 dBm) and at 6-dB output BOP, respectively. The performance of the proposed GDPA is summarized and compared with other wideband DPAs in Table II. At both peak power and 6-dB BOP, the new GDPA exhibits highest maximum drain efficiency.

V. CONCLUSION
A generalized analysis of the recently reported PDPA has been described through introduction of parameter α. This results in a new variant of DPA with enhanced bandwidth characteristics, termed as GDPA. Design procedures are given to calculate the output combiner parameters of the GDPA. A circuit prototype was realized using GaN HEMTs to deliver a peak power around 43 dBm. Measurements have shown a broadband performance wherein the drain efficiencies at peak power and 6-dB BOP were, respectively, >60% within 500-MHz frequency range and >50% within 480-MHz frequency range. The compact size and high efficiency performance over a wide bandwidth for this design can introduce it as a good candidate for multiband 2.1-2.6 GHz LTE micro-cell base stations and active antenna array systems.

ACKNOWLEDGMENT
The authors wish to thank Florian Pivit, Senad Bulja, Ray Kearney (Bell Labs Ireland), Jim Knox and Gerry Rafferty (Queen’s University Belfast) for their contribution in this work.
TABLE II
PERFORMANCE SUMMARY AND COMPARISON WITH OTHER PUBLISHED WIDEBAND GAN HEMT DPAS

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Freq. (GHz)</th>
<th>(P_{\text{SAT}}) (dBm)</th>
<th>Peak power</th>
<th>6-dB BOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max/Min DE (%)</td>
<td>BW @ DE>70% (MHz)</td>
<td>Max/Min DE (%)</td>
</tr>
<tr>
<td>[3]</td>
<td>1.7-2.3</td>
<td>53</td>
<td>72/58</td>
<td>160</td>
</tr>
<tr>
<td>[4]</td>
<td>1.7-2.4</td>
<td>41</td>
<td>72/53</td>
<td>150</td>
</tr>
<tr>
<td>[5]</td>
<td>1.96-2.46</td>
<td>42.2-44.2</td>
<td>66/52</td>
<td>0</td>
</tr>
<tr>
<td>[6]</td>
<td>0.75-0.95</td>
<td>48</td>
<td>64/56</td>
<td>0</td>
</tr>
<tr>
<td>[7]</td>
<td>0.73-0.98</td>
<td>42.7-44.6</td>
<td>67/40</td>
<td>0</td>
</tr>
</tbody>
</table>

This work 2.1-2.6 43 85/61 380 63/48 480

REFERENCES

