Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin

Published in:
Deep-Sea Research Part I: Oceanographic Research Papers

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2011. This manuscript version is made available under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin.

William R. Hunter1*; Kazumasa Oguri2; Hiroshi Kitazato2; Zakir A. Ansari3; Ursula Witte1.

1Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, AB41 6AA. United Kingdom. r01wh8@abdn.ac.uk*, u.witte@abdn.ac.uk. Tel: +44(0)1224 274447. Fax: +44(0)1224 274402.

2Japan Agency for Marine-Earth Science and Technology, Natsushima 2-15, Yokosuka, Kanagawa 237-0061, Japan.

3National Institute of Oceanography, Dona Paula - 403 004, Goa, India

*Corresponding Author.
Abstract.

The Arabian Sea oxygen minimum zone (OMZ) impinges upon the Indian continental margin at bathyal depths (150 – 1500 m) producing changes in ambient oxygen availability and sediment geochemistry across the sea floor. The influence of these environmental changes upon the epi-benthic megafaunal assemblage was investigated by video survey at six stations spanning the OMZ core (540 m), lower boundary (800 – 1100 m) and below the OMZ (2000 m), between September and November 2008.

Structural changes in the megafaunal assemblage were observed across the six stations, through changes in both megafaunal abundance and lebensspuren (biogenic traces). Most megafauna were absent in the OMZ core (540 m), where the assemblage was characterised by low densities of fishes (0.02 – 0.03 m\(^{-2}\)). In the lower OMZ boundary, megafaunal abundance peaked at 800 m, where higher densities of ophiuroids (0.20 – 0.44 m\(^{-2}\)) and decapods (0.11 - 0.15 m\(^{-2}\)) were present. Total abundance declined with depth between 800 and 2000 m, as the number of taxa increased. Changes in the megafaunal assemblage were predicted by changes in abundance of seven taxonomic groups, correlated to both oxygen availability and sediment organic matter quality. Lebensspuren densities were highest in the OMZ boundary (800 – 1100 m) but traces of large infauna (e.g. echiurans and enteropneusts) were only observed between 1100 and 2000 m station, where the influence of the OMZ was reduced. Thus, changes in the megafaunal assemblage across the Indian margin OMZ reflect the responses of specific taxa to food availability and oxygen limitation.

Key Words.

Arabian Sea; Lebensspuren; Megafauna; Oxygen Minimum Zone; Video Survey.
1. Introduction.

Oxygen minimum zones (OMZs) are large, geologically stable, water bodies where dissolved oxygen levels fall persistently below 0.5 ml.l$^{-1}$ (22 µmol.l$^{-1}$) (Levin 2003). OMZs form in mid-water as a consequence of high primary productivity at the ocean surface and poor advective mixing of the water column. Where OMZs impinge upon the seafloor strong gradients in oxygen availability and organic matter flux are observed (Devol and Hartnett, 2001). At present, approximately 6% of the continental margins (1.5 million km2 of seafloor) experience permanent dysoxic conditions within OMZs (Helly and Levin, 2004) and this area is predicted to grow as a consequence of both anthropogenic changes in climate and ecosystem dynamics (Bakun and Weeks, 2004; Stramma et al., 2008).

One of the largest OMZs occurs in the Arabian Sea, where 285,000 km2 of continental margin sea floor is impacted between depths of 150 to 1500 m (Cowie et al., 1999; Helly and Levin, 2004). Within this region sediments are characterised by a high organic carbon content (Cowie et al., 1999) and preservation of labile organic compounds such as amino acids, lipids and photosynthetic pigments (Smallwood et al., 1999; Vandewiele et al., 2009; Woulds and Cowie, 2009). Thus, the benthic environment can be described as food rich and oxygen deficient. The composition of the benthic community changes concomitantly with oxygen and organic matter availability across an OMZ, with bacteria, calcareous foraminifera and nematodes abundant in the OMZ core (Cook et al., 2000; Gooday et al., 2000; Schmaljohann et al., 2001; Stevens and Ulloa, 2008) and high densities of hypoxia tolerant metazoan macrofauna and megafauna characterising the OMZ boundaries (Wishner et al., 1990; 1995; Levin et al., 1991; Murty et al., 2009).

Epibenthic megafauna are defined as the animals occupying the sediment surface, which are large enough to be observable within a photograph or video image (usually > 1 cm in size (Grassle et al., 1975). Megafaunal assemblages are patchy but, when present, contribute significantly to benthic community biomass (Lampitt et al., 1986; Thurston et al., 1994), oxygen consumption (e.g., Piepenburg et al., 1995) and carbon demand (Christiansen et al., 2001; Renaud et al., 2007). Aggregations of megafauna
structure the marine benthos through physical disturbance of the sediment (e.g.,
Gallucci et al., 2008), predation upon meio- and macrofauna (e.g., Ambrose, 1993;
Hudson and Wigham, 2003), and selective removal of labile organic matter from the
sediment (e.g., Miller et al., 2000; Ginger et al., 2001). In the Arabian Sea and Eastern
Pacific Oceans changes in the epi-benthic megafaunal assemblage are observed across
OMZ impacted continental margins. Only physiologically versatile fish penetrate into
the core regions of OMZs (Quiroga et al., 2009) but high densities of hypoxia tolerant
ophiuroids and decapod crustaceans are characteristic of the organic matter rich
boundary regions (Wishner et al., 1990; 1995; Smallwood et al., 1999; Murty et al.,
2009; Sellanes et al., 2010). These taxa feed at multiple trophic levels (Jeffreys et al.,
2009b) controlling both the quality and quantity of sedimentary organic matter
(Smallwood et al., 1999; Jeffreys et al., 2009a). Therefore, changes in megafaunal
distribution across an OMZ-impacted margin will have significant impacts upon
wider ecosystem processes, such as organic matter recycling and burial.

Lebensspuren are the conspicuous traces left by both infaunal and epibenthic
megafauna organisms at the seafloor (Kitchell et al., 1978) and can be used to predict
bioturbation intensity (e.g., Turnewitsch et al., 2000; Wheatcroft, 2006). In addition,
infaunal megafauna, such as enteropneusts (Mauviel et al., 1987) and echiurans (Ohta,
1984), are detectable by the traces they leave on the sediment surface. Therefore,
lebensspuren provide valuable information about megafaunal activity, sediment
reworking and the presence of large infauna, which cannot be directly acquired (e.g.,
Jones et al., 2007).

Photographic surveys are an effective method to investigate the distribution and
abundance of deep-sea fauna and lebensspuren (Solan et al., 2003). However, spatial
heterogeneity of megafaunal assemblages tends to negatively bias abundance
estimates derived from photo-transect surveys. By providing images continuously
over time, video survey techniques mitigate against this problem and produce density
estimates that are comparable to a direct visual census of an area (Tessier et al., 2005).
Still-images can subsequently be captured from the video allowing the size of
individual organisms to be measured (e.g., Piepenburg et al., 1995; Christiansen et al.,
2001).
Here, we describe the megafaunal assemblages at six stations spanning the core and lower boundary of the OMZ at the little explored Indian continental margin. We test two main hypotheses: a) megafaunal assemblage structure changes across an OMZ impacted margin; and b) the differences in the megafaunal assemblage are correlated with changes in ambient oxygen availability and sediment organic quality. The study identifies the key taxa responsible for changes in the megafaunal assemblages, and tests the correlations between their abundance, oxygen availability and sediment C:N ratio. Changes in the lebensspuren were used to describe both megafaunal activity and infaunal presence. Biomass of the two most abundant megafaunal taxa, the ophiuroids and decapod crustaceans, was estimated to allow changes in the megafaunal assemblage to be considered within the context of wider ecosystem processes (e.g., Christiansen et al., 2001; Renaud et al., 2007).

2. Materials & Methods

Between September and November 2008, a multi-national research expedition aboard the R/V Yokosuka (YK08-11) explored the biology and biogeochemistry of the Arabian Sea OMZ along two transects of the Indian continental margin. The deep-sea submersible Shinkai 6500 (Japan Agency for Marine-Earth Science and Technology, 2007) made a total of 24 dives, at six stations across the OMZ (Fig. 1; Table 1), recording a total of 140 hours of video footage at the sea floor. Nineteen 10-minute visual surveys were drawn from the ~ 2% of video footage that was deemed suitable for quantitative analysis. The mean area of seafloor covered in each survey ranged from 50 – 80 m², covering a 10 - 40 m depth range around the target depth.

2.1 Environmental Data

Environmental data were recorded during each dive by Shinkai 6500. Salinity, temperature and pressure were recorded by CTD (SBE 19, Sea-Bird Electronics, Inc.), and oxygen concentrations measured using an optical oxygen sensor (Optode 3830, Aanderaa Data Instruments) mounted upon the submersible. A two-step calibration procedure was carried out to obtain accurate oxygen concentration in low-oxygen environments. Firstly, oxygen concentrations were calculated from optode data
following the method outlined in the user manual, with a pressure compensation
coefficient of 3.2 % per 1000 dbar (Uchida et al., 2008). Secondly, water samples at
different oxygen concentrations were prepared by bubbling nitrogen through
freshwater. Oxygen concentrations of the freshwater samples were simultaneously
measured by the optode and by Winkler Titration and the relationship between these
data determined by

\[[O_2]_c = 1.1381 * [O_2]_r + 0.1665 \]

where \([O_2]_c\) is the Winkler Titration calibrated oxygen concentration (\(\mu\text{mol.l}^{-1}\)), and
\([O_2]_r\) is the oxygen concentration recorded by the optode. In the present study all
oxygen measurements were calibrated according to this relationship. Accuracy of the
instrument was assumed to be ± 1 \(\mu\text{mol.l}^{-1}\) at oxygen concentrations < 50 \(\mu\text{mol.l}^{-1}\) (A.
Tengberg, pers. comm.).

Sediment was sampled at each station using 8.2 cm diameter push cores in order to
quantify the sediment organic matter (OM) content, OM quality and porosity. Three
replicate cores were obtained at all stations except T1 1100 m, where only one core
could be obtained. Sediment samples from the surficial 1 cm of each core were
homogenized and deep-frozen at -80 °C until they could be processed. The frozen
sediment was sub-sampled into 5 g aliquots, lyophilised (-60°C; -0.0001 mbar) and
porosity determined based upon the change in volume and mass between wet and dry
sediment (Breitzke, 2006). Sediments were acidified to remove inorganic carbon by
addition of excess 1 mol.l\(^{-1}\) hydrochloric acid, incubated at 30 °C, for 24 hours in an
acid fumed environment (Hedges and Stern, 1984) and dried to constant weight at 60
° C. Total organic carbon content (% TOC) and total nitrogen content (% TN) were
determined by a Fisons Instruments NA 1500 micro-elemental analyser. These data
were used to calculate C:N ratios for each sediment sample as a proxy of sediment
organic matter quality (e.g., Hedges and Keil, 1995).
2.2 Video Survey Technique

Video footage recorded at the six stations was used to carry out a quantitative visual survey of megafauna and lebensspuren. Replicate surveys, comprising five one-minute counts spread across a 10 minute period, were conducted at each station. Densities of megafauna and lebensspuren were recorded as individuals observed per unit time, for every one minute time interval. Frame-grabs were taken during each minute of surveyed footage and the video imaging package Image-J used to calculate the width of the camera field of view (Table 1). Images were calibrated to a 20 cm scale provided by four laser pointers incorporated into the Shinkai 6500 camera system. Megafaunal and lebensspuren abundances (m$^{-2}$) calculated for each one minute count by

\begin{equation}
D_{area} = \frac{D_{time}}{(W_c * V_{min})}
\end{equation}

where D_{area} is the relative abundance per unit area (ind. m$^{-2}$), D_{time} is the relative abundance per unit time (ind. min$^{-1}$), W_c is the width seabed in the camera field of view (m) and V_{min} is the average velocity of the submersible (30.87 m min$^{-1}$). Mean abundance values were then calculated for each ten minute period to mitigate against spatial patchiness of the megafaunal assemblages and provide comparable measures of relative abundance at each station.

Precision is a major issue with visual surveys (e.g., Kimmel, 1985; Sayer and Poonian, 2007). In the present study, each replicate covers a large spatial area. This accounts for the patchiness of megafauna but limits the taxonomic resolution of the visual survey. Few megafaunal specimens were available for identification because dive-time with the submersible was limited by other experimental work, and the R/V Yokosuka was not equipped for trawling. The present study focussed upon quantifying the abundances of 15 broad taxonomic groups. Further description of the megafaunal assemblage was conducted using video frame-grabs, still images and opportunistic samples (Table 2). Conspicuous lebensspuren were identified and assigned to five groups, following Gaillard’s (1991) English-language nomenclature (table 3).
2.3 Estimation of Megafaunal Biomass

Estimations of biomass were made for the two most abundant taxa, the ophiuroids and decapod crustaceans, in particular the aresteid and solenocerid shrimps (**Plesiopenaeus** spp. and **Solenocera** spp.). Seven hundred and forty frame grabs were captured randomly and blurred images, images with less than 30% of the visible seafloor, and images with no visible scale subsequently removed. Image-J was used to measure the size of visible ophiuroids and decapod crustaceans, calibrated to the laser scale in each image.

Ophiuroid size was measured as disc diameter (cm) across a sample of 86 individuals. Biomass of individual ophiuroids was then calculated using the size-weight relationship described by Piepenburg and Schmid (1996) and converted to wet weight, based upon a conversion factor of 12.08 (Gage, 2003). These were used to convert ophiuroid size to wet weight by

\[
W_w = \frac{(0.1507 \times d^{2.488})}{12.08}
\]

where \(W_w\) is the wet weight (in grams) and \(d\) is the disc diameter in centimetres.

Decapod size was measured as carapace length (cm), for a sample of 97 individuals and converted to wet biomass using a size-weight relationship described by Barriga et al. (2009) as

\[
W_w = 0.00321 \times L_c^{2.37026}
\]

where \(W_w\) is the wet weight (in grams) and \(L_c\) is the carapace length of a given individual. These estimates allowed the biomass-frequency distributions of both ophiuroid and decapod populations within the OMZ to be made. Ophiuroid and decapod biomass were calculated for each station as the product of the median individual biomass of each taxon and respective abundances in each survey.
2.4 Data Analysis

Data analysis was conducted in R, using the *stat* (R Development Core Team, 2009), *MASS* (Venables and Ripley 2002), *vegan* (Oksanen et al., 2009) and *StatFingerprints* (Michielland and Cauquil, 2010) packages. Data were graphically explored to assess their fits to assumptions of homoscedacity (homogeneity of variance) and independence (Zuur et al., 2010). Multivariate dispersion of the data was formally tested using a randomisation test (1000 permutations), at a significance level of \(p < 0.05 \) (Anderson, 2006). The data violated the assumptions of homoscedacity and multivariate normality and so analysis preceded using robust multivariate techniques. Analysis of Similarities (ANOSIM) tested the significance of changes in the megafaunal assemblage across the six stations, using a Bray-Curtis dissimilarity matrix of the untransformed megafaunal data. Non-metric multidimensional scaling (nMDS) of the dissimilarity matrix provided a visual ordination of the similarities and differences in megafaunal structure between stations. Similarity Percentage Analysis (SIMPER) was used to further explore the data, identifying taxonomic groups that contributed highly to the observed change in megafaunal assemblage structure (Clarke, 1993). Correlation tests were used to investigate the strength and significance of relationships between the abundances of individual megafaunal taxa and changes in oxygen availability and the sediment C:N ratio, across the six survey stations, using the Spearman’s rank coefficient (Spearman, 1904).

3. Results

3.1. Environmental Description

Temperature, salinity and oxygen profiles are shown in figure 2, and the environmental data at each survey station summarised in table 1. Oxygen concentrations increased along a depth-dependent gradient from 0.35 \(\mu \text{mol.l}^{-1} \) at T1 540 m, to 136.00 \(\mu \text{mol.l}^{-1} \) at T1 2000 m, exhibiting strong co-linear relationships with salinity and temperature (Fig. 3). Sediment organic carbon (% TOC) and nitrogen concentrations (% TN) were highest at the 800 and 1100 m stations, in the lower OMZ boundary, and lowest at the 2000 m station, below the OMZ. Both % TOC and
% TN exhibited co-linear relationships with sediment porosity, indicating positive correlations between accumulation of OM and the amount of pore space within the sediment. The sediment C:N ratios provide a proxy of OM quality derived from the % TOC and % TN. Within the OMZ, C:N ratios ranged between 8.38 at T2 1100 m and 9.72 at T1 540 m indicating small-scale diagenetic alterations of relatively labile sedimentary OM. Below the OMZ, at T1 2000 m, a C:N ratio of ~ 19.38 was indicative of refractory organic matter within the sediment. Thus, the C:N ratio is a useful proxy for the overall changes in sediment geochemistry across the six stations (Hedges and Keil, 1995).

Across the six stations, the described environmental conditions are reflected in the appearance of the seafloor (Fig 4.). Between 540 and 1100 m the seabed was typically composed of homogenous, fine grained sediments. Patches of sharp-crested ripples at station T1 540 m and slight rippling of the sediment surface at T1 800 m indicate that the sediment surface at the stations is disturbed by fairly rapid water movements. These ripples are indicative of currents, within the Indian margin OMZ, which may be linked to regional tidal cycles. Carbonate deposits were observed at the 1100 m stations and may provide important habitat complexity in this depth range.

3.2. Lebensspuren.

There were changes in both the density and variety of Lebensspuren observed across the study area. No traces were observed at stations T1 540 m and T1 800 m, where oxygen levels were low. Patches of burrow openings were observed at stations T2 800 m and T1 1100 m. More varied Lebensspuren were observed at T2 1100 m and T1 2000 m, characterised by low overall densities and the presence of hole-rings, star-like traces and scour traces (Fig. 5).

3.3 Megafaunal Assemblage Structure

The megafaunal assemblage exhibited significant structural variations between the six survey stations (R = 0.78; p = 0.01). The assemblage at T1 540 m was distinct from all other stations (800 – 2000 m), characterised by low abundances of fishes and the absence of invertebrate megafauna. Thus, comparatively little within-station variation
was observed at this station. In contrast, higher levels of within station variability and a gradual, depth-dependent increase in the number of taxonomic groups represented were observed between 800 and 2000 m (Table 4; Fig. 6).

SIMPER analysis (Appendix A & B) quantified the relative contributions of each taxon surveyed to the similarities within, and differences between, the megafaunal assemblages at each station. This analysis identified seven taxa that consistently contributed to either within station similarity or the differences between stations. These were the Actiniaria, Decapoda, Ophiuroidea, Asteroidea, Holothuroidea, Echinoidea and Gnathostomata (fishes). Each taxon exhibited a specific distribution pattern between stations, with most taxa found in high abundances between 800 m and 1100 m (Fig. 7). Peaks in ophiuroid and decapod abundance were features of the assemblage at the 800 m stations, and high densities of actinarians and fishes were observed at the 800 and 1100 m stations. In addition, the 1100 m stations are characterised by the presence of echinoids and asteroids, absent at both 540 and 800 m.

Changes in the relative abundance of each taxon were correlated with changes in environmental conditions across the OMZ (Table 5). Abundance of most groups strongly correlated with sediment C:N ratios, but both the asteroids and echinoids were strongly correlated with oxygen availability. These correlations suggests that both oxygen and organic matter availability influence megafaunal assemblage structure across the six stations.

3.4 Ophiuroid and Decapod Biomass.

Biomass-frequency distributions of both the ophiuroids and decapod crustaceans, across the six survey stations were negatively skewed (Appendix C). Over 70 % of the ophiuroids sampled were estimated to have wet weights < 2 g, with no individual > 11 g, and most individual decapods (75 -85 %) had estimated weights < 100 g. Biomass of both the ophiuroids and decapods peaked at the 800 m station, declining with depth between 800 and 2000 m (Fig. 8). The decapods exhibited substantially higher biomass than the ophiuroids, across all stations where these megafauna were
present. However, the ophiuroids exhibited a greater relative change in biomass across the study area.

4. Discussion

The present study investigated changes in the epi-benthic megafaunal assemblages between 540 m and 2000 m on the Indian continental margin, and how these were influenced by differences in oxygen availability and sediment organic matter quality across the OMZ. The megafaunal assemblage changed significantly across the study area. Fish dominated the assemblage in the OMZ core (540 m), but in the lower OMZ boundary high densities of ophiuroids and decapods produced megafaunal abundance peaks at 800 m, below which total faunal abundance declined gradually with depth. Abundances of individual faunal groups correlated significantly with either ambient oxygen availability or the sediment C:N ratio. These results are consistent with previous studies on the Pakistan margin (Murty et al., 2009) and in the eastern Pacific (Wishner et al., 1990; 1995; Quiroga et al., 2009; Sellanes et al., 2010), suggesting that megafaunal assemblage structure is determined by the responses of individual taxa to limitation of two resources, oxygen and sediment organic matter.

4.1 Megafaunal assemblage structure.

On the Indian continental margin there are changes both in megafaunal abundance and assemblage structure across the OMZ. These broadly correspond to the zonation pattern implicit in the biofacies model of Levin et al. (1991), evidenced by the presence of only hypoxia-tolerant fishes in the OMZ core (540 m; $[O_2] = 0.35 \text{ µmol.l}^{−1}$) compared with high abundances of invertebrate megafauna and lebensspuren across OMZ boundary (800 – 1100 m; $[O_2] = 2.20 – 15.00 \text{ µmol.l}^{−1}$). Below the OMZ (2000 m; $[O_2] = 163.00 \text{ µmol.l}^{−1}$) a larger number of megafaunal taxa were present and the lebensspuren featured echiuran and enteropneust traces alongside scours indicative of bioturbation by fishes and large crustaceans (Gaillard, 1991). Thus, the results indicate that variability in both the megafaunal assemblage and lebensspuren increases along the depth-dependent oxygen gradient.
The absence of the invertebrate megafauna at the OMZ core is striking. Carcasses decay slowly in OMZ-impacted margins (Billett et al., 2006) and well preserved remains of large fish and cephalopods were observed at station T1 540 m (U. Witte & H. Kitazato, pers. obs.). This station should represent an ideal foraging ground for scavengers. However, typical scavenging fishes, e.g. macrourids and zoarcids, and invertebrates, e.g. lysianassid amphipods and Plesiopenaeus spp. shrimps (Witte, 1999) were absent at the observed carcasses. Instead a resident fish fauna, which included representatives of the families Liparidae (W.R. Hunter, pers. obs.) and Gobiidae (L. Levin, pers. comm.), was observed. Murty et al., (2009) suggests that these fish are migratory, utilising the hypoxic waters as a refuge from predation. However, a permanent fish fauna characterises the core of OMZs in the Eastern Pacific (e.g., Quiroga et al., 2009), suggesting adaptation to these habitats. The presence of fishes with the OMZ may therefore be a product of both predation and disturbance release, rather than the provision of refuge.

A modal shift in megafaunal assemblage structure occurs between 540 and 800 m ($[O_2] = 0.35 – 2.20 \mu \text{mol.l}^{-1}$) suggesting that an oxygen threshold determines the penetration of most megafaunal taxa into the OMZ (e.g., Murty et al., 2009). At the 800 m stations, peaks in megafaunal abundance were driven by high densities of ophiuroids and decapod crustaceans. These abundance peaks are broadly consistent with observations made on the OMZ-impacted margins (Smallwood et al., 1999; Murty et al., 2009) but occur at shallower depths. Observed peaks in abundance at 800 m were lower than the 27.85 m$^{-2}$ reported by Murty et al. (2009) at 1000 m on the Pakistan margin, falling instead within the range of megafaunal densities in the abyssal Arabian Sea (0.02 - 0.10 m$^{-2}$; Turnewitsch et al., 2000). Spatial patchiness and artefacts in the experimental design make comparison of abundances by photographic and video surveys challenging (Tessier et al., 2005). However, the observed megafaunal abundance peaks on the Indian and Pakistan margins suggest that regional differences in OMZ intensity between the two margins will have an important influence upon the megafaunal assemblages.

Between 800 and 2000 m there was a decrease in megafaunal abundance and an increase in the number of taxa. This is observed within the nMDS ordination as a reduction in the distance between replicates (Fig. 6), indicative of a decrease in
community patchiness. These changes in the megafaunal assemblage are complex but can be explained by the interactions between individual organisms and their environments. Seven taxa were identified as important to megafaunal assemblage structure, of which, three of these (actiniarians, ophiuroids and decapods) exhibited strong correlations to the sediment C:N ratio. In contrast, the abundance of two comparatively rare taxa, the asteroids and echinoids, correlated strongly with ambient oxygen concentrations. These patterns may be explained by the specific behavioural and physiological adaptations of each taxon to environmental hypoxia (reviewed by Diaz and Rosenberg, 1995; Childress and Seibel, 1998). However, the results of the present study support previous evidence that the specific responses of individual taxa to oxygen limitation and organic matter availability determine megafaunal zonation on an OMZ-impacted continental margin (e.g., Levin et al., 1991; Murty et al., 2009; Sellanes et al., 2010).

4.2. Implications for benthic ecosystem processes

Changes in megafaunal assemblages across an OMZ are likely to have important implications for benthic ecosystem processes. Megafauna directly contribute to organic matter recycling by stripping labile organic matter from the sediment (Smallwood et al., 1999; Jeffreys et al., 2009a) and reworking the sediment through bioturbation. The megafauna also have indirect effects upon ecosystem processes through predation and disturbance of meio- and macro-faunal taxa (Ambrose, 1993; Hudson and Wigham, 2003). Megafaunal abundance and lebensspuren density are correlated with bioturbation intensity (Turnewitsch et al., 2000; Wheatcroft, 2006) and it is possible to infer megafaunal contributions to sediment reworking from this data.

The absence of invertebrate megafauna and lebensspuren at the 540 m station, suggests that megafaunal reworking of the sediment is minimal in the OMZ core. However, the sparse fish fauna may be responsible for low levels of bioturbation, since gobiid fishes were observed to bury themselves in the sediment (W.R. Hunter and U. Witte, pers. obs.). In contrast, dense aggregations of small holes between 800 and 1100 m are characteristic of an infaunal ophiuroid assemblage (e.g., Solan and Kennedy, 2002) coincident with recorded peaks in megafaunal abundance and
These observations suggest that the megafauna play an important role in the reworking of surficial sediments within the OMZ boundary. Results that are consistent with observations made at similar depths on the Oman and Pakistan margins (Smallwood et al. 1999; Jeffreys et al., 2009a). Between 1100 and 2000 m, there appear to be differences in sediment reworking that correspond to decreases in megafaunal abundance and biomass. Within this depth range observations of echiuran and enteropneust traces suggest that mega-infauna contribute to sediment mixing. In addition, deep scours in the sediment indicate that burrowing by fishes and crustaceans (Gaillard, 1991) provide pathways for mixing of surficial and deeper sediment layers. Thus, it can be inferred that megafaunal contributions to sediment reworking were minimal in the OMZ core and changed across the lower OMZ boundary, from reworking of surficial sediments (800 – 1100 m) to deeper mixing of the sediment between 1100 and 2000 m

4.4. Conclusions.

The epi-benthic megafaunal assemblage exhibits structural changes across the Indian margin OMZ. Invertebrate megafauna were absent from the OMZ core (540 m; \([O_2] = 0.35 \, \mu\text{mol.l}^{-1}\)), peaks in ophiuroid and decapod densities occurred at 800 m (\([O_2] = 2.2 - 2.36 \, \mu\text{mol.l}^{-1}\)) and megafaunal assemblage complexity increased across the lower OMZ boundary (800 – 2000 m). These faunal distributions are consistent with previous OMZ studies (Wishner et al., 1990; 1995; Murty et al., 2009; Sellanes et al., 2010) and suggest that the biofacies model of Levin et al. (1991) is an effective predictor of megafaunal zonation. The present study demonstrates that changes in megafaunal assemblage structure can be explained by correlations between the abundance of individual taxa, and both oxygen concentration and the sediment C:N ratio. This suggests that changes in megafaunal assemblage structure are dictated by oxygen and sediment organic matter limitation. The differences in megafaunal assemblage and lebensspuren across the OMZ suggest a changing role for the megafauna in sediment reworking and organic matter recycling, from low activity levels in the OMZ core, to higher levels both in the OMZ boundary (800 – 1100 m) and below the OMZ (2000 m). However, these conclusions are speculative and require further investigation using both empirical and modelling approaches.
5. Acknowledgements

The authors gratefully acknowledge the tireless efforts made by the officers and crew of both the R/V Yokosuka and Shinkai 6500 during YK08-11. We thank Dr Andy Gooday and three anonymous reviewers, whose constructive comments helped much improve this manuscript. We also thank the YK08-11 scientific team for their assistance during the cruise and Dr Waji Naqvi (NIO, India) for his assistance both pre- and post cruise. The authors acknowledge Dr Nikki King (U. Aberdeen) and Dr Matthias Stehman (ICTHYS) for their assistance in fish identification, and Miss Claire Mitchell for her assistance with the video analysis. The work was supported by the Carnegie Trust (United Kingdom) (grant no. ERI 008427 to U Witte), WRH was supported by a NERC Doctoral Training Grant (NE/G523904/1).
6. References

margin: The influence of the oxygen minimum zone on bathymetric distribution.

Table Legends

Table 1: Video survey and environmental parameters at each of the six survey stations, identified by transect (T1 or T2) and depth. Surficial sediment characteristics include total organic carbon content (% TOC), total nitrogen content (% TN) and the carbon-nitrogen ratio (C:N ratio).

Table 2: The 13 main megafaunal groups counted during the video surveys and taxa identified within each group by post-hoc image analysis.

Table 3: Lebensspuren groups counted during video surveys.

Table 4: Megafaunal abundance data (m$^{-2}$) calculated from video surveys, at six stations spanning the Indian margin OMZ. Data are mean values (± standard deviation) of n replicate surveys.

Table 5: Correlations between megafaunal abundances and the main environmental parameters across the Indian margin OMZ. Data are displayed as Spearman’s Rank correlation co-efficient (ρ_s) and p-values. Statistically significant values are highlighted in bold font.
Figure Legends

Fig. 1: Bathymetric map of the study area. Contours represent 200 m depth intervals, 1000 m intervals are highlighted in bold.

Fig. 2: Oxygen, temperature and salinity profiles recorded using an optode mounted upon Shinkai 6500 during YK08-11. Dashed lines represent the zonation of the OMZ, as described by Levin (2003).

Fig 3. Paired scatterplots showing the relationship (top-right) and correlation strength (bottom-left) between all environmental variables measured in the present study. Correlation strengths are displayed as Spearman’s Rank Correlation Coefficients, with the size of each number representing the relative correlation strength.

Fig. 4: Representative images of the sediment surface at each survey station showing (A) snailfish (Liparidae spp.) and (B) rippled sediment at T1 540 m; (C) brittlestars (Ophiolimna spp.) at T1 800 m; (D) a Brisingid sea star (Brisingida spp.) and flytrap anemone (Actinoscypha spp.) at T1 1100 m; (E) a skate (Bathyraja spp.) and F) a scour (Lebensspuren) and sea star (Asteroida spp.) at T1 2000 m; (G) Brittlestars (Ophiolimna spp.) and evidence of burrows at T2 800 m; (H) fish (Coryphaenoides spp.) and urchin (Echinoidea spp.) at T2 1100 m.

Fig. 5: Mean lebensspuren densities (± standard deviation) at the six survey stations.

Fig. 6: nMDS ordination of the variation in megafaunal assemblages across the six survey stations, calculated from Bray-Curtis dissimilarity indices at each station. Stations are displayed as symbols: T1 540 m (○); T1 800 m (△); T1 1100 m (□); T1 2000 m (+); T2 800 m (▲); T2 1100 m (■)

Fig. 7: Relative abundance (m⁻²) of (A) the total megafaunal assemblage; (B) Actiniaria; (C) Decapoda; (D) Ophiuroidea; (E) Asteroidea; (F) Holothuroidea; (G) Echinoidea; (H) Gnathostomata; and (I) other taxa, at the six survey stations.

Fig. 8: Wet biomass estimates for ophiuroids and decapods at the six survey stations.
Appendix Legends

Appendix A: SIMPER Results: Average similarity in megafaunal assemblage structure between replicate surveys conducted at each station, and taxonomic groups contributing to 90% of this similarity.

Appendix B: SIMPER results II: Similarity matrix, detailing the taxonomic groups responsible for 90% of the cumulative difference in megafaunal assemblage structure between survey stations.

Appendix C: Biomass-frequency histograms for (A) ophiuroids and (B) decapods on the Indian margin OMZ.
<table>
<thead>
<tr>
<th>Station</th>
<th>Mean Area Surveyed (m²)</th>
<th>Mean Water Depth (m)</th>
<th>O₂ (µmol.l⁻¹)</th>
<th>Temp. (°C)</th>
<th>Salinity (‰)</th>
<th>% TOC</th>
<th>% TN</th>
<th>C:N ratio</th>
<th>Porosity φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 530 m</td>
<td>58.75 (±5.09)</td>
<td>540</td>
<td>0.35</td>
<td>12.1</td>
<td>35.2</td>
<td>1.84 (±0.33)</td>
<td>0.19 (±0.04)</td>
<td>9.72 (±0.20)</td>
<td>72.25 (±1.25)</td>
</tr>
<tr>
<td>T1 800 m</td>
<td>52.30 (±3.45)</td>
<td>800</td>
<td>2.20</td>
<td>10.1</td>
<td>35.1</td>
<td>2.12 (±1.03)</td>
<td>0.23 (±0.09)</td>
<td>8.94 (±1.11)</td>
<td>74.96 (±0.65)</td>
</tr>
<tr>
<td>T1 1100 m</td>
<td>56.40 (±5.84)</td>
<td>1100</td>
<td>15.00</td>
<td>9.2</td>
<td>35.0</td>
<td>2.59</td>
<td>0.27</td>
<td>9.57</td>
<td>77.44</td>
</tr>
<tr>
<td>T1 2000 m</td>
<td>53.39 (±7.14)</td>
<td>2000</td>
<td>136.00</td>
<td>2.8</td>
<td>34.5</td>
<td>1.21 (±0.12)</td>
<td>0.06 (±0.01)</td>
<td>19.38 (±1.84)</td>
<td>68.32 (±0.82)</td>
</tr>
<tr>
<td>T2 800 m</td>
<td>58.34 (±4.82)</td>
<td>800</td>
<td>2.36</td>
<td>9.9</td>
<td>35.1</td>
<td>3.20 (±0.85)</td>
<td>0.38 (±0.12)</td>
<td>8.41 (±0.43)</td>
<td>74.93 (±1.93)</td>
</tr>
<tr>
<td>T2 1100 m</td>
<td>80.20 (±9.27)</td>
<td>1100</td>
<td>15.00</td>
<td>7.2</td>
<td>34.8</td>
<td>2.41 (±0.95)</td>
<td>0.29 (±0.11)</td>
<td>8.38 (±0.62)</td>
<td>80.19 (±1.44)</td>
</tr>
<tr>
<td>Phylum</td>
<td>Taxonomic Groups Surveyed</td>
<td>Identified Taxa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porifera</td>
<td>Whole Phylum</td>
<td>Hexactinellida spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demospongia spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Actiniaria</td>
<td>Actiniaria spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pennatulacea</td>
<td>Pennatulacea spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Pectenidea spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastropoda</td>
<td>Gastropoda spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthropoda</td>
<td>Decapoda</td>
<td>Plesiopenaeus spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iospoda</td>
<td>Solenocera spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ophiuroidea</td>
<td>Encephaloides spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asteroidea</td>
<td>Bathynomus spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinodermata</td>
<td>Ophiuroidea</td>
<td>Ophiolimna spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asteroidea</td>
<td>Amphiura spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holothuroidea</td>
<td>Asteroidea spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holothuroidea</td>
<td>Brisingida spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chordata</td>
<td>Asciidiacea</td>
<td>Holothuroidea spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gnathostomata</td>
<td>Mesothuria spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Echinoidea spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liparidae spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holocomycteronus spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coryphaenoides spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gobiidae spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Congridae spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synaphobranchus spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Etmopterus spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bathyraya spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace Type</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locomotion</td>
<td>Linear trace on the sea-floor made by the movement of an epi-faunal or semi-infaunal animal. Most probably produced by the feeding and movements of holothurians or echinoids.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holes</td>
<td>Burrow openings on the sediment surface. They may occur both as singular and grouped into irregular clusters.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole Ring</td>
<td>Ring of 8 – 20 burrow openings arranged in a circle. These may surround a sediment mound or a central burrow opening. Identified as an enteropneust lebensspur (Mauviel, et al 1987).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Star-like Trace</td>
<td>Burrow hole surrounded by epichnial grooves, radiating outwards. Ascribed to the presence of a surface deposit feeding echiuran worm (Ohta 1984)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scour</td>
<td>Linear depression (20 – 50 cm length) within the sea floor, bordered by a rim of raised sediment. Probably formed by fish or crustacea excavating the sediment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station</td>
<td>T1 540 m</td>
<td>T1 800 m</td>
<td>T1 1100 m</td>
<td>T1 2000 m</td>
<td>T2 800 m</td>
<td>T2 1100 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicates</td>
<td>(n = 4)</td>
<td>(n = 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porifera</td>
<td>0.0007 (±0.0013)</td>
<td></td>
<td></td>
<td></td>
<td>0.0066 (±0.0063)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinaria</td>
<td>0.0991 (±0.0656)</td>
<td>0.0817 (±0.0416)</td>
<td>0.0106 (±0.0056)</td>
<td>0.0392 (±0.0072)</td>
<td>0.0709 (±0.0181)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennatulacea</td>
<td>0.0145 (±0.0073)</td>
<td>0.0027 (±0.0010)</td>
<td>0.0026 (±0.0007)</td>
<td>0.0031 (±0.0054)</td>
<td>0.0011 (±0.0018)</td>
<td>0.0049 (±0.0190)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia</td>
<td></td>
<td></td>
<td>0.0036 (±0.0037)</td>
<td>0.0010 (±0.0018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0012 (±0.0021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td>0.1158 (±0.0513)</td>
<td>0.0363 (±0.0096)</td>
<td>0.0080 (±0.0055)</td>
<td>0.1480 (±0.0107)</td>
<td>0.0373 (±0.0176)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopoda</td>
<td>0.0024 (±0.0016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteroidea</td>
<td>0.0058 (±0.0071)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiuroidea</td>
<td>0.4430 (±0.4250)</td>
<td>0.0374 (±0.0276)</td>
<td>0.0005 (±0.0009)</td>
<td>0.2073 (±0.1604)</td>
<td>0.0173 (±0.0150)</td>
<td>0.0148 (±0.0055)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holothuroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinoidea</td>
<td>0.0032 (±0.0039)</td>
<td>0.0046 (±0.0046)</td>
<td>0.0053 (±0.0031)</td>
<td></td>
<td>0.0151 (±0.0043)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crinoidea</td>
<td>0.0084 (±0.0097)</td>
<td></td>
<td></td>
<td>0.0048 (±0.0083)</td>
<td>0.0008 (±0.0014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascidiacea</td>
<td></td>
<td></td>
<td></td>
<td>0.0046 (±0.0039)</td>
<td>0.0030 (±0.0051)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnathostomata</td>
<td>0.0267 (±0.0388)</td>
<td>0.0529 (±0.0476)</td>
<td>0.0672 (±0.0040)</td>
<td>0.0055 (±0.0018)</td>
<td>0.0623 (±0.0157)</td>
<td>0.0426 (±0.0140)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Abundance</td>
<td>0.0267 (±0.0039)</td>
<td>0.7390 (±0.3940)</td>
<td>0.2380 (±0.1489)</td>
<td>0.0367 (±0.0167)</td>
<td>0.4780 (±0.3130)</td>
<td>0.2177 (±0.0843)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Oxygen ρ_s</td>
<td>Oxygen p-value</td>
<td>C:N Ratio ρ_s</td>
<td>C:N Ratio p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actiniaria</td>
<td>0.27</td>
<td>0.27</td>
<td>-0.55</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td>0.16</td>
<td>0.52</td>
<td>-0.62</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiuroidea</td>
<td>-0.06</td>
<td>0.82</td>
<td>-0.56</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteroidea</td>
<td>0.51</td>
<td>0.02</td>
<td>-0.18</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinoidea</td>
<td>0.63</td>
<td><0.01</td>
<td>-0.26</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnathostomata</td>
<td>-0.31</td>
<td>0.20</td>
<td>-0.44</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Taxa</td>
<td>0.16</td>
<td>0.52</td>
<td>-0.59</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Megafaunal Abundance</td>
<td><0.01</td>
<td>0.99</td>
<td>-0.68</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2

Oxygen Concentration (μmol/l)

Temperature (°C)

Salinity

OMZ Boundary

OMZ Core

OMZ Boundary

Depth (m)

0 50 100 150 200 0 5 10 15 20 25 30 35 33 34 35 36 37

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Figure 4.
Figure 5

Lebenspurren Density (m^{-2})

- Hole Rings
- Holes/Burrows
- Scour
- Locomotion Traces
- Star-like Traces

Station

T1 540 m
T1 800 m
T2 800 m
T1 1100 m
T2 1100 m
T1 2000 m
Figure 6.
Figure 7.
Figure 8.

Biomass (g ww. m$^{-2}$)

- T1 540 m
- T1 800 m
- T2 800 m
- T1 1100 m
- T2 1100 m
- T1 2000 m

Key:
- Black: Decapoda
- Light Gray: Ophiuroidea
<table>
<thead>
<tr>
<th>Station</th>
<th>Average Similarity (%)</th>
<th>Contributing Taxa</th>
<th>Percentage Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 540 m</td>
<td>90.97</td>
<td>Gnathostomata</td>
<td>100.00</td>
</tr>
<tr>
<td>T1 800 m</td>
<td>48.70</td>
<td>Ophiuroidea Decapoda Actiniaria</td>
<td>40.24 21.03 20.62 14.32</td>
</tr>
<tr>
<td>T1 1100 m</td>
<td>49.94</td>
<td>Actiniaria Gnathostomata Decapoda</td>
<td>43.71 21.03 15.95 14.06</td>
</tr>
<tr>
<td>T1 2000 m</td>
<td>60.71</td>
<td>Actiniaria Decapoda Echinoidea</td>
<td>30.91 27.27 16.10 12.29 9.31</td>
</tr>
<tr>
<td>T2 800 m</td>
<td>37.45</td>
<td>Ophiuroidea Decapoda Gnathostomata</td>
<td>52.58 24.83 11.40 9.35</td>
</tr>
<tr>
<td>T2 1100 m</td>
<td>53.97</td>
<td>Decapoda Actiniaria Gnathostomata</td>
<td>21.77 21.44 19.89 10.84 10.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Echinoidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holothuroidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophiuroidea</td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>T1 540 m</td>
<td>T1 800 m</td>
<td>T1 1100 m</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>540 m</td>
<td>Ophiuroidea (52.19%)</td>
<td>Achnia (37.73%)</td>
<td>Gnathostomata (43.20%)</td>
</tr>
<tr>
<td></td>
<td>Decapoda (24.02%)</td>
<td>Decapoda (14.67%)</td>
<td>Decapoda (4.482%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (14.67%)</td>
<td>Ophiuroidea (14.50%)</td>
<td>Echinodermata (10.17%)</td>
</tr>
<tr>
<td>800 m</td>
<td>Ophiuroidea (57.57%)</td>
<td>Decapoda (19.82%)</td>
<td>Achnia (7.53%)</td>
</tr>
<tr>
<td></td>
<td>Decapoda (22.40%)</td>
<td>Achnia (19.77%)</td>
<td>Decapoda (22.17%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (7.53%)</td>
<td>Decapoda (8.60%)</td>
<td>Achnia (9.05%)</td>
</tr>
<tr>
<td>1100 m</td>
<td>Decapoda (24.09%)</td>
<td>Ophiuroidea (46.37%)</td>
<td>Achnia (16.72%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (14.00%)</td>
<td>Decapoda (12.24%)</td>
<td>Achnia (25.73%)</td>
</tr>
<tr>
<td></td>
<td>Ophiuroidea (35.25%)</td>
<td>Gnathostomata (6.11%)</td>
<td>Ophiuroidea (16.07%)</td>
</tr>
<tr>
<td>2000 m</td>
<td>Decapoda (23.80%)</td>
<td>Decapoda (25.67%)</td>
<td>Decapoda (13.15%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (6.11%)</td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
</tr>
<tr>
<td></td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
<td>Echinodermata (3.60%)</td>
</tr>
<tr>
<td>2500 m</td>
<td>Decapoda (23.47%)</td>
<td>Decapoda (25.67%)</td>
<td>Decapoda (13.15%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (13.42%)</td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
</tr>
<tr>
<td></td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
<td>Echinodermata (3.60%)</td>
</tr>
<tr>
<td>3000 m</td>
<td>Decapoda (23.47%)</td>
<td>Decapoda (25.67%)</td>
<td>Decapoda (13.15%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (13.42%)</td>
<td>Achnia (6.11%)</td>
<td>Achnia (6.11%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (6.11%)</td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
</tr>
<tr>
<td></td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
<td>Echinodermata (3.60%)</td>
</tr>
<tr>
<td>3500 m</td>
<td>Decapoda (23.47%)</td>
<td>Decapoda (25.67%)</td>
<td>Decapoda (13.15%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (13.42%)</td>
<td>Achnia (6.11%)</td>
<td>Achnia (6.11%)</td>
</tr>
<tr>
<td></td>
<td>Achnia (6.11%)</td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
</tr>
<tr>
<td></td>
<td>Echinodermata (3.60%)</td>
<td>Achnia (6.11%)</td>
<td>Echinodermata (3.60%)</td>
</tr>
</tbody>
</table>

Appendix B.
Appendix C.

A

\[N = 66 \]
\[\text{Median} = 1.573 \]
\[\text{Range} = 0.355 - 3.891 \]

B

\[N = 97 \]
\[\text{Median} = 4.061 \]
\[\text{Range} = 1.094 - 14.970 \]