Do changes in illness perceptions predict changes in psychological distress among oesophageal cancer survivors?

Published in: Journal of Health Psychology

Document Version: Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Do Changes in Illness Perceptions Predict Changes in Psychological Distress among Oesophageal Cancer Survivors?

Martin Dempster¹, Noleen K. McCorry¹, Emma Brennan¹, Michael Donnelly¹, Liam J. Murray¹, Brian T. Johnston²

Abstract
This study aimed to examine whether changes in the illness perceptions of oesophageal cancer survivors explain changes in their levels of psychological distress relative to demographic and biomedical variables and coping strategies. Oesophageal cancer survivors completed the Illness Perception Questionnaire – Revised, the Cancer Coping Questionnaire and the Hospital Anxiety and Depression Scale at two points in time, 12 months apart. Cluster analysis was used to identify groups of respondents who reported a similar profile of change in their illness perception scores over time. Findings suggested that enhancing control cognitions and encouraging a positive focus coping strategy may be important in improving psychological health.

Keywords
Cancer, oesophagus, depression, anxiety, illness perceptions

In order to develop effective interventions to address psychological distress among people diagnosed with cancer, it is important that we understand the types of cognitions that are associated with higher levels of distress among this population. Previous research indicates that Leventhal’s Self-Regulatory Model (Leventhal et al., 1980) may be a useful approach to clarifying the interrelationships among these cognitive and emotional constructs (Llewellyn et al., 2007; Miller et al., 2005; Rozema et al., 2009; Scharloo et al., 2005; Traeger et al., 2009).

Leventhal’s Self-Regulatory Model (SRM) suggests that when an individual is confronted with an illness or condition, they will attempt to assign meaning to this illness by accessing their perceptions about the illness. These illness perceptions will be influenced by the individual’s emotional state and their emotional state will be influenced by their perceptions of the illness. The SRM proposes that, in an effort to restore normal functioning, individuals will develop coping strategies (based on their illness perceptions

¹Queen’s University Belfast, N. Ireland
²Royal Group of Hospitals, Belfast Health & Social Care Trust, N. Ireland

Corresponding author:
Martin Dempster, School of Psychology, Queen’s University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland.
Email: m.dempster@qub.ac.uk
and emotional state), which will then be evaluated in terms of their success in restoring equilibrium. The result of this evaluation may be a change in coping strategy and/or a change in perceptions about the illness. In summary, the model suggests that a person’s perceptions about an illness and their coping strategies can have an impact on their psychological well-being.

There is a growing body of research demonstrating strong relationships between the illness perceptions component of this model and (physical and psychological) health outcomes (Cameron and Moss-Morris, 2004). For example, illness perceptions have been shown to explain a significant proportion of the variance in psychological distress in head and neck cancer (Llewellyn et al., 2007; Scharloo et al., 2005), in breast cancer (Miller et al., 2005), in prostate cancer (Traeger et al., 2009) and in a range of other chronic illnesses (e.g. Cartwright et al., 2009; Dorrian et al., 2009; Evans and Norman, 2009), even after controlling for disease-related variables.

Most of the research conducted in this area has used a cross-sectional design. The information provided in these studies is useful to indicate the types of illness perceptions and coping strategies that are associated with psychological distress, but stronger evidence is required to indicate that an intervention based on illness perceptions would be likely to change levels of psychological distress. Therefore, longitudinal data are required to examine how any changes in illness perceptions are related to any changes in psychological distress.

The production of longitudinal research in the area has mostly been a recent development. Stafford et al. (2009) demonstrate that beliefs about the consequences of coronary artery disease are related to depressive symptomatology six months later but not to changes in depression over the six-month period; and Skinner et al. (2006) showed that perceptions of coherence, chronicity, control and consequences of Type 2 diabetes were associated with some quality of life outcomes three months later. In the area of cancer, Llewellyn et al. (2007) demonstrate that beliefs about the chronicity of head and neck cancer are related to depressive symptoms six to eight months later, but not to symptoms of anxiety or assessments of quality of life. On the basis of these studies, there is no clear pattern of relationships between illness perceptions and health outcomes over time. The lack of consensus may be a result of the different populations in which the research was conducted and it may be the case that the nature of the longitudinal relationship between illness perceptions and health outcomes is specific to the population under investigation.

In addition, none of these longitudinal studies address the question of whether changes in illness perceptions are likely to lead to changes in health outcomes. Rather, they all focus on the ability of illness perceptions at one point in time to predict health outcomes at a later point in time. The need for an intervention to improve health outcomes based on illness perceptions would be further strengthened if research demonstrated that these health outcomes changed in line with changes in illness perceptions.

Foster et al. (2008) examined factors that predicted changes (over six months) in assessments of disability among people with low back pain and showed that changes in beliefs about consequences, control and emotional representations of low back pain were significant predictors. In a more recent and longer term study, Bijsterbosch et al. (2009) have demonstrated that changes in beliefs about consequences, chronicity, control, coherence and emotional representations of osteoarthritis are related to changes in levels of disability over a six-year period. The relationship between changes in illness perceptions and changes in other measures of physical functioning among this sample of people with osteoarthritis was confirmed by Kaptein et al. (2010). These are important studies which provide a real impetus for the development of illness perception based interventions to improve physical functioning, at least within these populations.

Nevertheless, there is no published research which has examined the relationship between changes in illness perceptions and changes in
psychological health outcomes. The present study aims to address that gap.

Method

Participants were recruited via the Oesophageal Patients’ Association (OPA) UK database. The OPA is a support group formed to help patients and their families cope with the difficulties arising from the treatment associated with oesophageal cancer. Cancer survivors on the database were mailed a questionnaire booklet containing items relating to demographic information, medical history (time since diagnosis and number of comorbidities) and the following questionnaires:

- **The Hospital Anxiety and Depression Scale (HADS)** (Snaith and Zigmond, 1983). This is a 14-item scale which is divided into two dimensions – anxiety (seven items) and depression (seven items). Respondents choose one from four responses to each item. Their responses are then summed within dimensions and a total score for each dimension is obtained, with higher scores representing higher levels of anxiety and depression. Scores for the anxiety dimension and the depression dimension can be categorized as follows: 0–7: normal, 8–10: mild, 11–14: moderate, 15–21: severe. The HADS has been validated among a population of people with cancer (Smith et al., 2002) and is the most frequently used screening tool for psychological distress in cancer care (Reuter and Härter, 2001). A review of the optimal cut-off values for the HADS indicates that a score of 8 or more should be used to provide an appropriate balance of sensitivity and specificity (approximately 0.8 in each case), when assessed against the structured clinical interview based on the DSM criteria (Bjelland et al., 2002).

- **The Cancer Coping Questionnaire (CCQ)** (Moorey et al., 2003). This is a 21-item questionnaire which assesses five dimensions: reflection/relaxation coping; positive focus; diversion; planning; and use of interpersonal support. Higher scores on each scale indicate that this coping strategy is used more often. Psychometric properties are sound (Moorey et al., 2003).

- **Illness Perception Questionnaire – Revised (IPQ-R)** (Moss-Morris et al., 2002). This questionnaire was used to assess the following illness cognitions: identity; timeline acute/chronic; timeline cyclical; personal control; treatment control; consequences; cause; and illness coherence. The identity scale addresses symptoms that describe the condition. Higher scores on the personal control and treatment control scales indicate that the person has a stronger belief in the effectiveness of their ability or the treatment to control the symptoms of oesophageal cancer; higher scores on the consequences scale suggest that the person perceives more severe consequences of oesophageal cancer; higher scores on the illness coherence scale indicate that the person has a clearer understanding of the condition; higher scores on the timeline acute/chronic and timeline cyclical scales indicate a stronger belief that the condition is chronic (rather than acute) and goes through cycles of getting better and worse rather than remaining stable. The 18 items which measure the perceptions of the causes of oesophageal cancer were factor analysed (in line with the questionnaire authors’ suggestion) and were found to load on three factors, which were labelled emotional causes (e.g. stress or worry), behavioural causes (e.g. smoking or alcohol) and externalized causes (e.g. hereditary or a virus). Higher scores on the cause scales indicate a stronger belief that this was a cause of the oesophageal cancer. The IPQ-R has sound psychometric properties, with evidence for construct, discriminant and predictive validity and for internal and test–retest reliability (Moss-Morris et al., 2002).

All respondents were mailed the same questionnaires approximately one year later.
The research was approved by the University Ethics Committee.

Statistical analysis

Changes in the IPQ-R, CCQ and HADS scales were calculated by subtracting the score at the second time point from the score at the first time point. Consequently, a negative change score represents an increase in scores on the scale over time and a positive change score indicates a decrease in scores on the scale over time.

Following the method suggested by Clatworthy et al. (2007) and applied to the analysis of change scores by Kaptein et al. (2010), change scores in illness perceptions were subjected to cluster analysis, which provides an indication of people who share a similar illness representation schema. A two-stage cluster analysis was conducted. Initially, all change scores were converted to Z scores and Ward’s clustering method was used to identify the number of clusters. A k-means analysis was then conducted using the number of clusters and the centroids identified by Ward’s method. The squared Euclidean distance was the proximity measure chosen. On the basis of the dendrogram and the agglomeration schedule, four clusters were considered to be the optimum solution.

To examine the relationship between changes in illness perceptions and changes in outcomes, we conducted separate hierarchical regression analyses for the change in each outcome variable (anxiety and depression), with demographic and medical details, cluster membership, and changes in coping scores entered as separate blocks. As there were four clusters identified, these were included in the regression analyses as three dummy variables, with cluster 1 as the reference category.

Results

A total of 189 oesophageal cancer survivors provided complete data on all the questionnaires at both points in time. Respondents were, on average, 64.8 years old (SD = 8.83), approximately 74 per cent (140/189) were male and they had been diagnosed with oesophageal cancer for a median time of 48 months prior to completing the questionnaire. All participants had been diagnosed with early stage oesophageal cancer and, consequently, had undergone surgery to remove the cancer from their oesophagus.

Descriptive statistics for change in all scales between the two points in time are presented in Table 1. Most notable, in Table 1, is the change on the scores on the HADS scales, with a significant and very large change reported on both the anxiety and depression scales. When we examine these scores using the cut-off point suggested by Bjelland et al. (2002) to classify respondents into probable anxiety or not and probable depression or not, we find that 45 per cent of respondents (85/189) reported no change in anxiety status across time, with the remaining 55 per cent (104/189) moving from the no anxiety to anxiety category over time. In the case of depression scores, 24 per cent (46/189) remained steady over time, whereas 76 per cent (143/189) reported a deterioration. No-one reported an improvement in anxiety or depression over time, in terms of these categories.

Table 2 provides the centroids for the four clusters identified in the cluster analysis for change in illness perception variables. The centroids suggest that respondents in cluster 1 have more positive cognitions over time and respondents in cluster 2 have a stronger belief in personal control but less belief in treatment control over time. The people in cluster 2 also demonstrated an increase in the strength of their belief that their condition was chronic rather than acute, and express a slightly stronger belief in emotional or externalized causes for their oesophageal cancer. Cluster 3 is characterized by generally more negative cognitions over time, and cluster 4 appears to group respondents together who have increased their belief that their condition is cyclical, they have less understanding of their condition and report experiencing more symptoms over time.

The covariates in the regression model specified in Table 3 explained a total of 12 per cent of the variance in change in anxiety ($F(12, 176)$
Table 1. Change over time

<table>
<thead>
<tr>
<th>Potential</th>
<th>Time 1 Mean (SD)</th>
<th>Time 2 Mean (SD)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HADS Anxiety</td>
<td>10.5</td>
<td>6.17 (4.62)</td>
<td>13.40 (4.70)</td>
<td>32.783</td>
</tr>
<tr>
<td>HADS Depression</td>
<td>10.5</td>
<td>4.50 (3.66)</td>
<td>11.64 (3.65)</td>
<td>41.455</td>
</tr>
<tr>
<td>CCQ Reflection/relaxation</td>
<td>12.5</td>
<td>9.18 (3.12)</td>
<td>9.21 (3.01)</td>
<td>0.154</td>
</tr>
<tr>
<td>CCQ Positive focus</td>
<td>7.5</td>
<td>7.94 (2.19)</td>
<td>7.84 (2.15)</td>
<td>0.667</td>
</tr>
<tr>
<td>CCQ Diversion</td>
<td>7.5</td>
<td>6.41 (2.13)</td>
<td>6.43 (2.12)</td>
<td>0.118</td>
</tr>
<tr>
<td>CCQ Planning</td>
<td>7.5</td>
<td>7.39 (2.45)</td>
<td>7.25 (2.43)</td>
<td>0.870</td>
</tr>
<tr>
<td>CCQ Interpersonal</td>
<td>17.5</td>
<td>14.05 (5.46)</td>
<td>13.58 (5.07)</td>
<td>1.493</td>
</tr>
<tr>
<td>IPQ Acute/chronic timeline</td>
<td>18</td>
<td>23.25 (4.33)</td>
<td>23.81 (4.23)</td>
<td>1.937</td>
</tr>
<tr>
<td>IPQ Cyclical timeline</td>
<td>14</td>
<td>12.09 (3.61)</td>
<td>12.36 (3.65)</td>
<td>1.031</td>
</tr>
<tr>
<td>IPQ Treatment control</td>
<td>15</td>
<td>17.03 (3.54)</td>
<td>16.26 (3.43)</td>
<td>2.800</td>
</tr>
<tr>
<td>IPQ Emotional cause</td>
<td>15</td>
<td>11.77 (3.71)</td>
<td>12.06 (3.34)</td>
<td>1.336</td>
</tr>
<tr>
<td>IPQ Behavioural cause</td>
<td>12</td>
<td>10.25 (3.69)</td>
<td>10.21 (3.61)</td>
<td>0.218</td>
</tr>
<tr>
<td>IPQ Externalized cause</td>
<td>12</td>
<td>14.86 (3.46)</td>
<td>14.79 (3.15)</td>
<td>0.293</td>
</tr>
<tr>
<td>IPQ Consequences</td>
<td>18</td>
<td>20.72 (4.60)</td>
<td>20.12 (4.78)</td>
<td>2.151</td>
</tr>
<tr>
<td>IPQ Personal control</td>
<td>18</td>
<td>20.14 (4.78)</td>
<td>19.75 (4.63)</td>
<td>1.122</td>
</tr>
<tr>
<td>IPQ Illness coherence</td>
<td>15</td>
<td>19.40 (3.89)</td>
<td>19.24 (3.58)</td>
<td>0.617</td>
</tr>
<tr>
<td>IPQ Identity</td>
<td>7.5</td>
<td>7.39 (3.09)</td>
<td>5.57 (3.28)</td>
<td>7.900</td>
</tr>
</tbody>
</table>

Table 2. Cluster centroids for changes in illness perceptions clusters

<table>
<thead>
<tr>
<th>Cluster 1 (n = 57) Mean (SD)</th>
<th>Cluster 2 (n = 53) Mean (SD)</th>
<th>Cluster 3 (n = 44) Mean (SD)</th>
<th>Cluster 4 (n = 35) Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPQ Acute/chronic timeline</td>
<td>2.16 (3.70)</td>
<td>–1.26 (2.60)</td>
<td>–3.52 (4.16)</td>
</tr>
<tr>
<td>IPQ Cyclical timeline</td>
<td>1.16 (2.96)</td>
<td>1.38 (2.63)</td>
<td>–0.91 (3.31)</td>
</tr>
<tr>
<td>IPQ Treatment control</td>
<td>–1.21 (3.22)</td>
<td>2.07 (2.87)</td>
<td>3.12 (3.91)</td>
</tr>
<tr>
<td>IPQ Emotional cause</td>
<td>0.53 (3.16)</td>
<td>–0.64 (2.86)</td>
<td>0.25 (2.63)</td>
</tr>
<tr>
<td>IPQ Behavioural cause</td>
<td>0.98 (2.52)</td>
<td>0.06 (2.13)</td>
<td>–0.09 (1.64)</td>
</tr>
<tr>
<td>IPQ Externalised cause</td>
<td>1.77 (2.68)</td>
<td>–0.47 (2.22)</td>
<td>0.23 (2.79)</td>
</tr>
<tr>
<td>IPQ Consequences</td>
<td>2.05 (3.26)</td>
<td>2.11 (2.93)</td>
<td>–2.05 (3.18)</td>
</tr>
<tr>
<td>IPQ Personal control</td>
<td>1.81 (3.53)</td>
<td>–2.17 (2.53)</td>
<td>4.50 (4.54)</td>
</tr>
<tr>
<td>IPQ Illness coherence</td>
<td>–1.30 (3.21)</td>
<td>–0.57 (2.89)</td>
<td>1.39 (4.22)</td>
</tr>
<tr>
<td>IPQ Identity</td>
<td>2.25 (3.18)</td>
<td>3.19 (2.97)</td>
<td>1.18 (2.69)</td>
</tr>
</tbody>
</table>

= 2.056, p = .022). The 12 per cent of the variance in change in anxiety explained by the model is allocated among the separate blocks of variables as follows. The block containing the medical and demographic variables explained 5 per cent of the variance in change in anxiety; the illness cognitions clusters explained an additional 3 per cent of the variance in change in anxiety; and the coping variables explained an additional 4 per cent of the variance in change in anxiety scores.

The regression model specified in Table 4 explained a total of 11 per cent of the variance in change in depression (\(F(12, 176) = 1.776, p = .055 \)). The medical and demographic variables explained 1 per cent of the variance in change in depression scores; the illness cognitions clusters explained an additional 4 per cent of the variance in change in depression scores; and the coping variables explained a further 6 per cent of the variance in change in depression scores.
Tables 3 and 4 indicate that the anxiety and depression levels of those in cluster 3 increase significantly more over time than those in cluster 1. Furthermore, an increase in the use of interpersonal interaction as a coping strategy is significantly associated with an increase in anxiety levels and an increase in the use of reflection/relaxation as a coping strategy is significantly associated with an increase in depression levels. Depression levels decrease significantly over time when a positive focus coping strategy is adopted.

Discussion

The research presented here indicates that oesophageal cancer survivors experience levels of symptoms of anxiety and depression similar to that reported for people with other head and neck cancers (Hodges and Humphris, 2009; Llewellyn et al., 2007) but higher than rates reported for other breast, prostate, bronchial and gastrointestinal cancers (Frick et al., 2007; Nordin and Glimelius, 1999). It is possible that the higher rates of psychological distress can be
explained by the consequences of oesophageal
and head and neck cancer, which have a poten-
tial impact on appearance and social function-
ing (McCorry et al., 2009).

Disconcertingly, symptoms of anxiety and
depression increased significantly within the
sample over the 12-month period of the study,
with the majority of the sample becoming anx-
ious or depressed during this time. Regression
analyses were conducted in an attempt to explain
why this deterioration in psychological health
occurred. The regression models were guided by
Leventhal’s Self-Regulatory Model, which sug-
jects that illness perceptions and coping would
help to explain health-related outcomes. We
found that changes in the illness perceptions and
coping variables explained 10 per cent of the
variance in the change in symptoms of depres-
sion and 7 per cent of the variance in the change
in symptoms of anxiety, after accounting for
sex, age, number of other medical conditions
and number of months since diagnosis of
oesophageal cancer. Although the change in the
illness perception and coping variables explained
more of the variance in change in psychological
well-being than the demographic and medical
variables, a considerable proportion of the vari-
ance in the change in anxiety and depression
scores remains unexplained.

Nevertheless, the illness perception clusters
provided one of the few statistically significant
contributions to the regression models. Four dis-

tinct patterns of change in illness perceptions
were identified. Cluster 1 appears to describe a
group of survivors who develop more positive
cognitions over time and tend to have decreased
scores on the personal control scale. Cluster 2
groups together survivors who increasingly
engage in self-blame for the cause of the
oesophageal cancer and who increasingly
believe that treatment provided by health pro-
fessionals is unlikely to cure or control their
condition. However, this group also have a
reduced belief in the likelihood of severe conse-
quences from their condition and have an
increased belief in their own ability to control
their condition. The third cluster represents a
group of survivors who report reduced belief in
the ability of the treatment or in their own ability
to control the condition and report an increase in
the likelihood of severe consequences from their
condition. Finally, respondents in cluster 4 tend
to believe more strongly that their condition is
cyclical and report poorer understanding of their
condition over time. Yet, their perception of
treatment control and personal control strength-
ens over time. In summary, we might label these
clusters as follows: cluster 1 represents a group
with an increasing external locus of control and
a positive perception of the consequences of
their condition; cluster 2 represents a group with
an increasing internal locus of control and a pos-
itive perception of the consequences of their
condition; cluster 3 represents an increasingly
helpless/hopeless group; and cluster 4 repre-
sents a group of survivors who increasingly find
their condition confusing but are hopeful that it
can be controlled.

The regression analyses suggest that
oesophageal cancer survivors in cluster 3 are
more likely to become anxious and depressed
than the other cancer survivors. The key differ-
ence between those in cluster 3 and those in
other clusters is that the respondents in cluster 3
report a decrease in their belief that either they
can control their condition or that the treatment
from health professionals can control their con-
dition. For some clusters, the locus of control
changes over time and this does not appear to
be particularly detrimental to psychological
health but increasingly believing that the condi-
tion cannot be controlled has an adverse effect.
Intuitively this makes sense and lends support
to the clustering approach. Indeed, control
cognitions were highlighted as the important
element in the relationship between illness
perception clusters and functional status among
people with osteoarthritis, in the only other
published longitudinal research which has used
the clustering approach (Kaptein et al., 2010).

In addition, it appears that changes in coping
strategies are also associated with changes in
psychological well-being. Specifically, survi-
vors who increasingly engaged in interpersonal
interaction as a coping strategy experienced an increase in their level of anxiety over time and increases in reflection/relaxation as a coping strategy were associated with increases in depression over time. However, increasing the use of positive focus as a coping strategy was the strongest predictor (within the model examined) of a decrease in depression over time.

In summary, enhancing control beliefs among oesophageal cancer survivors and encouraging a more positive focus type of coping strategy could be important elements of an intervention to improve psychological well-being. Nevertheless, caution is warranted in the interpretation of these findings, given the low proportion of variance in changes in psychological well-being which was explained by the models. On the basis of these results, it could be argued that illness perceptions contribute little to our explanation of psychological well-being among oesophageal cancer survivors and, therefore, would not be a sound basis for an intervention. A counter argument is that this study demonstrates only a weak relationship between illness perceptions and deterioration in psychological health and this has been achieved even though there is relatively little variation in the illness perceptions over time. This does not obviate the possibility that changes in illness perceptions in a desired direction may result in positive changes in psychological health, as this relationship has not been tested in the current study. Furthermore, previous research which has evaluated interventions designed to modify illness perceptions has shown improvements in health-related outcomes among people who have experienced a myocardial infarction (Broadbent et al., 2009) and among those with Type 2 diabetes (Skinner et al., 2006). However, the effectiveness of illness perception based interventions in the improvement of psychological well-being among cancer survivors has not yet been demonstrated. Given that the majority of oesophageal cancer survivors in our sample experienced a deterioration in their psychological health over time, this evidence is required urgently.

It should also be noted that the findings of the present study are limited because they are based on oesophageal cancer survivors who had registered with a patient support group (the Oesophageal Patients’ Association). It is possible that patients involved with a support group may differ from other patients in terms of the psychological constructs assessed. However, the sample in the present study had similar scores on an assessment of psychological health when compared with survivors of other head and neck cancers (Hodges and Humphris, 2009; Llewellyn et al., 2007).

In conclusion, the present study has shown that changes in illness perceptions are related to changes in psychological well-being over time. From this limited evidence, it appears that increasing control beliefs could be an important element of an illness perception based intervention which aims to improve the psychological health of oesophageal cancer survivors.

Competing Interests
None declared.

Acknowledgements
This research was facilitated by David Kirby and staff at the Oesophageal Patients’ Association UK. This work was supported by Action Cancer, Northern Ireland.

References

