A Tractable Approach to Uplink Spectral Efficiency of Two-Tier Massive MIMO Cellular HetNets

Published in:
IEEE Communications Letters

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 09. Jan. 2019
A Tractable Approach to Uplink Spectral Efficiency of Two-Tier Massive MIMO Cellular HetNets

Wen Liu, Student Member, IEEE, Shi Jin, Member, IEEE, Chao-Kai Wen, Member, IEEE, Michail Matthaiou, Senior Member, IEEE and Xiaohu You, Fellow, IEEE

Abstract—This letter investigates the uplink spectral efficiency (SE) of a two-tier cellular network, where massive multiple-input multiple-output macro base stations are overlaid with dense small cells. Macro user equipments (MUEs) and small cells with single user equipment uniformly scattered are modeled as two independent homogeneous Poisson point processes. By applying stochastic geometry, we analyze the SE of the multiuser uplink at a macro base station that employs a zero-forcing detector and we obtain a novel lower bound as well as its approximation. According to the simple and near-exact analytical expression, we observe that the ideal way to improve the SE is by increasing the MUE density and the base station antennas synchronously rather than increasing them individually. Furthermore, a large value of path loss exponent has a positive effect on the SE due to the reduced aggregated interference.

Index Terms—Massive MIMO, Poisson point process, small cells, spectral efficiency, stochastic geometry

I. INTRODUCTION

In the emerging 5G communication systems, massive multiple-input multiple-output (MIMO) and small cells are both regarded as critical components [1] and have been extensively studied in recent years. These two promising technologies can be combined when macro cells with massive MIMO base stations (BSs) are overlaid by dense small cells; such a deployment utilizes the excessive number of antennas at macro BS for managing interference meanwhile takes advantage of the smaller propagation distance in small cells to greatly improve the throughput performance of cell edge users and extend coverage [2].

In general, stochastic geometry provides a nature way of modeling the locations of users or BSs and such is particularly relevant to interference analysis [3]. Recent efforts [4,5] have focused mainly on deriving expressions for the outage capacity and approximated distribution of the signal-to-interference-and-noise ratio (SINR), typically by involving a Laplace transform in their final expressions. However, this mathematical technique blurs any engineering insights for network designers.

This paper considers a general two-tier cellular network model in which user equipments (UEs) and small cells are distributed as independent homogeneous Poisson point processes (PPPs). Given the analytical tractability of the PPP model, we derive a novel lower bound on the aggregate spectral efficiency (SE) and further obtain an approximated expression of this lower bound. With this concise expression, we can intuitionally determine how the model parameters influence the aggregate SE of the complex two-tier model.

Notations: The expectation and probability are denoted by \(\mathbb{E}[\cdot] \) and \(\mathbb{P}[\cdot] \), respectively. \(\mathcal{CN}(0, \sigma^2) \) represents the complex Gaussian distribution with zero mean and variance of \(\sigma^2 \), while \(\| \cdot \| \) denotes the Frobenius norm.

II. SYSTEM MODEL

We consider a cellular network consisting of \(B \) (can be extended to infinity over the whole plane) macro tier massive MIMO BSs equipped with \(M \) antennas, which is overlaid with small cells (SCs) each equipped with \(N \) antennas, as explicitly shown in Fig. 1. Single-antenna UEs scattered over both tiers can be classified into two categories, namely, macro UEs (MUEs) and small cell UEs (SUEs), which are served by the BSs and SCs, respectively. This paper focuses on the uplink aggregate SE with fully frequency reuse in both tiers.

In the model of interest, BSs are located in the center of hexagonal cells, which can be approximated by a circular area for the sake of analytical tractability. The MUEs are randomly distributed in the range of the macro cell and can be modeled as a homogeneous PPP with density \(\lambda_m \). Meanwhile, the SCs...
are modeled as a homogeneous PPP with density λ_{SC}. In addition, we assume that only one randomly distributed SUE is associated with each SC within its range in a resource block [2]. From the PPP property [6], we can easily deduce that the location of a SUE experiences an identical distribution with that of SCS, that is, the density of SUES $\lambda_s = \lambda_{SC}$. The radii of BSs and SCS are defined as R_M and R_S, respectively. In addition, the BS has a disk guard zone of radius R_G, within which there are no UEs.

In the co-channel deployment, the $M \times 1$ received signal at the desired BS (i.e., the massive MIMO BS in cell 1) is

$$y = \sum_{b=1}^{B} \mathbf{G}_b \mathbf{A}_b^H x_b + \sum_{b=1}^{B} \Omega_b \mathbf{P}_b^H z_b + \mathbf{n},$$

where $\mathbf{G}_b \in \mathbb{C}^{M \times K_b}$, $\Omega_b \in \mathbb{C}^{M \times S_b}$ denote the propagation matrices of the MUEs and SUEs in cell b to the desired BS and K_b, S_b are the total numbers of MUEs, SUEs in cell b. A typical propagation coefficient, for instance, g_{bjs}, which defines the channel between the bth BS antenna in the bth cell and jth UE in the sth cell, can be modeled as $g_{bjs} = h_{bjs} \beta_{bjs}$, where $h_{bjs} \sim \mathcal{CN}(0,1)$ denotes the independent and identically distributed (i.i.d.) fast fading coefficients. The factor β_{bjs}, which represents large scale fading, is defined as $\beta_{bjs} = r_{bjs}^{-\alpha}$, where α is the path loss exponent. The large scale fading is assumed to be invariant between the two ends regardless of antenna difference [7]. In addition, $\mathbf{A}_b = \text{diag} \left(p_{b1}, p_{b2}, \ldots, p_{bK_b} \right)$ and $\mathbf{P}_b = \text{diag} \left(p_{b1}^S, p_{b2}^S, \ldots, p_{bS_b}^S \right)$ are diagonal power matrices for MUEs and SUEs in cell b; x_b and z_b represent the column transmit vectors of the MUEs and the SUEs to their associated BSs in cell b; and n models the complex additive white Gaussian noise whose entries are i.i.d. with $\mathcal{CN}(0,1)$. For ease of notation, the transmit symbol are normalized as

$$\mathbb{E}[x_b x_b^H] = \mathbf{I}_{K_b}, \mathbb{E}[z_b z_b^H] = \mathbf{I}_{S_b}.$$

Under the assumption of perfect CSI of its serving UEs, the linear zero-forcing (ZF) receiver is employed at the BSs. The received signal after the ZF detector is $r = \mathbf{A}^H y$, where the ZF detection matrix is $\mathbf{A} = \mathbf{G}_1 (\mathbf{G}_1^H \mathbf{G}_1)^{-1}$. Then, the detected signal of the kth MUE, which is equivalent to the kth element of r, can be further described as

$$r_k = \sqrt{p^{M}_{Ik}} x_k + \sum_{b=2}^{B} \sum_{c=1}^{K_b} \sqrt{p^{M}_{bc}} \mathbf{G}_b^H \mathbf{G}_{bc} x_{bc}$$

$$+ \sum_{b=1}^{B} \sum_{s=1}^{S_b} \sqrt{p^{S}_{bs}} \mathbf{A}_b^H \omega_{bs} z_b + \mathbf{a}_k^H \mathbf{n},$$

where \mathbf{a}_k, ω_{bs} are the kth, sth columns of \mathbf{A}, \mathbf{G}_b, Ω_b, respectively, and p_{bc} denotes the uplink power of the cth UE in the bth cell. In this paper, we apply the Channel Inversion power control scheme, i.e., $p_{bc} = \beta_{bc} = r_{bc}^{-1}$, to compensate for large scale fading. This power control scheme is widely used since it eliminates the near-far effect and guarantees the performance of cell edge UEs, only requiring long-term information [4]. Therefore, the SINR of the kth MUE is written as

$$\text{SINR}_k = \frac{\sum_{b=2}^{B} \sum_{c=1}^{K_b} p^{M}_{bc} |\mathbf{a}_k^H \mathbf{G}_{bc}|^2 + \sum_{b=1}^{B} \sum_{s=1}^{S_b} p^{S}_{bs} |\mathbf{a}_k^H \omega_{bs}|^2 + |\mathbf{a}_k|_2^2}{\sum_{b=1}^{B} \sum_{s=1}^{S_b} \sqrt{p^{S}_{bs}} \mathbf{A}_b^H \omega_{bs} z_b + |\mathbf{n}|_2^2}.$$

(3)

From (3), we observe that the MUE interference originates from inter-cells, whereas SUE interference originates from both intra- and inter-cells. The average SE of the kth MUE can be obtained through

$$R_k = \mathbb{E}[\log_2 (1 + \text{SINR}_k)],$$

(4)

where the expectation is taken over \mathbf{a}_k, \mathbf{G}_{bc}, and ω_{bs}.

III. Spectral Efficiency Analysis

The average aggregate SE of MUEs in the desired cell is defined as

$$R \triangleq \sum_{K_1=0}^{K} \mathbb{E} \left[\sum_{k=1}^{K_1} \log_2 (1 + \text{SINR}_k) \right],$$

(5)

where K, subject to a Poisson(μ_m) distribution, denotes the random variable of the MUE number in the desired cell and $\mu_m = \lambda_M A_{BS}$ denotes the mean number of MUEs, where λ_M is the MUE density and A_{BS} is the area of the macro cell. By substituting $\mathbb{P}(K = K_1) = \frac{\mu_m^{K_1} e^{-\mu_m}}{K_1!}$ into (5), we derive

$$R = \sum_{K_1=0}^{\infty} K_1 \mathbb{E} \left[\log_2 (1 + \text{SINR}_k) | K_1 \right] \cdot \frac{\mu_m^{K_1} e^{-\mu_m}}{K_1!},$$

(6)

where we can extract K_1 from the expectation due to the fact that MUEs are generated from the same PPP.

To calculate the aggregate SE of MUEs, we have to determine the SE of a typical user, as expressed in (4). However, this task is extremely difficult to accomplish. As such, we seek a lower bound on the SE and its approximation in the following subsections.

A. Lower Bound on the Spectral Efficiency

First, we rewrite (3) into a concise form

$$\text{SINR}_k = \frac{\sum_{i=1}^{N_1} \mu_i \|\mathbf{a}_k^H \mathbf{G}_i^H\|^2 + \sum_{j=1}^{N_2} \mu_j \|\mathbf{a}_k^H \omega_j\|^2 + |\mathbf{a}_k|_2^2}{\sum_{l=1}^{N_1} \mu_l \|\mathbf{a}_k\|^2 + \sum_{j=1}^{N_2} \mu_j \|\mathbf{a}_k\|^2 + 1}$$

(7)

where, for simplicity, we have reduced the subscripts of p^{M}_{bc}, p^{S}_{bs}, ω_{bs}, and let the total number of MUE and SUE interferers be $N_1 = \sum_{b=2}^{B} K_b$ and $N_2 = \sum_{b=1}^{B} S_b$, respectively. By applying Jensen’s inequality to $\mathbb{E} \left[\log_2 (1 + \text{SINR}_k) | K_1 \right]$ and using the fact that I and χ_0 are independent, we obtain

$$\mathbb{E}[\log_2 (1 + \text{SINR}_k) | K_1] \geq \log_2 \left(1 + \frac{1}{\mathbb{E}[(I + 1)]} \mathbb{E} \left[\frac{\chi_0}{I} \right] \right),$$

(8)

where the condition term is omitted for simplicity.

Assume that a UE is uniformly distributed in the circular area with radius R but excluded from the guard zone with radius R_G. Then, the probability density function (pdf) of the distance r from UE to the center is given by

$$f(r) = \begin{cases} \frac{2r}{R^2 - R_G^2}, & r \in (R_G, R], \\ 0, & \text{others}. \end{cases}$$

(9)

Adopting this distance pdf, we have the following theorem.

Theorem 1: The lower bound on the aggregate SE in the desired cell is given below and $c_{GS} = \frac{R}{R_G}$, $c_{GM} = \frac{R_G}{R_M}$

$$R_{\text{lower}} = \sum_{K_1=0}^{\infty} K_1 \frac{\mu^{K_1} e^{-\mu_m}}{K_1!} \log_2 \left(1 + \frac{M - K_1}{I_1 + I_2 + 1} \right).$$

(10)
where \(I_1 = 4\pi \lambda_m \frac{R_m^2(1-c_{GM}^{2\alpha})}{(\alpha^2-4)(1-c_{GM})} \) and \(I_2 = 4\pi \lambda \frac{R_m^2 c_{GM}^{2\alpha}}{\alpha^2-4} \).

Proof: See Appendix A.

Theorem 1 shows how the aggregate SE scales with the system parameters, namely, the MUE density \(\lambda_m \) (\(M \xi \) can also represent MUE density when area is a constant), the SUE density \(\lambda_s \), BS antenna number \(M \), and the path loss exponent \(\alpha \). These parameters will be discussed in detail in the next subsection by evaluating a more simplified expression.

B. Approximated Lower Bound Analysis

The lower bound expression (10) consists of the sum of infinite series, which is still difficult to evaluate. Alternatively, we notice that the variable of the summation \(K \) only appears in the logarithmic function in the form of \(M^{K-1} \). Thus, we approximate the logarithmic function in the form of \(\log_2 e \) as \(\frac{M}{100,000} \) and obtain the final result with some simple algebra.

The approximation by disregarding \(K \) renders a closed-form expression without infinite series. This expression can be extremely close to \(R_{\text{lower}} \) when \(M \) becomes large. With the simple and clear expression of (11), we present some insights into properties of this two-tier network.

Corollary 1: The lower bound on the aggregate SE can be approximated by

\[
R_{\text{lower}} \approx \hat{R}_{\text{lower}} = \mu_m \log_2 e \left(1 + \frac{M}{4\mu_m \frac{R_m^2 c_{GM}^{2\alpha}}{\alpha^2-4} + 4\pi \lambda_s \frac{R_m^2 c_{GM}^{2\alpha}}{\alpha^2-4} + 1} \right). \tag{11}
\]

Proof: As \(M \gg K_1, c_{GM} \ll 1 \), we omit \(K_1, c_{GM} \) in (10) and obtain the final result with some simple algebra.

The approximation by disregarding \(K_1 \) renders a closed-form expression without infinite series. This expression can be extremely close to \(R_{\text{lower}} \) when \(M \) becomes large. With the simple and clear expression of (11), we present some insights into properties of this two-tier network.

Corollary 2: As \(\mu_m \to \infty \), which states that the mean number of MUEs in each macro cell approaches infinity, the approximation of the lower bound is given by

\[
\left(\hat{R}_{\text{lower}} \right)_{\mu_m \to \infty} = \frac{M}{4} \left(\frac{\alpha^2 - 4}{\alpha^2 - 4} \right) \log_2 e. \tag{12}
\]

Proof: Applying the fact that \(\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \) to (11), we obtain the desired result.

Remark 1: Several parameters in (11) provide opportunities to enhance the aggregate SE, such as increasing the MUE density. However, **Corollary 2** suggests that the aggregate SE converges to a certain value in terms of \(M \) and \(\alpha \) when we densify MUE without constraint, which, however, diminishes the average SE of each MUE. Since dense deployment causes heavy interference, a tradeoff exists between the average SE and the aggregate SE. Therefore, after ensuring a certain average SE, the MUE density can be increased as far as possible to obtain the highest aggregate SE.

Remark 2: From (11), the aggregate SE can also be improved by increasing \(M \). To this end, we take the derivative of (11) w.r.t. \(M \) and obtain

\[
\tau_M = \frac{d\hat{R}_{\text{lower}}}{dM} = \mu_m \log_2 e \left(1 + \frac{M}{4\mu_m \frac{R_m^2 c_{GM}^{2\alpha}}{\alpha^2-4} + 4\pi \lambda_s \frac{R_m^2 c_{GM}^{2\alpha}}{\alpha^2-4} + 1} \right). \tag{13}
\]

We find \(\tau_M \to 0 \) as \(M \to \infty \). This means that if \(\mu_m \) and the other parameters are fixed, the slope of the aggregate SE decreases to zero. Therefore, by merely increasing the number of BS antennas we cannot avail of a sustainable growth of the aggregate SE because \(M \) appears only inside the logarithm in (11). By reforming (13), we find that the slope is determined by the ratio \(\frac{M}{\mu_m} \). Therefore, if \(\mu_m \) increases together with \(M \) to infinity while keeping a fixed ratio \(\frac{M}{\mu_m} \), the slope does not converge to 0 but to

\[
\tau_M \to \frac{\log_2 e}{\frac{1}{\alpha^2-4} + c}. \tag{14}
\]

This result supports the promising benefit of massive MIMO topologies in two-tier cellular networks.

IV. Numerical Results

We consider a conventional seven-cell cellular network model. The parameters used in the simulations are summarized in Table I. All simulation points have been averaged over 100,000 different channel realizations and UE, SC locations.

TABLE I SIMULATION PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(R_m)</th>
<th>(R_s)</th>
<th>(R_G)</th>
<th>(\lambda_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>1000 m</td>
<td>40 m</td>
<td>40 m</td>
<td>(5 \times 10^{-3}) m(^{-2})</td>
</tr>
</tbody>
</table>

![Fig. 2. The aggregate SE versus mean number of MUEs per cell with \(\alpha = 4 \) and \(M = 500 \) satisfying \(M \gg K_1(\mu_m) \).](image)

![Fig. 3. The aggregate SE versus BS antenna number for different \(\mu_m \) with \(\alpha = 4 \).](image)
Another independent homogeneous PPP interferers as a homogeneous PPP, we first deal with the expectation of the aggregation interference.

$$E \left[\left| g_i \right|^2 \right] = \beta_i = \hat{r}_i^{-\alpha} \quad \text{and} \quad E \left[\left| \omega_j \right|^2 \right] = \beta_j = \hat{r}_j^{-\alpha}, \quad (16)$$

Substituting the above and (9) into (15), we obtain

$$E [I] = E_{\Phi_m} \left[\sum_i \left(\int_{R_m} p_i \left(\frac{2I_i}{R_m - R_G} \right) \hat{r}_i^{-\alpha} \right) \right] + E_{\Phi_s} \left[\sum_j \left(\int_0^{R_G} p_j \left(\frac{2I_j}{R_G} \right) \hat{r}_j^{-\alpha} \right) \right], \quad (17)$$

where we have applied the channel inversion power control scheme. Then, we deal with the expectations over the sets \(\Phi_m \) and \(\Phi_s \). To this end, we apply the property of PPP [3, Lemma A.3] and consider the interferers location range to determine the lower and upper limits of the integrals. Hence, we get

$$E [I] = \int_{R_m}^{\infty} 2\pi\lambda_m \left(\int_{R_m}^{R_G} \left(\frac{2I_i}{R_m - R_G} \right) \hat{r}_i^{-\alpha} \cdot r \cdot dr \right)$$

$$+ \int_{R_G}^{\infty} 2\pi\lambda_s \left(\int_0^{R_G} \left(\frac{2I_j}{R_G} \right) \hat{r}_j^{-\alpha} \cdot r \cdot dr \right) \quad (18)$$

$$= 4\pi\lambda_m \left(\frac{R_G^2}{\alpha^2} - \frac{1}{\alpha^2} \right) + \pi\lambda_s \left(\frac{R_G^2}{\alpha^2} - 2 \cdot \frac{1}{\alpha^2} \right),$$

where the path loss exponent \(\alpha > 2 \).

Next, we deal with \(E \left[\lambda_0 p_{1k}^M \right] \). Recall that \(\lambda_0 = \left| a_{kk} \right|^2 = \left| A_1 A_{kk} \right| \). Using the identity [8], we obtain the final result

$$E \left[\lambda_0 p_{1k}^M \right] = \frac{1}{p_{1k}^M \hat{r}_1^{2\alpha} (M - K)} = \frac{1}{M - K}, \quad (19)$$

where the second equality follows from \(p_{1k}^M = \hat{r}_1^{2\alpha} = \frac{1}{M - K} \).

Finally, substituting (18), (19) into (8), we immediately arrive at the lower bound on the aggregate SE.

Appendix A

Proof of Theorem 1

From (8), the problem of deriving the lower bound is now reduced to evaluating \(E [I + 1] \) and \(E [\lambda_0 p_{1k}^M] \). We first deal with the expectation of the aggregation interference. Thanks to Slivnyak’s theorem [3], we can model MUE interferers as a homogeneous PPP \(\Phi_m \) and SUE interferers as another independent homogeneous PPP \(\Phi_s \) without changing the density. From (7) and (8), we notice that the power, i.e., \(p_i \), and the interfering channel vector are statistically independent. Therefore, the expectation of the aggregation interference is given by

$$E [I] = E_{\Phi_m} \left[\sum_i E \left[p_i^M \right] E \left[g_i^2 \right] \right] + E_{\Phi_s} \left[\sum_j E \left[p_j^S \right] E \left[\omega_j \right] \right], \quad (15)$$

where \(g_i = \frac{a_i^H \mathbf{g}_i}{\|a_i\|} \) and \(\omega_j = \frac{a_j^H \mathbf{\omega}_j}{\|a_j\|} \). Note that the entries of \(\mathbf{g}_i \) and \(\mathbf{\omega}_j \) are i.i.d. random variables with \(\mathcal{CN}(0, \beta_j) \),

where \(\beta \) represents the large scale fading coefficient. In addition, \(\hat{a}_k = \frac{a_k^H \mathbf{e}_k}{\|a_k\|} \) can be regarded as a location vector with \(\|\hat{a}_k\|^2 = 1 \). Thus, with the independent nature between \(\hat{a}_k \) and \((\mathbf{g}_i, \mathbf{\omega}_j) \), together with the property that the sum of independent Gaussian variables is also Gaussian, we have

$$\tilde{g}_i \sim \mathcal{CN}(0, \hat{\beta}_i) \quad \text{and} \quad \tilde{\omega}_j \sim \mathcal{CN}(0, \hat{\beta}_j).$$

In particular, we have

$$E \left[\tilde{g}_i \right] = \beta_i = \hat{r}_i^{-\alpha} \quad \text{and} \quad E \left[\tilde{\omega}_j \right] = \beta_j = \hat{r}_j^{-\alpha}. \quad (16)$$

Substituting the above and (9) into (15), we obtain

$$E [I] = E_{\Phi_m} \left[\sum_i \left(\int_{R_m}^{R_G} \frac{2I_i}{R_m - R_G} \hat{r}_i^{-\alpha} \right) \right] + E_{\Phi_s} \left[\sum_j \left(\int_0^{R_G} \frac{2I_j}{R_G} \hat{r}_j^{-\alpha} \right) \right], \quad (17)$$

where we have applied the channel inversion power control scheme. Then, we deal with the expectations over the sets \(\Phi_m \) and \(\Phi_s \). To this end, we apply the property of PPP [3, Lemma A.3] and consider the interferers location range to determine the lower and upper limits of the integrals. Hence, we get

$$E [I] = \int_{R_m}^{\infty} 2\pi\lambda_m \left(\int_{R_m}^{R_G} \frac{2I_i}{R_m - R_G} \hat{r}_i^{-\alpha} \cdot r \cdot dr \right)$$

$$+ \int_{R_G}^{\infty} 2\pi\lambda_s \left(\int_0^{R_G} \frac{2I_j}{R_G} \hat{r}_j^{-\alpha} \cdot r \cdot dr \right) \quad (18)$$

$$= 4\pi\lambda_m \left(\frac{R_G^2}{\alpha^2} - \frac{1}{\alpha^2} \right) + \pi\lambda_s \left(\frac{R_G^2}{\alpha^2} - 2 \cdot \frac{1}{\alpha^2} \right),$$

where the path loss exponent \(\alpha > 2 \).

Next, we deal with \(E \left[\lambda_0 p_{1k}^M \right] \). Recall that \(\lambda_0 = \left| a_{kk} \right|^2 = \left| A_1 A_{kk} \right| \). Using the identity [8], we obtain the final result

$$E \left[\lambda_0 p_{1k}^M \right] = \frac{1}{p_{1k}^M \hat{r}_1^{2\alpha} (M - K)} = \frac{1}{M - K}, \quad (19)$$

where the second equality follows from \(p_{1k}^M = \hat{r}_1^{2\alpha} = \frac{1}{M - K} \).

Finally, substituting (18), (19) into (8), we immediately arrive at the lower bound on the aggregate SE.

References

