Radiocarbon dating of bulk peat samples from raised bogs: nonexistence of a previously reported 'reservoir effect'?

Published in:
Quaternary Science Reviews

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Radiocarbon dating of bulk peat samples from raised bogs: nonexistence of a previously reported ‘reservoir effect’?

Maarten Blaauw, Johannes van der Plicht, Bas van Geel

In 1995, an unexpected reservoir effect was reported in sequences of bulk 14C dates of raised bog peat. In most peat studies bulk 14C dates are used for obtaining chronologies. Therefore it is important to confirm and quantify such a 14C reservoir effect. Five bulk peat samples from the raised bog Engbertsdijksveen were conventionally 14C dated. The same core had previously been precisely dated by 14C AMS dates of carefully selected above-ground plant remains. The existence of a reservoir effect in bulk peat 14C samples could not be confirmed. Other explanations for the reported reservoir effect are discussed.

1. Introduction

Reliable chronologies are crucial for many Quaternary investigations. Radiocarbon dating of Holocene raised bog peat should be straightforward as this peat consists almost entirely of locally grown plant remains. The 14C content (corrected for isotopic fractionation) of plants growing on raised bogs is in equilibrium with atmospheric values, and therefore no reservoir effect (14C age offset) is expected in above-ground remains of such plants (no influence from 14C-depleted carbon, as is the case for many lake and ocean sediments, e.g. Björck et al., 1998).

Kilian et al. (1995, 2000) obtained a high-resolution sequence of 14C AMS dates of selected plant remains from a peat core. Upon matching this sequence with the 14C calibration curve (14C wiggle-match dating; van Geel and Mook, 1989) it appeared that, when giving priority to placing pure Sphagnum samples on the calibration curve, Sphagnum samples containing some (2–4%) ericaceous rootlets floated ca. 100–150 14C ‘years’ above the calibration curve (too old 14C ages; interpreted as a reservoir effect). These results were not expected; rootlets are generally believed to cause younger 14C ages because they penetrate from higher, younger levels (e.g., Shore et al., 1995). Kilian et al. (1995) then proceeded to see whether other peat cores could also possess unidentified 14C reservoir effects.

Indeed, Kilian et al. (1995) found several published peat cores where sequences of bulk 14C dates followed the shape of the 14C calibration curve, but where the matches improved when a positive 14C age offset was assumed for the peat bulk 14C dates (see Fig. 1A–D). The size of the inferred reservoir effect was constant within cores but it differed between the cores that were from different sites; it ranged from 117 to 237 years. The cores had been deposited under a variety of local humidity conditions (hummock, lawn, hollow). All cores encompassed the period from ca. 750 to 400 cal BC when the 14C calibration curve shows a plateau (approximately constant 14C ages), preceded and followed by phases with rapidly changing 14C ages. Such periods with pronounced shapes (especially plateaux) in the 14C calibration curve offer the best possibilities for identifying reservoir effects in sequences of 14C dates (Kilian et al., 1995).

The reservoir effect reported by Kilian et al. (1995) could alter the chronological interpretation of many bulk 14C dated cores from raised bog deposits. Therefore, in the present study, we aimed to investigate the nature of any reservoir effect in bulk 14C dates in raised bog peat.
Fig. 1. Four sequences of conventional bulk 14C dates from published peat cores (diamonds with 1 σ error bars) were wiggle-matched against the INTCAL98 14C calibration curve (lines show 1 σ error envelope; Stuiver et al., 1998). The depicted matches are similar to those proposed by Kilian et al. (1995). A–D show matches when a reservoir effect is assumed. The sizes of the reservoir effects are given after the site names. Small dots indicate where the calibration curve would plot with the chosen reservoir effects. E–H show how each sequence would match without assuming a reservoir effect for the peat bulk dates. Eng-I, The Netherlands: van Geel, 1978; Kilian et al., 1995; Eng-VII (The Netherlands): Dupont and Brenninkmeijer, 1984; Draved Mose (Denmark): Aaby and Tauber, 1975; Haslacher See (Germany): Küster, 1988.
2. Material and methods

Peat core Eng-XV, collected from a raised bog deposit at Engbertsdijksveen in the eastern Netherlands, was 14C wiggle-match dated using a high-resolution sequence of AMS 14C dates of carefully selected and cleaned above-ground plant remains (Blaauw et al., 2003, 2004a). No 14C reservoir effect was assumed. The upper part of the peat core (25 dates) was deposited from ca. 900 to 350 cal BC. As this was a period where the calibration curve shows pronounced fluctuations, a very precise match was obtained (Fig. 2). During the period considered, the core consisted mostly of species that indicate relatively dry local conditions (Table 1).

To confirm the existence of a reservoir effect in 14C dates of bulk peat, five bulk samples were taken from the same core. No roots or rootlets were removed. The samples were AAA treated (Mook and Streurman, 1983) and were 14C dated conventionally (Table 1). The 14C ages were corrected for isotopic fractionation using the δ^{13}C values.

3. Results and discussion

Radiocarbon dates of cleaned above-ground plant remains should reflect ‘true’, contemporaneous 14C ages, because (a) the carbon isotope ratios of above-ground parts of raised bog plant plants are thought to be in balance with atmospheric 14C (some fractionation occurs; see later), (b) 14C ages of sequences of above-ground plant remains could be matched with the 14C calibration curve without assuming a reservoir effect (Fig. 2), and (c) careful selection and cleaning of above-ground macrofossils of different plant species from the same levels did not reveal statistically different 14C ages (see Blaauw, 2003, p. 43).

Several studies cast doubt on the reliability of peat bulk 14C dates (Kilian et al., 1995; Shore et al., 1995; Nilsson et al., 2001). Bulk samples may contain a mixture of material of different ages (above-ground remains, roots, rootlets, fungal mycelium, charcoal, transported fine organic matter, etc.). It therefore is surprising that our conventional bulk peat 14C dates were not significantly different from AMS 14C dates of carefully selected and cleaned above-ground plant

![Fig. 2. 25 AMS 14C dates of carefully selected and cleaned above-ground plant remains (open circles; bars indicate 1 s error limits) from peat core Eng-XV were wiggle-matched to the INTCAL98 calibration curve (lines show 1 s error envelope; Stuiver et al., 1998; Blaauw et al., 2003). From the same core, 5 bulk peat samples were 14C dated (black circles; bars indicate 1 s error limits; Table 1).](image)

Table 1
Conventional radiocarbon measurements of bulk samples from peat core Eng-XV

<table>
<thead>
<tr>
<th>Sample</th>
<th>Vegetation composition</th>
<th>C-14 age (BP)</th>
<th>δ^{13}C (%)</th>
<th>% C</th>
<th>GrN number</th>
</tr>
</thead>
<tbody>
<tr>
<td>57–56cm</td>
<td>Si (30%) rootl. (60%)</td>
<td>2410 ± 50</td>
<td>−27.61</td>
<td>61.6</td>
<td>27653</td>
</tr>
<tr>
<td>61–60cm</td>
<td>Si (90%) rootl. (5%)</td>
<td>2470 ± 60</td>
<td>−27.33</td>
<td>60.8</td>
<td>27654</td>
</tr>
<tr>
<td>63–62cm</td>
<td>Si (97%) rootl. (3%)</td>
<td>2460 ± 55</td>
<td>−26.31</td>
<td>58.6</td>
<td>27655</td>
</tr>
<tr>
<td>76–75cm</td>
<td>Sa (40%) rootl. (20%)</td>
<td>2435 ± 60</td>
<td>−26.93</td>
<td>59.4</td>
<td>27656</td>
</tr>
<tr>
<td>78–77cm</td>
<td>Sa (40%) rootl. (30%)</td>
<td>2435 ± 45</td>
<td>−27.29</td>
<td>60.9</td>
<td>27657</td>
</tr>
<tr>
<td>Pooled KOH extracts</td>
<td>—</td>
<td>2560 ± 55</td>
<td></td>
<td></td>
<td>27872</td>
</tr>
</tbody>
</table>

remains from the same levels (Fig. 2). Although the bulk samples with large amounts of ericaceous rootlets tended to give somewhat younger 14C ages than those bulk samples consisting of nearly pure Sphagnum (Table 1), the age differences were always smaller than the measurement errors.

The absence of a reservoir effect in the bulk peat samples in the present study needs to be explained. We consider it unlikely that five measurements of samples with different ‘true’ 14C ages would result in similar 14C age determinations by pure statistical chance. The bulk dates were sampled 4 years after collection of the peat core, while the AMS dates had been taken in the 2 years following collection of the core. Wohlfarth et al. (1998) warn that after prolonged storage, 14C ages can become too young (possibly owing to contamination; however, Sphagnum—a major component of raised bog peat—has antimicrobial properties; Painter, 1991). Although this could perhaps point to a removal of an initial reservoir effect, we consider it unlikely that for all bulk samples there was a ‘lucky’ balance of material giving too old (unidentified reservoir effect sources; Kilian et al., 1995, 2002, but see Pancost et al., 2000), too young (e.g., roots, contamination) and contemporaneous ages, in all cases adding up to similar ages (note that the vegetation composition differed considerably between the samples; Table 1). Moreover, bulk peat samples taken more than a decade after collection of peat core Eng-I (Kilian et al., 1995) gave 14C ages that did not show offsets from 14C dates published earlier (van Geel, 1978; Fig. 1). Perhaps the simplest explanation is that 14C dates of bulk samples of raised bog peat can be accurate after all.

As explained in the introduction, wiggle-matches of sequences of conventional bulk 14C dates from several European raised bog deposits showed a good fit with the calibration curve when a 14C age offset of ca. 100–200 years was assumed for all 14C dates in a sequence (Kilian et al., 1995; Fig. 1A–D). Indeed, when no reservoir effect was assumed, the studied cores the scatter of the dates became larger and thus the fit became worse (Fig. 1E–H). We discuss two lines of reasoning to assess the supposed reservoir effect reported by Kilian et al. (1995). When we use visual, ‘subjective’ wiggle-matching, our eyes appear to reconstruct the shape of the sequence of peat dates by connecting the data points with ‘invisible lines’, and compare this shape with that of the calibration curve. If we imagine such lines, the matches with a reservoir effect as shown in Fig. 1A–D become far more convincing than the matches without a reservoir effect (Fig. 1E–H). Besides this ‘visual’ approach, there is the ‘statistical’ approach where the best match is the one with the least amount of scatter (e.g., Blaauw et al., 2003). Indeed, in the studied cases, the scatter between the dates of the peat core and those of the calibration curve is less when a reservoir effect is assumed (Fig 1; Kilian et al., 1995). However, scatter of a wiggle-matched sequence of 14C dates could be expected because of errors in the 14C dates and/or in the growth model (Blaauw et al., 2003). All peat cores in Fig. 1 had been been wiggle-matched assuming linear accumulation throughout the intervals considered, although the lithologies of several of the cores showed considerable changes, possibly indicating changes in accumulation rate. Furthermore, even when a reservoir effect is assumed, some dates still show considerable (positive and negative) scatter (Fig. 1). Moreover, the enhanced fit when assuming a reservoir effect comes at a cost, because an extra factor has to be induced and estimated (the size of the reservoir effect), and also because the origin of the supposed reservoir effect remains unknown (see below).

Because plants differentiate against 13C and 14C in favour of 12C (fractionation), somewhat lower amounts of the heavier carbon isotopes accumulate in plants than are present in the atmosphere. In Fig. 3 the 13C values of several bog plant remains are plotted; plants growing on wetter locations clearly differentiate less against 13C (higher water contents result in higher diffusion resistance; Price et al., 1997). Because of this fractionation, wet growing species are relatively more depleted in 14C and thus appear relatively ‘old’ if their 14C ages are not corrected for fractionation using their 13C values (according to Mook and Steurman (1983), a 1%
depletion of 13C would make a sample 16 14C years older. In the past, 14C dates were not always corrected for fractionation, possibly making some dates too old. This could be the case for core Draved Mose, where according to Aaby and Tauber (1975) the 14C dates had not been corrected for fractionation. All other 14C dates discussed in the present paper have been corrected for fractionation.

Different fractions of bulk peat (humin, humic acids and fulvic acids) often show distinct 14C ages. In order to extract humic acids and date the humin fraction only, samples are commonly treated with acid and alkali (Mook and Streurman, 1983). All 14C samples of core Eng-VII were treated with acid and alkali, while some samples of core Eng-I were either treated with acid only or with alkali only; in this case the different treatments did not result in significantly different 14C ages (data not shown). The samples from Draved Mose (Aaby and Tauber, 1975) and Haslacher See (Küster, 1988) had not been subjected to humic acid extraction, and this, together with the finding that our KOH extract showed an older 13C age than those of the humin fractions (Table 1), might point to humic acids causing too old 14C ages. However, Dresser (1970) found that humic acid fractions of (mainly blanket mire) peat consistently yielded too young dates, and Nilsson et al. (2001) found that alkali hydrolysed bulk samples fractions showed older 14C ages than did non-treated fractions. Shore et al. (1995) present even more confusing results; in their study some humin fractions dated several hundreds of 14C years older than the humic acid fractions, while in other samples the opposite was found (their study was based on non-raised bog peat).

4. Conclusions

Kilian et al. (1995) postulated the existence of a reservoir effect in 14C dates of bulk peat samples. However, this phenomenon could not be confirmed in the present study. Peat bulk 14C dates could thus be more reliable than Kilian et al. (1995) and others (Shore et al., 1995; Nilsson et al., 2001) suggest. The evidence for reservoir effects identified by Kilian et al. (1995) was based on cores collected from different local conditions (hummocks, hollows). The core reported in the present paper consisted of a hummock (relatively dry conditions) during the investigated period. It would be interesting to repeat the present study using a core that had accumulated during lawn or hollow conditions, even more because mosses growing in hollows could contain a portion of recycled CO$_2$ from deeper peat layers (Price et al., 1997; Smolders et al., 2001).

References

