A Bayesian framework for age modeling of radiocarbon-dated peat deposits: Case studies from the Netherlands

Published in:
Radiocarbon

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2007 The Authors, published by the University of Arizona.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 14. Mar. 2019
A BAYESIAN FRAMEWORK FOR AGE MODELING OF RADIOCARBON-DATED PEAT DEPOSITS: CASE STUDIES FROM THE NETHERLANDS

Maarten Blaauw1,2 • Ronald Bakker3 • J Andrés Christen1 • Valerie A Hall4 • Johannes van der Plicht5

ABSTRACT. Recently, Bayesian statistical software has been developed for age-depth modeling (“wiggle-match dating”) of sequences of densely spaced radiocarbon dates from peat cores. The method is described in non-statistical terms, and is compared with an alternative method of chronological ordering of 14C dates. Case studies include the dating of the start of agriculture in the northeastern part of the Netherlands, and of a possible Hekla-3 tephra layer in the same country. We discuss future enhancements in Bayesian age modeling.

INTRODUCTION

Plateaus and age reversals in radiocarbon calibration curves (e.g. IntCal04, Reimer et al. 2004) are known to cause problems for interpreting individual 14C dates (e.g. Guilderson et al. 2005). However, these peculiar features of calibration curves can be used to obtain precise age-depth models from high-resolution sequences of 14C dates (matching the shape of such sequences to the shape of the calibration curve; Pearson 1986; van Geel and Mook 1989). This wiggle-match dating (WMD) technique is being used intensively for precise dating of trees (Pearson 1986; Slusarenko et al. 2001; Hogg et al. 2003; Kuzmin et al. 2004; Norström et al. 2005; Friedrich et al. 2006), peat deposits (Clymo et al. 1990; Christen et al. 1995; Kilian et al. 1995, 2000; Oldfield et al. 1997; Speranza et al. 2000; Mauquoy et al. 2002, 2004; Bakker 2003a; Blaauw et al. 2003, 2004; Donders et al. 2004; Garnett and Stevenson 2004; Charman and Garnett 2005; ACCROTELM, http://www2.glos.ac.uk/accrotelm/), and other archives (Gulliksen et al. 1998; van de Plassche et al. 2002, 2003).

Although WMD often results in more precise age models than using individually calibrated dates, calculation of precision or error ranges is not straightforward for WMD. In recent years, a number of investigations attempted to obtain confidence intervals for WMD age models. Pearson (1986), Christen (2003), and Bronk Ramsey et al. (2001) constructed methods to find confidence limits of 14C wiggle-matched annual tree rings. Fitting such series with exactly known growth rates is not the subject of the present paper; rather, we focus on raised bog peat deposits. These have the added difficulty that their individual accumulation histories are not known and must therefore be estimated in order to obtain an age model. Cores from these deposits often demonstrate hiatuses and/or changes in the accumulation rate, necessitating fitting of subsets and thus leading to complicated age models.

Until recently, sequences of 14C dates for organic deposits were divided manually and heuristically into subsets, and these were matched to the calibration curve assuming linear accumulation within the individual subset (e.g. Blaauw et al. 2003). Chosen models then had to be adapted manually to avoid chronological overlap between subsets (“leaps back in time”). This manual approach is lim-
ited as only small numbers of possible subsets could be checked (whereas, to give an example, there are 210 ways to divide a sequence of 20 dates into 3 subsets, and an infinite number of ways to do this for the continuous variable “depth”). Outliers appear regularly in high-resolution data sets and systematic approaches to take these into account were lacking in WMD. Moreover, models that gave good fits of the dates to the calibration curve would sometimes have unrealistic underlying age models (very low or high accumulation rates, or very large hiatuses).

To tackle the above issues, Blaauw and Christen (2005) recently published software called Bpeat. Here, we explain the approach in non-statistical terms, using detailed case studies, and suggest future improvements.

THE BPEAT FRAMEWORK

Bpeat (Blaauw and Christen 2005) uses Bayesian statistics, which is a framework for explicitly considering prior knowledge/assumptions when interpreting new data. Our software uses the following prior assumptions, based on paleoecological knowledge about raised bog peat deposits: i) peat age increases with depth; ii) peat accumulates linearly for a certain period of time, after which a hiatus and/or a change in accumulation rate can occur (piecewise linear model; wiggle-match dating using sections); iii) section division levels could lie at any depth of a core; iv) likely accumulation rates are between 10 and 20 yr/cm, but other accumulation rates are possible; v) there is a weak dependency of accumulation rates between sections (see later); vi) hiatuses (gaps in the archive) can occur, with short-lasting hiatuses being more likely than long-lasting ones; and vii) every \(^{14} \text{C} \) date has a prior probability of being an outlier (outlying dates automatically obtain lower weights in the age models).

The above prior information is translated into specific distributions (Figure 1c–e). Instead of using the well-known normal distribution, for the accumulation rate and hiatus length priors we use gamma distributions. These are defined through 2 parameters, and have the advantage of always obtaining positive values (this is useful for avoiding negative accumulation rates or jumps back in time during hiatuses) as well as allowing for flexible shapes (through varying the values of the underlying parameters; e.g. compare Figures 1c–d with Figure 1e). For the accumulation rate, the gamma prior is shaped using the parameters AlphaMean and AlphaStd (default 20 and 10, respectively), while for the hiatus length HiatusA and HiatusB (both default 0.0005) are defined. It is important to note that the values of the priors are not universally applicable. Different values for the priors should be checked through plotting the prior distributions, and possibly adapted for individual case studies.

Here, we introduce a degree of dependence of accumulation rate between different sections, since we believe every site is subject to specific factors that should limit possible accumulation rates (e.g. precipitation regime, season length). If a peat bog accumulates at a certain constant rate during one period, owing to these site-specific limiting factors, it could not have an entirely different accumulation rate in a different section and period. We approach this dependence through a gamma distribution (Figure 1e), which acts as a multiplication factor that controls how much accumulation rates can differ between the sections of a core. Values taken from this distribution vary to a lesser or greater extent around 1.0, with the size of this variation set by the single parameter epsilon. Using an estimated value for the “global” accumulation rate of a core (e.g. 10 yr/cm), the accumulation rate for every individual section will be given by multiplying the global accumulation rate by a value from the dependence distribution (e.g. \(10 \times 0.9 \) yr/cm). Usually, we set the dependence of accumulation rate between sections to be very weak, e.g. epsilon = 5, which allows multiplication factors to vary between about 0.2 and 2.
Outlying dates are handled as in previous applications of the Bayesian framework to \(^{14}\)C age modeling (Christen 1994a,b, 2003; Buck et al. 2003); if a date needs to be shifted more than 2 standard deviations in order to bring it into context with the other dates and the applied model, then it is labelled as outlier. This method differs from the agreement index in OxCal where the overlap between prior and posterior distributions is measured (Bronk Ramsey, forthcoming). Many reasons are known for outliers to appear in \(^{14}\)C studies (unremoved contamination from other layers, handling and processing, mislabeling, typing errors, etc.) as well as some still unexplained factors, but it is argued that up to 5% of all \(^{14}\)C dates are outlying (Blaauw and Christen 2005; Blaauw et al. 2005). Although the standard approach in Bpeat is to give the same prior outlier probability to all dates, this prior can be adapted for individual dates (e.g. Wohlfarth et al. 2006, where \(^{14}\)C dates stemming from corroded leaves were given higher prior outlier probabilities than those of “clean,” less suspect material).

Additional dating information can be included in Bpeat, e.g. tephra layers of known calendar ages (Vorren et al. 2007). This can be done simply by not calibrating such date points (since they are already provided on the calendar scale) using a dummy 1:1 “calibration curve,” while the \(^{14}\)C dates in the sequence are calibrated using the usual calibration curve.

On the basis of the above assumptions, the values of many parameters need to be estimated. These include the start year of the sequence, the accumulation rate and hiatus length for every section, and the outlier probability for every date. Their values are estimated through tens to hundreds of millions of Markov Chain Monte Carlo (MCMC) iterations, where every iteration contains point estimates for all parameters involved, simulated from the corresponding posterior distribution given all \(^{14}\)C determinations and the prior assumptions of the parameters described above. Similarly, for every iteration a depth can be translated into a calendar age using the parameter values at this particular iteration; a histogram of the predicted calendar ages using all MCMC iterations will thus estimate
the calendar age distribution of this depth. Such histograms can be depicted as grayscales, with
darker grayscales indicating more likely calendar ages. As in every MCMC analysis, it is essential
always to check for replicability/robustness of the results through assessing multiple runs (both
using similar and adapted values for the MCMC settings and for the priors for number of sections,
accumulation rate, hiatus length, and outliers).

Bpeat can be downloaded from www.cimat.mx/~blaauwm/Bpeat-1.zip (Windows) or
www.cimat.mx/~jac/software.html (Linux). Both versions come with a manual, use a command line
approach, and need the open-source and free statistical software R (www.r-project.org) to be
installed on the computer.

CASE STUDIES

Here, we report on 2 case studies where a precise estimate for the calendar age of certain events was
obtained using the framework described above. The first study aims to estimate the date of onset of
agriculture in a region of the Netherlands through 14C age modeling of pollen horizons, and the sec-
ond example aims to estimate the calendar age of a micro-tephra layer encountered in a mid-
Holocene raised bog peat deposit from the same region.

Gietsenveentje

In the central and western parts of the Netherlands, agriculture is assumed to have been introduced
by members of the Swifterbant culture (about 6900–5400 cal BP; Raemaekers 1999), whereas in
Drenthe (northeastern Netherlands), previous studies indicate that farmers of the Funnel Beaker cul-
ture (about 5400–4750 cal BP; van Zeist 1959, 1967; Casparie and Groenman-van Waateringe
1980) started agriculture later, around 5300 cal BP. The inferred later start in this region could be
due to a lack of palynological data, because most sediments (Sphagnum bogs) have either been
removed to be used as fuel or are located far from Neolithic settlements. The Gietsenveentje pingo
scar lies close (600 m) to archaeological settlements in Drenthe, and contains mid-Holocene gyttja
and peat. Its palynological record has recently been studied in detail from replicate cores (Bakker
2003a,b). The regional start of agriculture (Neolithic Occupation period, NOP) can be reconstructed
calendronically from 3 high-resolution 14C-dated cores (Table 1; in the sections of interest, GietenV-
A has 10, GietenV-B 9, and GietenV-D 8 14C dates). The cores were analyzed using BCal assuming
chronological ordering (Buck et al. 1999), and using Bpeat under the following assumptions (see
above; Blaauw and Christen 2005): accumulation rate can vary greatly between about >0 and 150
yr/cm (AlphaMean = 50 [GietenV-A: 60], AlphaStd = 40 [GietenV-A: 20], epsilon = 2); and hiatus
length is most likely very short, but could at times last millennia (HiatusA = 0.3, HiatusB = 0.0005).

After testing several options, the best fits were obtained by dividing core GietenV-A into 3 sections,
and the other cores into 2 sections (similar to Bakker 2003a). The prior for 14C dates being outlying
was set at 5%.

Table 1 Neolithic Occupation Phases 1 and 2 as inferred from 3 cores in Gietsenveentje (Bakker
2003a). NOP-1 is divided into 2 sub-events when the *Ulmus* decline is asynchronous with the
appearance of *Plantago lanceolata*. Cal BP ages are 95% ranges from the Bpeat posterior distribu-
tions, rounded to the nearest decade.

<table>
<thead>
<tr>
<th>GietenV-A</th>
<th>GietenV-B</th>
<th>GietenV-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOP-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a: 376.5 cm, 6280–5990 cal BP</td>
<td>262.5 cm, 6220–5940 cal BP</td>
<td></td>
</tr>
<tr>
<td>1b: 370.5 cm, 5480–5320 cal BP</td>
<td>222.5 cm, 6170–5740 cal BP</td>
<td></td>
</tr>
<tr>
<td>NOP-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>366.5 cm, 5440–5170 cal BP</td>
<td>222.5 cm, 5670–5450 cal BP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>205.5 cm, 5580–5340 cal BP</td>
<td></td>
</tr>
</tbody>
</table>
NOP-1 was registered in the Gieten cores as a combination of a very gradual decline of *Ulmus*, a maximum of *Tilia* and *Quercus*, an increase in non-arboreal pollen, Gramineae, *Calluna vulgaris*, and * Rumex acetosa*, and the appearance of *Plantago lanceolata* and Cerealia-type (Bakker 2003a). In core GietenV-A, this zone was divided into 1a (*Ulmus* decline) and 1b (appearance *P. lanceolata*) as the *Ulmus* decline was asynchronous with the appearance of *P. lanceolata*. In cores GietenV-A (NOP-1a) and GietenV-D (NOP-1), the event was located at the bottom of the sequence of 14C dates, (Figure 2) with the lowest dates being rather isolated (in depth as well as in calendar age; no overlapping posterior distributions of individually calibrated dates). This resulted in rather wide confidence intervals for NOP-1 for both cores (Figure 3); indeed, Bpeat and BCal 95% posterior distributions were comparable to ranges obtained by calibrating the individual dates. In core GietenV-B, the depth of NOP-1 was encompassed by multiple dates, but also here the posterior distributions of Bpeat as well as BCal were rather wide. In all 3 cases, NOP-1 is dated at around 6000 cal BP, although with century-wide uncertainty levels. The inferred onset of agriculture in northeastern Netherlands is thus found to be some 7 centuries earlier than previously assumed (van Zeist 1959, 1967; Casparie and Groenman-van Waateringe 1980), and was thus introduced by members of the Swifterbant culture. NOP-2 was registered as a gradual decrease of *Tilia*, large amounts of Gramineae and *C. vulgaris*, and maxima of *P. lanceolata*, *R. acetosa*, and Cerealia-type. This event of increased human impact was dated around 5600–5300 cal BP (Table 1, Figure 3) and provides an age for the start of the Funnel Beaker culture (whose farmers practiced agriculture on a much larger scale than those of the Swifterbant culture).

![Figure 2](image-url)
Hekla-3 Tephra in the Netherlands?

Geochemically confirmed volcanic ash layers (tephra) are used widely for correlating cores between regions. The Hekla-3 tephra, which dates to around 3000 cal BP, has been reported from its source area in Iceland (Boygle 1999), the North Atlantic Ocean (Eiríksson et al. 2000; Haflidason et al. 2000), Ireland (Plunkett 2006), Sweden (Zillén et al. 2002; Bergman et al. 2004; Boygle 2004; Wastegård 2005), and northern Germany (van den Bogaard et al. 2002), and has been 14C dated to approximately 3100–2800 cal BP. Core Eng-XV from a raised bog peat deposit in the province of Overijssel (Netherlands) spans the mid to late Holocene and has been 14C dated from thoroughly cleaned aboveground macrofossils; Blaauw et al. 2004). As Hekla-3 tephra has not previously been reported from deposits in the Netherlands, and as core Eng-XV was 14C dated at very high resolution (57 dates on thoroughly cleaned aboveground macrofossils; Blaauw et al. 2004). As Hekla-3 tephra has not previously been reported from deposits in the Netherlands, and as core Eng-XV was 14C dated at very high resolution, the core was inspected for tephra layers. At the Palaeoecology Center at Belfast University, 5-cm slices of core Eng-XV were analyzed microscopically for tephra (Pilcher and Hall 1992), after which slices with detected tephra were re-analyzed at the cm level. Only 1 level (96 cm) was found to contain some microscopic shards of tephra (data not shown), but tephra concentration was too low for geochemical analysis. Age models were constructed for this depth using Bpeat (prior settings: 2 sections; outliers 5%; accumulation rate is most likely to be
between about 10 and 30 yr/cm: AlphaMean = 20, AlphaStd = 10, epsilon = 5; hiatus length could last up to centuries, HiatusA = 0.5, HiatusB = 0.005) and BCal (Buck et al. 1999). For BCal, all dated levels were assumed to be chronologically ordered, with the oldest dates at the bottom. The tephra layer (at 96 cm depth) was assumed to be younger than the 14C dates at 97 cm and below, and to be older than the 14C dates of 95 cm and up. The prior for the calendar age of the tephra layer was set as quasi non-informative (uniform distribution between 20,000 and 20 cal BP). The Bpeat estimate for the calendar age of the tephra layer found in core Eng-XV is 3160–3090 cal BP (95% ranges rounded to the nearest decades), while BCal estimates it to be 3220–3030 cal BP (Figure 4).

DISCUSSION

Even though the GietenV cores were dated using wiggle-match dating of $8\text{–}10^{14}$C dates, they could not provide highly precise age estimates for NOP-1. This is because i) the event was 14C dated by only 1 or 2 levels isolated from the rest of the determinations in the sequences (non-overlapping calibrated distributions; cores GietenV-A and GietenV-D), or with only few dates before the event (core GietenV-B); and ii) plateaus and recurring 14C ages are common in the calibration curve around this period, in effect causing confidence intervals of the “medium” resolution 14C sequences to be nearly as large as those for individually calibrated 14C dates. Event NOP-1b in core GietenV-
A was covered by a denser sequence of 14C dates, thus resulting in somewhat more precise age estimates for this event. Although NOP-2 was covered by several dates in all cores, the calibration curve varied much during this period (even higher density sequences would have been needed to properly match the dates to the calibration curve). Adding to this are the uncertainties in division levels of the multiple sections. Most resulting Bpeat confidence intervals are therefore not narrower than the calibrated ranges of the individual dates nearby the depths of interest (Table 1, Figure 3). We note that owing to modeling and data uncertainties, calendar age distributions are much more useful than point age estimates (e.g. MAP in Figure 2). The nature of the calibration curve during this period probably precludes precise ($<$100 yr) age estimates from even high-resolution wiggle-match dated 14C sequences (see Figures 1–2 in Blaauw and Christen 2005).

The Gieten cores originate from a pingo scar (GietenV-A and GietenV-D consist of gytta at the sections studied here, while GietenV-B consists of Sphagnum peat with occasional Eriophorum layers; Bakker 2003a). While the cores were wiggle-match dated under the model of piecewise linear accumulation, actually this model was constructed with raised bog peat deposits in mind (Blaauw and Christen 2005). Because the accumulation rate might well have fluctuated much more in pingo scars than in raised bog deposits, the Bpeat assumptions might not prove reliable here. However, the less stringent assumption of chronological ordering of dates using BCal did give results comparable to those of Bpeat (Figure 3). The hiatus inferred around 363.5 cm in core GietenV-A is not supported by stratigraphical or pollen evidence. However, without a hiatus the different sections would have needed much more varying accumulation rates (between about 6–250 yr/cm), which is also difficult to rationalize.

The Bpeat estimate for the calendar age of the tephra layer found in core Eng-XV is 3160–3090 cal BP (95% ranges rounded to the nearest decades), while BCal estimates it to be 3220–3030 cal BP. A recently published calendar age estimate for the Hekla-3 layer is 3040–2960 cal BP, based on a wiggle-match of 12 14C dates from a northern German raised bog peat core (van den Bogaard et al. 2002). A Bpeat re-assessment of van den Bogaard’s study results in an age of 3110–2950 cal BP (data not shown). Wastegård (2005) reports the age of Hekla-3 to be about 3100–2800 cal BP, while a more constrained estimate of 3040–2960 cal BP is given by Haflidason et al. (2000). Although the age estimate of the tephra layer in our core closely overlaps with most of these published estimates for Hekla-3, no geochemical identification of our tephra was possible, nor do Hekla-3 tephra shards have a unique color or morphology. Therefore, we cannot securely state that our tephra belongs to Hekla-3. However, while until now Holocene tephras had not yet been reported from Dutch peat deposits, our study indicates that microscopically-sized tephra can indeed be detected from these sites (see Pilcher and Hall 1992). Further work on finding the geographical distributions of tephras is therefore recommended.

Over the past years, Bpeat has been tested on dozens of 14C-dated cores from peatlands and other deposits. From this, we have learned that age modeling will probably never become entirely automatic and “objective”; every core has its peculiarities, which require decisions to be made by the researcher. However, most of these decisions can be implemented transparently, explicitly, and non-heuristically in a Bayesian framework such as Bpeat, BCal (Buck et al. 1999), or OxCal (Bronk Ramsey 2006). Below, we will discuss the most important issues, and consider planned enhancements of our framework.

An effective and often easily justifiable method to construct precise chronologies is to assume chronological ordering of dates, because the calibrated ranges of individual dates become constricted by the other dates in a sequence (at least when dating resolution is high enough for neighboring dates
to have overlapping calibrated ranges). Chronological ordering can be selected in BCcal and is a standard assumption in Bpeat (accumulation rates are forced to be positive and within ecologically plausible limits). However, the Bpeat assumption of linear accumulation constrains the calendar ranges of dated levels even more, as can be seen from Figures 3 and 4. Raised bog deposits accumulate in a surprisingly linear way (Belyea and Clymo 2001) and many high-resolution 14C-dated cores have been successfully matched under this assumption. However, assuming linear accumulation could be more dangerous with cores dated at lower resolution, as events of varying accumulation rate might be missed (Blockley et al., forthcoming). Even more, (piecewise) linear accumulation might be an overly constrictive assumption even for raised bog deposits (e.g. Yeloff et al. 2006). In order to allow for gradual changes in accumulation rate, authors JAC and MB are currently developing more flexible accumulation models for a future Bpeat version.

Besides gradual changes in accumulation rate, events such as local fires or altered vegetation composition could also cause abrupt accumulation rate changes. In Bpeat, these changes can be fixed to occur at predetermined levels (e.g. where stratigraphy strongly suggests such events), whereas the default is to infer these changes based on the fit of a 14C sequence to the calibration curve. In the latter case, the locations of division levels (both on the depth and calendar scales) often show a considerable amount of uncertainty. The extensive light-gray areas around division levels (e.g. Figure 2, Blaauw and Christen 2005) show conclusively that many different age models can be fitted through a single set of 14C dates.

Bpeat is currently set to allow for short- or long-lasting hiatuses at division levels. Hiatuses are common in raised bog peat deposits (e.g. Blaauw 2003; Blaauw et al. 2003) and Bpeat-inferred hiatuses are at times confirmed by stratigraphical indications (Blaauw and Christen 2005). However, some Bpeat users do not agree with having hiatuses in age models, especially when there is no supporting evidence for hiatuses in the stratigraphy. Therefore, a future version of Bpeat will contain an option to construct age models without hiatuses.

Outlier analysis is an important part of Bpeat, and as outliers occur regularly, outlier analysis should ideally be included in any approach to 14C age modeling. In the cores studied here, we applied prior outlier probabilities of 5%. The posterior outlier probabilities of the large majority of dates were 5% or lower, indicating that our outlier prior was possibly too pessimistic. Even though, 2 dates were identified as outliers: posterior outlier probabilities were about 88% for the date at 215.5 cm of core GietenV-B (Figure 2b), and ~21% for the lowermost date of core Eng-XV (Figure 4). Other dates which appear offset, such as 14C date of core Eng-XV floating below the other dates around 3800 cal BP, were not identified as likely outliers, probably owing to their larger measurement errors. Whereas the standard approach of Bpeat is to give similar prior outlier probabilities to all dates in a sequence (see above), this setting can be adapted. Several types of sequences show that outlying dates tend to be mostly younger (in case of peat deposits) or older (e.g. in lakes) than the other dates of the sequence. This could be explained by the processes of contamination, being mostly younger plant material in peat dates, and reworked older material in lake dates. We are planning to account for “directional outliers” in a future Bpeat version.

ACKNOWLEDGMENTS

MB was supported by SEMARNAT-CONACYT (SEMARNAT-2004-C01-7). MB and JAC thank the Bpeat Workshop participants (David Beilman, Keith Bennett, Eric Grimm, Dmitri Mauquoy, Gill Plunkett, Ron Reimer, Zicheng Yu) for their inspiring input. Andrew Millard and an anonymous reviewer are thanked for their help in improving this manuscript.
REFERENCES

Bronk Ramsey C. Forthcoming. Deposition models for chronological records. *Quaternary Science Reviews*.

