Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza Primaeval Forest indicates domestic cattle as the likely source of infection


Published in:
Veterinary Parasitology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2013 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza Primeval Forest indicates domestic cattle as the likely source of infection.

Stephen M. Walker¹, Aleksander W. Demiaszkiewicz², Monika Kozak², Halina Wedrychowicz², Denitsa Teofanova³, Paulo Prodh³, Gerry Brennan¹, Ian Fairweather¹, Elizabeth M. Hoey¹, and Alan Trudgett¹*. 

¹ School of Biological Sciences, The Queen’s University of Belfast, 97 Lisburn road, Belfast, N. Ireland. 
² Polish Academy of Science, Molecular Parasitology Laboratory, W Stefanski Institute of Parasitology, PL-00818 Warsaw, Poland 

* corresponding author

Abstract

We have determined the mitochondrial genotype of liver fluke present in Bison (Bison bonasus) from the herd maintained in the Bialowieza National Park in order to determine the origin of the infection. Our results demonstrated that the infrapopulations present in the bison were genetically diverse and were likely to have been derived from the population present in local cattle. From a consideration of the genetic structure of the liver fluke infrapopulations we conclude that the provision of hay at feeding stations
may be implicated in the transmission of this parasite to the bison. This information may be of relevance to the successful management of the herd.

Key words: Bison; Fasciola hepatica; genetic diversity; Bialowieza.

1. Introduction

The Bialowieza Primeval Forest (52°45'53"N, 23°51'39"E) covers an area of approximately 1500 km² and straddles the border between Poland and Belarus. It is characterised by stands of trees that are considered to be representative of those once present over much of prehistoric northern Europe (Falinski, 2003) and supports a wide variety of native European fauna, although management as a game reserve in previous centuries has led to the extinction of some predators (such as the bear) and the introduction of some non-native species (Sidorovich et al., 1996). Its most famous “charismatic megafauna” is the European Bison, Bison bonasus and this species plays a significant role in maintaining the ecology of the forest (Jaroszewicz et al. 2009). There are two populations of bison, one in the Belarus part of the forest and the other in the Bialowieza National Park (BNP), a 100 km² area of commercially unexploited forest on the Polish side of the border. The bison in the BNP are separated from farmland and domestic animals and their numbers are controlled to some extent by provision of winter fodder and culling. The native bison herd was exterminated in 1918 and re-established using twelve animals (some of which were descendants of the Bialowieza bison) from zoological gardens in the 1950s. As a result of this process, the herd has very limited genetic diversity, with mitochondrial DNA studies indicating only three haplotypes (Wójcik et al., 2009) in 195 individuals. The herd’s nuclear genome is
similarly restricted, with only four alleles being found at the Major Histocompatibility Complex (MHC) DRB3 locus in contrast to that in the American bison, *Bison bison*; which, although also having suffered population bottle-necks, has 15 alleles (Radwan et al., 2007; Traul et al., 2005). The four alleles present in the Bialowieza herd, however, are highly divergent. The potential effects of loss of genetic variability and in particular restricted MHC variability on the survival of species have been recently reviewed (Radwan et al., 2010a).

Since the early 1980s, male bison in the Bialowieza herd have been suffering from balanoposthitis, a chronic disease of the external genital organs associated with infection with *Arcanobacterium* spp. (Lehnen et al., 2006) and it has been postulated that this infection, which may endanger the herd, is a consequence of the lack of MHC diversity (Udina and Shaikhaev, 1998). The Bialowieza herd is also susceptible to infection by helminth parasites, with up to 44% of animals culled in 2001 carrying the liver fluke, *Fasciola hepatica* (Kizeiwicz, 2008). In recent years, this incidence has risen to 100% of adults, some of which show very heavy infections (> 600 flukes) (Demiaszkiewicz et al., 2008). Infection with this parasite has been shown to modulate the host’s immune system towards a T helper 2 cytokine profile (Brady et al., 1999). It has recently been proposed that this immunomodulatory effect may be due to secreted helminth molecules that mimic the action of mammalian cathelicidins and may act to reduce the inflammatory component of the immune response to bacterial infections (Robinson et al. 2011). This raises the possibility that the balanoposthitis infection in the Bialowieza herd may become a chronic infection due to the presence of a concomitant liver fluke infection. In these circumstances, it is desirable to investigate the origin of the liver flukes present in these animals in order to devise strategies which
may reduce the frequency of infection. We have determined the mitochondrial haplotypes of flukes from bison and cattle from the Bialowieza region and compared these with those seen in flukes from the wider northern European cattle population.

2. Materials and Methods

Flukes were obtained from bison culled in 2007 (Demiaszkiewicz et al. 2008) and transported in absolute alcohol. Approximately 25 mm$^3$ of fluke tissue was placed into 500 μl of 10% w/v Chelex® (Fluka) solution incorporating 10 μl proteinase K (Sigma) at a concentration of 20 mg/ml. This was heated at 55°C for one hour, followed by gentle vortexing and a further incubation at 95°C for 30 minutes. The mixture was gently vortexed and spun down at 10,000g for 10 seconds. The 250 μl of supernatant was taken, diluted 1:10 in deionised water and stored at -20°C. Details of the primers and procedures used for mitochondrial DNA analysis, data assembly and analysis of population structure have been given elsewhere (Walker et al. 2011a; Teofanova et al. 2011). The sequences of each unique haplotype from the Polish flukes samples were submitted to GenBank and have been assigned Accession numbers HM 487168 to HM 487199. The Bison fluke dataset was supplemented in analysis by sequences from five flukes from cattle from eastern Poland and 444 flukes from a Dutch fluke dataset. Details of the origin of these flukes and their Accession numbers are given elsewhere (Teofanova et al. 2011, Walker et al. 2011a). Median-Joining networks were calculated using “Network 4.5” (Flexus Technology Ltd) software which incorporates the algorithm developed Bandelt and colleagues (Bandelt et al., 1999).
3. Results

A total of twenty-six sequences suitable for analysis were obtained from samples of the flukes present in the infrapopulations from six bison (number of flukes analysed per infrapopulation, 4,4,4,4,5,5). Following alignment and analysis, it was shown that the twenty-six flukes carried twelve distinct mitochondrial haplotypes. Within the population, the haplotypes followed a leptokurtic distribution, with the most common haplotype occurring eleven times, the two next most frequent five times and twice, respectively, and the remaining haplotypes being present in single flukes. There were twenty-nine polymorphic sites seen in the 1160 nucleotides present in the analysed sequences and the average number of nucleotide differences between pairs of samples (Pi) was 0.00605. All mitochondrial sequences were consistent with the flukes being *F. hepatica* rather than *F. gigantica* or other fasciolids. Infrapopulations from individual bison generally contained several (< 4) haplotypes.

In order to investigate the genetic relationship between the flukes present in the bison and those present in local domestic cattle, the dataset was supplemented with flukes from Polish cattle and a Median Joining Network plotted (Figure 1a). This shows that the flukes from the bison were derived from two well-defined clades with almost all of the individual flukes being associated with the taxa forming the nucleus of the clade or separated from these taxa by only one or two nucleotide changes. The flukes from the local cattle were associated with only with one of these clades. In view of the possibility that the small number of Polish flukes from cattle present in the dataset could be distorting the analysis, we repeated it with the incorporation of a larger
dataset (N=444) containing flukes from elsewhere in northern Europe. To simplify the
display, a “star contraction” of 3 was applied to the data before calculating the network:
this condenses minor nodes (differing by less than three nucleotide changes) within a
clad. Figure 1b shows that, under these conditions, the Polish flukes from both cattle
and bison are associated with the two major clades seen with flukes from northern
Europe.

4. Discussion

The high prevalence of liver fluke infection in the bison herd in BNP (Demiaszkiewicz et al., 2008) is indicative of the general immunological “weakness” of
this population. The results presented in this study prove that the liver flukes are
Fasciola hepatica and that, although the establishment of the BNP has allowed the
preservation of many ancient flora and fauna, these parasites do not appear to be
distinctive and are drawn from the same population as that which is common in present-
day cattle and sheep in northern Europe (Walker et al. 2011a). The BNP is separated
from adjacent farmland by a fence which should have prevented the ingress of infected
cattle or sheep and the subsequent transmission of F. hepatica to local snail populations.
There are a number of possibilities with regard to the route by which the population of
F. hepatica described in this study may have become part of the Bialowieza forest eco-
system. Wild herbivorous animals may have acted as a vector; deer are plentiful in the
forest and have been reported to be infected with liver fluke in the past although a recent
study of forty-one deer found that only three showed evidence of fasciolosis
(Demiaszkiewicz, in preparation). Hares are known to act as vectors for liver fluke both
in the Bialowieza region and elsewhere (Shimalov, 2001; Rondelaud et al., 2001).

However, infra-populations (the number of parasites in a single host) are typically small
in hares and rarely exceed three or four flukes (Shimalov, 2001; Walker et al. 2011b).

The diversity of haplotypes seen in the bison population is such that it would have
required multiple introductions by infected hares. This same argument would also be
valid with regard to the possibility that there had been an introduction of a population of
infected lymnaeid snail intermediate hosts. Although Polish lymnaeid snail populations
may have a high prevalence of infection (Kozak and Wędrychowicz, 2010) individual
snails are rarely infected by more than one or two miracidia (Kaplan et al., 1997) and
the asexual reproduction occurring at this stage of the life cycle acts to reduce genetic
diversity. The similarity of the mitochondrial haplotypes found in liver flukes from the
bison herd and those from cattle implicate cattle – directly or indirectly - in the
introduction of *F. hepatica* into the bison herd. Up to approximately fifty years ago
domestic cattle were grazed in the clearings of the Bialowieza National Park, however
heavy infection with liver fluke has only become evident in the last decade (Kizeiwicz,
2008), posing the question as to what was acting as the definitive mammalian host for
the parasite during the intervening years. Recruitment to the bison herd has been shown
to be related to climatic conditions, with the abundance of oak seeds (maasting) in the
preceding year and the depth of snow in winter being major factors (Mysterud et al.,
2007). To ameliorate the effects of snowy weather, hay is provided at a number of
feeding sites, which leads to the bulk of the herd gathering at these sites during the
winter months. It is possible that the fluke may have been inadvertently introduced into
the forest as metacercariae on contaminated hay. Liver fluke metacercariae are known
to be able to remain infective on foliage for up to eight months at above -10°C (Boray
Hay sourced from local farms (Kowalczyk et al. 2011) would, if contaminated with *F. hepatica* metacercariae, transmit a population of flukes derived from the local cattle population; this would explain why the distribution of haplotypes and diversity seen in the bison flukes resembles that of the cattle flukes.

Although the high prevalence of the fasciolosis in the bison herd means that the infection is probably self-maintaining, the likely origin of the flukes in local farm stock means that they will be amenable to anthelmintic drugs should it become necessary to treat individual bison. The long-term benefits of providing winter feeding have been questioned (Wolk and Krasińska, 2004, Kowalczyka et al., 2011), as the congregation of animals round the feeding stations may be conducive to the spread of infectious and parasitic diseases (Radwan et al., 2010b). The findings in this study and that of others (Jaroszewicz et al., 2009) indicate that further consideration should be given to the question of supplementary winter feeding and the source of such feed should be controlled, not only with regard to seeds from non-native species (as it is at present) but also for possible contamination with parasite propagules.

Acknowledgements

This study was supported financially by the DeLiver consortium of the European Union VII Framework Programme (FOOD-CT-200X-023025).

References


Figure Legend

Figure 1a. Median Joining Network for Polish flukes. White nodes – flukes from Bison; black nodes - flukes from local cattle; red median vector node – virtual (hypothetical) node. The size of each node is proportional to the number of individual flukes bearing that haplotype. The distances between nodes are proportional to genetic distance, as indicated by the positions of nucleotide changes, which are shown by red numerals.

Figure 1b. Median Joining Network for Polish and other northern European Flukes. Nodes containing haplotypes found in the Polish flukes from bison and cattle are shown in grey, white nodes – other northern European cattle flukes.
Figure Legend

Figure 1a. Median Joining Network for Polish flukes. White nodes – flukes from Bison; black nodes - flukes from local cattle; red median vector node – virtual (hypothetical) node. The size of each node is proportional to the number of individual flukes bearing that haplotype. The distances between nodes are proportional to genetic distance, as indicated by the positions of nucleotide changes, which are shown by red numerals.

Figure 1b. Median Joining Network for Polish and other northern European Flukes. Nodes containing haplotypes found in the Polish flukes from bison and cattle are shown in grey, white nodes – other northern European cattle flukes.