Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi

Published in:
Environmental Microbiology

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2014 the authors.
This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of *Neosartorya fischeri* (*Aspergillus fischeri*) and other fungi

Timon T. Wyatt,1 M. Richard van Leeuwen,1 Elena A. Golovina,2,3 Folkert A. Hoekstra,2,3 Eric J. Kuenstner,4 Edward A. Palumbo,5 Nicole L. Snyder,5 Cobus Visagie,1 Alex Verkennis,1 John E. Hallsworth,6 Han A.B. Wösten7 and Jan Dijksterhuis1*

1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584CT, The Netherlands.
2Laboratory of Biophysics, Wageningen NMR Centre and 3Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands.
4Chemistry Department, Hamilton College, Clinton, NY, USA.
5Department of Chemistry, Davidson College, Davidson, NC, USA.
6Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland.
7Microbiology and Kluyver Centre for Genomics of Industrial Fermentation, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.

Summary

Ascospores of *Neosartorya*, *Byssochlamys* and *Talaromyces* can be regarded as the most stress-resistant eukaryotic cells. They can survive exposure at temperatures as high as 85°C for 100 min or more. *Neosartorya fischeri* ascospores are more viscous and more resistant to the combined stress of heat and desiccation than the ascospores of *Talaromyces macrosporus* which contain predominantly trehalose. These ascospores contain trehalose-based oligosaccharides (TOS) that are novel compatible solutes, which are accumulated to high levels. These compounds are also found in other members of the genus *Neosartorya* and in some other genera within the order Eurotiales that also include *Byssochlamys* and *Talaromyces*. The presence of oligosaccharides was observed in species that had a relatively high growth temperature. TOS glasses have a higher glass transition temperature (Tg) than trehalose, and they form a stable glass with crystallizing molecules, such as mannitol. Our data indicate that TOS are important for prolonged stabilization of cells against stress. The possible unique role of these solutes in protection against dry heat conditions is discussed.

Introduction

Extremely stress-resistant ascospores are found among the fungal genera *Neosartorya*, *Byssochlamys* and *Talaromyces*. These spores resist high temperature, pressure and desiccation (Beuchat, 1986; Dijksterhuis and Samson, 2002; 2006; Reyns et al., 2003; Dijksterhuis and Teunissen, 2004; Dijksterhuis et al., 2007; Houbraken et al., 2012a) and are arguably the most stress-resistant eukaryotic cells described to date, with a temperature resistance similar to *Bacillus subtilis* spores (Dijksterhuis and Teunissen, 2004). Therefore, these ascospores can survive pasteurization and cause spoilage of food products (Tournas, 1994). The pasteurization treatment can even break the dormancy of these ascospores leading to germination (Reyns et al., 2003; Dijksterhuis and Teunissen, 2004; Dijksterhuis and Samson, 2006). Humidity is an important determinant for stress resistance. Ascospores of *Neosartorya fischeri* exposed to extreme heat (95°C) at a relative humidity (RH) of 30% had a D-value (decimal reduction time, or the time that is required to kill 90% of the spores) almost 200 times higher than spores exposed to a RH of 75% (Gomez et al., 1994).

Compatible solutes, including polyols, sugars, betaines and amino acids, protect cells against stresses such as desiccation and high temperature both of which impact the cellular system at the level of water : macromolecule interactions. These molecules are compatible with cellular functioning even when present at high concentration. The sugar trehalose and the polyols glycerol, erythritol, arabitol and mannitol are the major solutes in fungal cells.
Glycerol is the predominant compatible solute that accumulates upon osmotic stress in many fungi (Redkar et al., 1995; Hagiwara et al., 2007; Kogej et al., 2007), but erythritol, arabitol or mannitol can also be found (Managbanag and Torzilli, 2002; Ruijter et al., 2004; Chin et al., 2010). Stress-resistant ascospores contain large amounts of trehalose and mannitol (Conner et al., 1987; Dijksterhuis and Samson, 2002; Dijksterhuis et al., 2002). For instance, Talaromyces macrosporus ascospores accumulate trehalose at up to 17% of the fresh weight, in addition to mannitol (Dijksterhuis and Samson, 2002; Dijksterhuis et al., 2002). Trehalose and mannitol are also the most abundant solutes in conidia (asexual spores) when grown on high water activity and nutrient-rich media (Tereshina et al., 2000; 2004; Fillinger et al., 2001; Ruijter et al., 2003; Doehlemann et al., 2006; Solomon et al., 2006; Wang et al., 2012). Decrease of either trehalose or mannitol leads to increased stress sensitivity of conidia (Fillinger et al., 2001; Ruijter et al., 2003; Sakamoto et al., 2008; Wang et al., 2012), indicating that both compounds may be important for stabilization of the biomolecules within these spores.

The protecting and stabilizing effect of compatible solutes is best studied for trehalose. This disaccharide is thought to have the most superior protective properties of any sugar (Crowe et al., 1984; Sola-Penna and Meyer-Fernandes, 1998; Kaushik and Bhat, 2003). By virtue of its unique α,α-1,1 glycosidic linkage, trehalose is a non-reducing sugar. Thus, trehalose is relatively unreactive, a prerequisite for successful stabilization. Trehalose provides protection for microbial cells, as well as enzymes, membranes and DNA in vitro (Crowe et al., 1984; Yoshinaga et al., 1997; Kandror et al., 2002; Jain and Roy, 2010) against a wide variety of stresses, including heat, freezing, desiccation, radiation and oxidative stress (Hottiger et al., 1989; Wiemken, 1990; Devirgilio et al., 1994; Yoshinaga et al., 1997; An et al., 2000; Benaroudj et al., 2001; Fillinger et al., 2001). Trehalose also protects cells against the chaotropicity-mediated stresses of substances such as hydrocarbons and solvents including toluene and ethanol (Bhaganna et al., 2010). The protective properties of trehalose are thought to be based on several principles including a high glass transition temperature (T_g) (Sun and Davidson, 1998; Buitink and Leprince, 2004), the ability to replace water using its hydroxyl groups (water-replacement hypothesis) (Crowe et al., 1984; Crowe and Crowe, 1992) and its stabilizing effect on the water structure and intermolecular interactions in biomolecules as a result of preferential exclusion (Timasheff, 2002; Moelbert et al., 2004; Jain and Roy, 2009; Cray et al., 2013a).

A biological glass provides stability to a cell by significantly reducing molecular degrees of freedom (Crowe et al., 1998). Glass formation (vitrification) occurs during drying, or by rapidly cooling, and depends on the concentration of the solutes and the amount of water present (water acts as plasticizer) (Roos and Karel, 1990; Wolkers et al., 1998). The temperature also influences the melting of the glass (T_g). Trehalose has a high glass transition temperature ($T_g = 108^\circ C$) compared with other disaccharides (e.g. 67°C in case of sucrose), and it readily forms a glass at room temperature with a water content of 10% (Chen et al., 2000). Trehalose also has a larger binding capacity of water molecules than other disaccharides (Lerbret et al., 2005; Choi et al., 2006), despite having the same number of hydroxyl groups. This indicates that trehalose interacts more favourably with water molecules, which may also explain why it is such a good surrogate for water during desiccation. Trehalose is a macromolecule-structuring solute with a kosmotropic (structuring) activity of 10.6 kJ kg mole$^{-1}$, which is almost twice that of compatible solutes as proline and mannitol (Cray et al., 2013a). This preferential exclusion stabilizes hydrophobic interactions and minimizes the surface area of proteins during the process of drying, thus preventing denaturation and loss of function (Elbein et al., 2003; Jain and Roy, 2010). Polyls and other oligosaccharides (consisting of two or more moieties) also protect against various stresses. For example, the polyl mannitol provides excellent protection against heat inactivation in solution (Ortbauer and Popp, 2008), but due to its limited solubility and tendency to crystallize, mannitol gives poor protection against both osmotic stress and (freeze) drying (Izutsu et al., 1993; Hallsworth and Magan, 1994; Al-Hussein and Gieseler, 2012).

Here, we describe the prevalence of novel trehalose-based oligosaccharides (TOS) in ascospores of N. fischeri as well as other fungal species which are abundantly present in the ascospores of some fungal species in the order Eurotiales. These TOS are characterized by their non-reducing nature and high glass-transition temperatures, which are proposed to protect the cells against drought and heat.

Results

Heat resistance of ascospores

Without any heat pre-treatment, N. fischeri ascospores have a low germination rate (0.33 ± 0.19%). (Fig. 1A). Several seconds of heat exposure at 85°C is already sufficient to partially activate germination. Over 50% of the ascospores germinated after a heat treatment as short as 20 s at 85°C. Maximal activation (95.1 ± 2.9%) of N. fischeri ascospores was observed with a 2 min treatment at 85°C (Fig. 1A). No N. fischeri spores survived after a 30 min treatment at 85°C. Similar results were obtained during heat activation of T. macrosporus ascospores. Germination of T. macrosporus ascospores
2 min at 85°C in ACES buffer (B).

70°C or 80°C in the absence of water, and a heat activation for 45–85% (humid) or 0.5–2% (dry), a 1 h exposure at 25°C, 60°C, or after drying and storage for 1 week at 22–25°C at a RH of 45–85% (humid) or 0.5–2% (dry), a 1 h exposure at 25°C, 60°C, or after drying and storage for 1 week at 22–25°C at a RH of 45–85% (humid) or 0.5–2% (dry), a 1 h exposure at 25°C, 60°C, or after drying and storage for 1 week at 22–25°C at a RH of

ascospores after heating for 0–30 min at 85°C in ACES buffer (A) was not observed without heating (Fig. 1A). Partial activation occurred by a 20 s heat treatment (not shown), while maximal activation (94.1 ± 4.1%) was obtained after a heat treatment of 10 min. In contrast to Neosartorya fischeri, Thielavia macrosporus spores even survived a heat treatment of 30 min (germination 93.3 ± 3.8%).

In the next set of experiments, the effects of drying and heating Neosartorya fischeri and Thielavia macrosporus ascospores were tested. The ambient-dry spores were vacuum dried for 1 h and kept for 7 days at 22–25°C with a RH of 45–85%, while the silica-dry spores were treated similarly but kept at a RH of 0.5–2%. After drying, the spores were incubated for 1 h at 60°C, 70°C or 80°C (dry heat), and their viability was measured microscopically after heat activation in an N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer for 2 min at 85°C. The silica-dry spores of Neosartorya fischeri and Thielavia macrosporus were generally less sensitive to heat than the ambient-dry spores (Fig. 1B).

Ascospore germination of Neosartorya fischeri was 97 ± 0.4% and 98 ± 0.9% in the case of ambient and silica-dry spores, respectively, kept at 25°C. These values were 85 ± 2.8% and 77 ± 4.0% for ascospores of Thielavia macrosporus respectively. Heat treatment for 1 h at a higher temperature resulted in decreased germination. Neosartorya fischeri ascospores stored at ambient RH showed 68 ± 4.9%, 42 ± 3.7% and 20 ± 2.5% germination when incubated at 60°C, 70°C and 80°C respectively. The silica-dry Neosartorya fischeri ascospores showed higher survival rates (96 ± 2.1%, 90 ± 1.5% and 82 ± 1.3% respectively). Germination of Thielavia macrosporus ascospores was more significantly affected by the heat treatments. Exposure at 60°C, 70°C and 80°C resulted in germination of 24 ± 6.2%, 0.6 ± 1.1% and 0.3 ± 0.6% for the ambient-dry spores and 62 ± 2.6%, 45 ± 3.8 and 26 ± 4.9% for the silica-dry ascospores respectively.

Microviscosity of ascospores

Electron spin resonance (ESR) spectra of ascospores containing the spin probe 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxide (TEMPONE) were used for calculation of the (micro)viscosity of the cytoplasm. These spectra are a superposition of broad and narrow-line spectra. The narrow-line spectrum originates from TEMPONE that is present inside the cell. The broad component is a signal from TEMPONE/ferricyanide (FC) that is located extracellularly (residing in the cell wall and the medium). This component has to be subtracted from the recorded spectrum to obtain the narrow line spectrum, from which the microviscosity can be calculated (Fig. 2; Table 1). The calculated microviscosities before heating and cooling were 15.8 and 10.5 cP for Neosartorya fischeri and Thielavia macrosporus ascospores respectively (Table 1). These values were 14.2 and 9.8 cP after heating and cooling respectively. The subsequent ESR spectra remained intact and still contained narrow lines. However, the signal was less intense, which indicates a reduction of the amount of paramagnetic spin-probe molecules.

Identification of oligosaccharides in ascospores

Cell-free extracts of ascospores from 40-day-old cultures of three independent isolates of Neosartorya fischeri (Fig. 3A) and Thielavia macrosporus (Fig. 3B) were analysed by high-performance liquid chromatography (HPLC) to identify compatible solutes. The elution patterns of the isolates of Thielavia macrosporus were dominated by a peak with the same retention time as trehalose (RT 7.9 min). In addition, a small peak at the position of mannitol (RT 13.8 min) was observed. The cell-free extract of Neosartorya fischeri also showed trehalose and mannitol peaks that were significantly lower and higher, respectively, than that of Thielavia macrosporus. The HPLC spectrum of Neosartorya fischeri was characterized by three additional peaks with a RT of 6.0, 6.4 and 6.9 min (Fig. 3A).

The three additional peaks were identified as tri-tetra- and pentasaccharides respectively by means of nuclear magnetic resonance (NMR) spectroscopy (Wyatt, 2014). Based on this study, the primary structure of the saccharides has been found to contain an α,α-1,1 trehalose core, with one, two or three α-1,6 linked glucose extensions. These molecules, collectively dubbed as TOS, are called isobemisiose (trisaccharide), neosartose (tetasaccharide) and fischerose (pentasaccharide).
thin layer chromatography (TLC), the trehalose and the other oligosaccharides had similar retention times as the plant disaccharides sucrose, the trisaccharide raffinose, the tetrasaccharide verbascose and the pentasaccharide stachyose (Fig. 3C).

Quantification of soluble sugars and polyols in ascospore extracts

The amount of compatible solutes in ascospores (Fig. 4A) was calculated from HPLC analyses using calibration curves as described in Experimental procedures. For the quantification of the newly discovered oligosaccharides, we used synthesized oligosaccharides for calibration. Ascospores of a 40-day-old culture of *N. fischeri* accumulated 2.8 ± 0.2 pg spore⁻¹ mannitol, 2.8 ± 0.2 pg spore⁻¹ trehalose, 2.7 ± 0.2 pg spore⁻¹ of the trisaccharide, 4.3 ± 0.4 pg spore⁻¹ of the tetrasaccharide and 2.0 ± 0.3 pg spore⁻¹ of the pentasaccharide. Ascospores of the fungus *T. macrosporus* accumulated mainly trehalose (16.1 ± 3.4 pg spore⁻¹) with 2.7 ± 0.7 pg spore⁻¹ mannitol and 1.0 ± 1.2 pg spore⁻¹ glucose. To calculate the concentration of the compatible solutes in the ascospores, the dimensions of the ascospores were determined. To this end, dimensions of 101 and 45 ascospores of *N. fischeri* and *T. macrosporus* were measured by light microscopy respectively. The cell-wall thickness of ascospores of 40-day-old cultures of *N. fischeri* was measured using staining with carboxyfluorescein, while autofluorescence of the cell wall was used in the case of *T. macrosporus* (Fig. S1). Neosartorya fischeri ascospores have the shape of a sphere (*V* = 4/3 *πr³). The cell has a diameter of 4.0 ± 0.2 μm (*r* = 2 μm), excluding a cell wall that is approximately 0.3 μm thick. The shape of the *T. macrosporus* ascospores is a prolate spheroid (*V* = 4/3 *πab², with *a* = long and *b* = short dimension) (Dijksterhuis and Samson, 2002). The cellular volume enclosed by the cell wall has a long diameter of 5.2 ± 0.3 μm (*a* = 2.6 μm) and a short diameter of 4.5 ± 0.2 μm (*b* = 2.3 μm). The cell wall was approximately 0.4 μm thick (ornamentation not included). These data result in a cytoplasmic volume of 34 ± 4 fl and 55 ± 8 fl for *N. fischeri* and *T. macrosporus* ascospores respectively. Taking these values into account, *N. fischeri* ascospores contain 449 ± 28 mM mannitol (Fig. 4B). The concentration of the sugars was less for trehalose, and the tri-, tetra- and pentasaccharide, being 220 ± 17 mM, 156 ± 11 mM, 187 ± 18 mM and 70 ± 11 mM respectively. The ascospores of *T. macrosporus* contained 269 ± 27 mM mannitol, 774 ± 163 mM trehalose and 96 ± 115 mM glucose. Talaromyces macrosporus samples showed considerable variation in the accumulation of compatible solutes, especially in the amount of glucose. This could be due to variations in trehalose degradation by an active trehalase (Dijksterhuis and Samson, 2002; Dijksterhuis *et al.*, 2002) after breaking of ascospores. Alternatively, glucose could function as a compatible solute by itself (Jennings and Burke, 1990).

Table 1. Effective cytoplasmic viscosity calculated from the rotational correlation time of intracellular TEMPONE of *N. fischeri* (Nf) and *T. macrosporus* (Tm) ascospores.

<table>
<thead>
<tr>
<th></th>
<th>Rotation correlation time (s)</th>
<th>Viscosity (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before heating</td>
<td>After heating</td>
</tr>
<tr>
<td>Nf</td>
<td>4.3 10⁻¹⁰</td>
<td>3.9 10⁻¹⁰</td>
</tr>
<tr>
<td>Tm</td>
<td>2.9 10⁻¹⁰</td>
<td>2.7 10⁻¹⁰</td>
</tr>
<tr>
<td>water</td>
<td>0.24 10⁻¹⁰</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Fig. 2. The intensity of the ESR spectra obtained from ascospores of *N. fischeri* (A, B) and *T. macrosporus* (C, D) that were labelled with the spin probe TEMPONE. The spectra are composed of a signal originating from the cell wall and the medium (A, C) and an intracellular signal. The latter is calculated by subtracting the signal of the cell wall and the medium from the total signal (B, D). Supernatant is the extracellular solution in which the spores are suspended and composed of demi water, TEMPONE and FC (ferricyanide).
Glass transition temperature and density of sugar/polyol solutions

Samples composed of trehalose, isobemisiose, neosartose, fischerose, sucrose, stachyose, verbascose, mannitol and mixtures thereof were analysed by Fourier transform infrared (FTIR) spectrometry. Spectra were recorded from -10°C to 140°C, back from 140°C to -10°C and again from -10°C to 140°C. The glass transition temperature (T_g) and the wave number-temperature coefficient (WTC) were deduced from the FTIR spectra (Fig. 5). WTC is defined as the rate of change of the vibrational energy with temperature (cm$^{-1} \cdot ^\circ$C$^{-1}$). Notably, the T_g of the first series recorded from -10°C to 140°C, T_g1, differed significantly from the second recording from -10°C to 140°C (note that this is the third series). The latter values (T_g2), when known (e.g. trehalose, raffinose), are in line with published values (e.g. Wolkers et al., 1998). For both fungal and plant sugars, T_g2 increased with the amount of sugar groups. In the case of the fungal and plant sugars, the following order was observed: trehalose $<$ isobemisiose $<$ neosartose $<$ fischerose and sucrose $<$ raffinose $<$ stachyose $<$ verbascose (Table 2). The T_g2 of sucrose had the lowest value (56.6°C), while fischerose had the highest T_g2 value (124.4°C). Notably, the T_g2 of the plant sugars were lower compared with their fungal counterparts. For instance, T_g2 of sucrose is 42°C lower than that of trehalose, and the T_g2 of raffinose is 13°C lower than that of isobemisiose (Table 2). Moreover, mixtures of trehalose and mannitol with the fungal tri-, tetra- and pentasaccharides had a much higher T_g2 compared with these mixtures with the plant counterparts.
The WTC value represents the strength of hydrogen bonding in a glass. High WTC values indicate weaker hydrogen bonding, and a glass that has a higher degree of freedom for rearrangement (Wolkers et al., 2004). Thus, higher WTC values indicate a less dense glass. Trehalose, raffinose, verbascose and fischerose showed the highest WTC values. Glasses of other pure solutes or mixtures had lower values with the lowest value for the sucrose/mannitol mixture (Table 2). This indicates that the glass of the sucrose/mannitol mixture has the highest density.

T_{g1} and T_{g2} values were highly different (Table 2). The T_{g1} values ranged between 21.6°C and 48.1°C for trehalose and the sucrose/mannitol glass respectively. T_{g1} decreased with increasing degree of polymerization (DP) for both fungal and plant sugars: trehalose > isobemiose > neosartose > fischerose and sucrose > raffinose > stachyose > verbascose (Table 2). The mixtures had a relatively high T_{g1} value. These data suggest that glass formation has a large influence on T_{g1} and henceforth the protective properties of a glass. The same holds for the WTC parameters. The WTC values are all lower than the WTC values. The highest values existed for TOS and sucrose-based oligosaccharides (SOS) (0.207–0.239 cm$^{-1}$ °C$^{-1}$), and the lowest values for TOS and TOS mixtures (0.172–0.195 cm$^{-1}$ °C$^{-1}$). The lower WTC values of the TOS indicate tighter packed hydrogen bonds, and a more densely packed glass structure.

Fig. 5. Linear regression of the wavenumber of the OH stretching band as function of the temperature of the samples consisting of mannitol (A), trehalose (B), sucrose (C), isobemiose (D), neosartose (E), fischerose (F), trehalose/mannitol (G), mannitol/trehalose/isobemiose/neosartose/fischerose (H) and mannitol/sucrose/raffinose/stachyose/verbascose (I). No regression line could be determined in the mannitol sample due to crystallization (A). Mannitol crystallization was also observed in the trehalose/mannitol mixture (G). The intersection of the regression lines represents the glass transition temperature with T_{g1} and T_{g2} determined from the 1st and 2nd scan respectively. The steepness of the regression line corresponds with the WTC value (cm$^{-1}$ °C$^{-1}$).

© 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 17, 395–411
Occurrence of TOS in species of the order Eurotiales

In order to evaluate if TOS are occurring more widely spread among fungi, a multilocus phylogenetic tree was constructed with DNA sequences from the ribosomal internal translated spacer (ITS) and ribosomal large subunit (LSU) obtained from various Eurotiales including the genera *Byssochlamys*, *Eupenicillium* (*Penicillium*), *Eurotium*, *Hamigera/Warcupiella*, *Monascus*, *Neosartorya* (*Aspergillus*), *Rasamsonia*, *Talaromyces* and

Table 2. \(T_g \) (glass-transition temperature) and WTC (wave number-temperature coefficient) of mannitol (Man), trehalose (Tre), isobemisiose (Iso), neosartose (Neo), fischerose (Fis), sucrose (Suc), raffinose (Raf), stachyose (Sta), verbascose (Ver) and mixtures thereof as determined by FTIR spectrometry.

<table>
<thead>
<tr>
<th></th>
<th>(T_g^1)</th>
<th>(T_g^2)</th>
<th>WTC_1</th>
<th>WTC_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannitol (Man)(^a)</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Trehalose (Tre)</td>
<td>48.1</td>
<td>108</td>
<td>0.239</td>
<td>0.272</td>
</tr>
<tr>
<td>Isobemisiose (Iso)</td>
<td>44.3</td>
<td>120.4</td>
<td>0.185</td>
<td>0.200</td>
</tr>
<tr>
<td>Neosartose (Neo)</td>
<td>39.1</td>
<td>123</td>
<td>0.184</td>
<td>0.228</td>
</tr>
<tr>
<td>Fischerose (Fis)</td>
<td>38.8</td>
<td>125.4</td>
<td>0.195</td>
<td>0.256</td>
</tr>
<tr>
<td>Tre + Man (1:1)</td>
<td>26.6</td>
<td>115</td>
<td>0.200</td>
<td>0.246</td>
</tr>
<tr>
<td>Iso + Neo + Fis (1:1:1)</td>
<td>43.1</td>
<td>123.4</td>
<td>0.172</td>
<td>0.234</td>
</tr>
<tr>
<td>Tre + Iso + Neo + Fis (1:1:1:1)</td>
<td>40.6</td>
<td>122.8</td>
<td>0.175</td>
<td>0.223</td>
</tr>
<tr>
<td>Iso + Neo + Fis + Man (1:1:1:1)</td>
<td>43.4</td>
<td>52.7</td>
<td>0.185</td>
<td>0.208</td>
</tr>
<tr>
<td>Sucrose (Suc)</td>
<td>43.8</td>
<td>65.6</td>
<td>0.215</td>
<td>0.200</td>
</tr>
<tr>
<td>Raffinose (Raf)</td>
<td>40.1</td>
<td>107.8</td>
<td>0.213</td>
<td>0.264</td>
</tr>
<tr>
<td>Stachyose (Sta)</td>
<td>39.5</td>
<td>119.2</td>
<td>0.207</td>
<td>0.225</td>
</tr>
<tr>
<td>Verbascose (Ver)</td>
<td>33.8</td>
<td>123.8</td>
<td>0.213</td>
<td>0.273</td>
</tr>
<tr>
<td>Suc + Man (1:1)</td>
<td>21.6</td>
<td>63</td>
<td>0.200</td>
<td>0.179</td>
</tr>
<tr>
<td>Raf + Sta + Ver (1:1:1)</td>
<td>45.8</td>
<td>123.2</td>
<td>0.217</td>
<td>0.262</td>
</tr>
<tr>
<td>Suc + Raf + Sta + Ver (1:1:1:1)</td>
<td>41.2</td>
<td>98.1</td>
<td>0.213</td>
<td>0.252</td>
</tr>
<tr>
<td>Suc + Raf + Sta + Ver + Man (1:1:1:1:1)</td>
<td>44.6</td>
<td>52.2</td>
<td>0.218</td>
<td>0.216</td>
</tr>
</tbody>
</table>

\(^a \) Due to crystallization of mannitol no values could be obtained.

The peaks of fischerose (Fig. 6B) or the 1st scan of the mannitol/trehalose (Fig. 6C) sample are less sharp and indicate an amorphous state. The presence of mannitol results in a strong decrease of the \(T_g \) values of several sugar mixtures, yet this effect was low in the case of the sugar mixtures observed in *N. fischeri* ascospores. This suggests that the tendency of mannitol to crystallize is suppressed in mixtures of TOS, but not (or less) in mixtures of SOS such as the raffinose family oligosaccharides (RFOs).

© 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 17, 395–411
Thermoascus (Fig. 7). This selection includes well-known producers of extreme heat-resistant ascospores such as *Byssochlamys nivea*, *Byssochlamys fulva*, *T. macrosorus*, *Talaromyces flavus* and *N. fischeri*. The presence of oligosaccharides in the ascospore extracts was analysed by TLC. Note that polyols such as mannitol cannot be detected with this method. All six species (10 strains) tested of the genus *Neosartorya* showed an oligosaccharide TLC pattern identical to that of *N. fischeri*. HPLC analysis of the ascospore extracts
confirmed the presence of isobemisiose, neosartose and fischerose (Table 3). According to TLC, three species of the Hamigerawarcupiella clade also contained four oligosaccharides, with the same retention time as trehalose, isobemisiose, neosartose and fischerose (Fig. 7). Two Byssochlamys and two Rasamsonia species contained a disaccharide and trisaccharide, and ascospores of three Thermoascus species accumulated oligosaccharides larger than a disaccharide. Thermoascus aurantiacus accumulated a di-, tri-, tetra- and pentasaccharide, while Thermoascus thermophilis strains and Thermoascus crustaceus accumulated a di- and trisaccharide or a di-, tri- and tetrascaricde dependent on the strain used. In contrast, the majority of fungal species belonging to the genera Eurotium, Eupenicillium, Monascus and Talaromyces form ascospores that showed a band with the same retention time as trehalose. Eupenicillium catenatum and Talaromyces bacillisporus accumulated a di- and trisaccharide. Another isolate from T. bacillisporus (CBS 296.48) accumulated four oligosaccharides, which suggest the presence of a similar quartet of compounds observed within the genus Neosartorya. Sequencing revealed that the two T. bacillisporus strains were genetically different, which indicates different Talaromyces species. These data show that these oligosaccharides are a hallmark of the genus Neosartorya, but also occur in other groups within the order Eurotiales and the family Trichocomaceae. Interestingly, 13 out of 19 species that contained oligosaccharides inside ascospores apart from trehalose have maximal growth temperatures at or above 45°C (Table 3).

Discussion

Here we report the prevalence of TOS as abundant compatible solutes in fungi, namely in the ascospores of N. fischeri and related species. Our data suggest that these oligosaccharides are widespread in the order Eurotiales. The molecules have a trehalose core and one to three glucose moieties are linked to one side of the molecule via α-1,6 glycosidic linkages (Wyatt, 2014). While the occurrence of isobemisiose has previously been reported in the whitefly Bemisia argentifolii (Hendrix and Salvucci, 2001), neosartose and fischerose are reported in this study for the first time as naturally occurring oligosaccharides.

TOS distinct from isobemisiose, neosartose and fischerose that do not have α-1,6 glycosidic linkages have been described earlier in several organisms including insects (B. argentifolii; Hendrix and Salvucci, 2001); bacteria (Mycobacterium smegmatis, Besra et al., 1993; Ohta et al., 2002; Tropis et al., 2005; Sinorhizobium meliloti, Hisamatsu et al., 1985; Breedveld and Miller, 1994; Brique et al., 2010); yeast (Saccharomyces cerevisiae, Iwahara et al., 1993). Sinorhizobium meliloti accumulates a number of TOS when grown in hyperosmolarity (Brique et al., 2010). Brique and co-workers suggest that these TOS act as precursors of trehalose. It has been suggested that chaotropic environments may potentially harbour chaotrope-tolerant, or even chaophilic, species of microbe (Williams and Hallsworth, 2009; Hallsworth et al., 2007; Leong et al., 2014; Lievens et al., 2014; Oren and Hallsworth, 2014). Whereas there is currently no definitive evidence for the existence of chaophilic microbes, the chaotrope-tolerance mechanisms that have been proposed in such studies (see also Hallsworth, 1998; Cray et al., 2013b; Yakimov et al., 2014) would most likely include accumulation of highly kosmotropic compatible solutes such as TOS.

In plants, oligosaccharides are also accumulated, including the SOS, fructans and the RFOs (Valluru and van den Ende, 2008). The latter molecules, like TOS, contain a disaccharide core, but in this case sucrose (i.e. glucose linked to fructose via an α-1,2-β glycosidic linkage). Fructans are fructose polymers with a sucrose molecule linked at the reducing end. The RFOs consist of sucrose with one, two or three galactose moieties linked α-1,6 to the glucose moiety of sucrose, and called raffinose, stachyose and verbascosce respectively. There is a striking similarity to the fungal TOS homologues where one, two or three glucose moieties are connected with an α-1,6 linkage. The functionality of the fungal TOS is not studied in great detail; however, fructans and RFOs are believed to act as membrane protectors under stress (Hincha et al., 2002; 2003) via direct hydrogen binding (Milhaud, 2004; Beck et al., 2007). A flexible bond between the saccharide moieties, such as the α-1,6 glycosidic linkage, could be essential for insertion of the sugars between the lipids (Valluru and van den Ende, 2008). Other authors claim that fructans and RFOs protect against oxidative stress and lipid oxidation (Cacela and Hincha, 2006; Agati et al., 2007; Nishizawa et al., 2008; Van den Ende and Valluru, 2009). The concentration of raffinose, stachyose and verbascosce during maturation of plant seeds increases (Kuo et al., 1988; Blackman et al., 1992; Bernalugo and Leopold, 1995). Seed maturation, in turn, is correlated with increased stress tolerance, longevity and glass formation (Brenac et al., 1997).

Thus, like SOS, it can be assumed that TOS also protect against abiotic stress. What is the advantage of accumulation of isobemisiose, neosartose, fischerose, trehalose and mannitol in a mixture compared to trehalose alone? Indeed, ascospores of T. macrosporus (trehalose accumulation) survived 1 h at 85°C, while N. fischeri (TOS accumulation) could not. Strikingly,
Table 3. Strains used to study occurrence of trehalose (Tre), isobemisiose (Iso), neosartose (Neo) and fischerose (Fis) in ascospore extracts.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Culture conditions</th>
<th>Maximal growth temp. (Tmax) °C</th>
<th>Proportion of sugars (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CBS #</td>
<td>Media</td>
<td></td>
<td>Tre</td>
</tr>
<tr>
<td>Byssochlamys fulva</td>
<td>132.33</td>
<td>OA</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Byssochlamys fulva</td>
<td>11845</td>
<td>OA</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Byssochlamys nivea</td>
<td>100.11</td>
<td>OA</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Eupenicillium abidjanum</td>
<td>122.68</td>
<td>OA</td>
<td>25</td>
<td>>37</td>
</tr>
<tr>
<td>Eupenicillium catenatum</td>
<td>352.67</td>
<td>OA</td>
<td>25</td>
<td>>37</td>
</tr>
<tr>
<td>Eupenicillium crustaceum</td>
<td>244.32</td>
<td>OA</td>
<td>25</td>
<td><37</td>
</tr>
<tr>
<td>Eupenicillium euglaucum</td>
<td>229.6</td>
<td>OA</td>
<td>25</td>
<td>>37</td>
</tr>
<tr>
<td>Eupenicillium javanicum</td>
<td>341.48</td>
<td>OA</td>
<td>25</td>
<td>>37</td>
</tr>
<tr>
<td>Eupenicillium lapidosum</td>
<td>279.39</td>
<td>OA</td>
<td>25</td>
<td>>37</td>
</tr>
<tr>
<td>Eupenicillium ochrosalmoneum</td>
<td>213.60</td>
<td>OA</td>
<td>25</td>
<td>>37</td>
</tr>
<tr>
<td>Eupenicillium pinetorum</td>
<td>306.93</td>
<td>OA</td>
<td>25</td>
<td><37</td>
</tr>
<tr>
<td>Eupenicillium shearii</td>
<td>488.66</td>
<td>OA</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>Eupenicillium terrenum</td>
<td>313.67</td>
<td>OA</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>Eurotium amstelodami</td>
<td>518.65</td>
<td>MEA40S</td>
<td>25</td>
<td>43–46</td>
</tr>
<tr>
<td>Eurotium amstelodami</td>
<td>651.74</td>
<td>MEA40S</td>
<td>25</td>
<td>43–46</td>
</tr>
<tr>
<td>Eurotium chevalieri</td>
<td>113.34</td>
<td>MEA40S</td>
<td>25</td>
<td>37–49</td>
</tr>
<tr>
<td>Eurotium chevalieri</td>
<td>522.65</td>
<td>MEA40S</td>
<td>25</td>
<td>37–49</td>
</tr>
<tr>
<td>Eurotium herbariorum</td>
<td>516.65</td>
<td>MEA40S</td>
<td>25</td>
<td>37–40</td>
</tr>
<tr>
<td>Eurotium herbariorum</td>
<td>297.71</td>
<td>MEA40S</td>
<td>25</td>
<td>37–40</td>
</tr>
<tr>
<td>Eurotium rubrum</td>
<td>530.65</td>
<td>MEA40S</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Eurotium rubrum</td>
<td>126.28</td>
<td>MEA40S</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Eurotium spinulosum</td>
<td>377.75</td>
<td>MEA40S</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Hamigera avellanea</td>
<td>343.68</td>
<td>OA</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Neosartorya fischi</td>
<td>544.65</td>
<td>OA</td>
<td>30</td>
<td>51–52</td>
</tr>
<tr>
<td>Neosartorya fischi</td>
<td>317.89</td>
<td>OA</td>
<td>30</td>
<td>51–52</td>
</tr>
<tr>
<td>Neosartorya glabra</td>
<td>111.55</td>
<td>OA</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>Neosartorya glabra</td>
<td>841.96</td>
<td>OA</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>Neosartorya hiratsukae</td>
<td>294.93</td>
<td>OA</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>Neosartorya hiratsukae</td>
<td>102356</td>
<td>OA</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>Neosartorya lacunosa</td>
<td>117721</td>
<td>OA</td>
<td>30</td>
<td>>45 <50</td>
</tr>
<tr>
<td>Neosartorya lacunosa</td>
<td>118449</td>
<td>OA</td>
<td>30</td>
<td>>45 <50</td>
</tr>
<tr>
<td>Neosartorya pseudofischi</td>
<td>404.67</td>
<td>OA</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Neosartorya spinosa</td>
<td>483.65</td>
<td>OA</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Rasamsonia bysschlamydioides</td>
<td>413.71</td>
<td>OA</td>
<td>40</td>
<td>n.d.</td>
</tr>
<tr>
<td>Rasamsonia emersonii</td>
<td>549.92</td>
<td>OA</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>Talaromyces bacillisporus</td>
<td>296.48</td>
<td>OA</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>Talaromyces bacillisporus</td>
<td>10505</td>
<td>OA</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>Talaromyces flavus</td>
<td>225.66</td>
<td>OA</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Talaromyces macrosporus</td>
<td>317.63</td>
<td>OA</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Talaromyces sp.</td>
<td>550.72B</td>
<td>OA</td>
<td>30</td>
<td><40</td>
</tr>
<tr>
<td>Talaromyces stipitus</td>
<td>375.48</td>
<td>OA</td>
<td>30</td>
<td><40</td>
</tr>
<tr>
<td>Talaromyces trachyspermus</td>
<td>267.91</td>
<td>OA</td>
<td>30</td>
<td><40</td>
</tr>
<tr>
<td>Talaromyces ucraincicus</td>
<td>162.67</td>
<td>OA</td>
<td>30</td>
<td><40</td>
</tr>
<tr>
<td>Talaromyces wortmannii</td>
<td>391.48</td>
<td>OA</td>
<td>30</td>
<td><40</td>
</tr>
<tr>
<td>Thermosascus aurantiuscoides</td>
<td>398.64</td>
<td>OA</td>
<td>40</td>
<td>55–62</td>
</tr>
<tr>
<td>Thermosascus aurantiuscoides</td>
<td>415.62</td>
<td>OA</td>
<td>40</td>
<td>55–62</td>
</tr>
<tr>
<td>Thermosascus crustaceus</td>
<td>223.96</td>
<td>OA</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>Thermosascus thermophilus</td>
<td>528.71</td>
<td>OA</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>Thermosascus thermophilus</td>
<td>396.68</td>
<td>OA</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

References Tmax:
- a. Houbraken (unpublished);
- b. Pitt (1979);
- c. Domsch and colleagues (1980);
- d. Koutroutsos and colleagues (2010);
- e. Malejczyk and colleagues (2013);
- f. Stolk and Samson (1972);
- g. Morgenstern and colleagues (2012).

The proportions of sugars are based on their occurrence in HPLC profiles in which the pure (oligo)saccharides were used for calibration. A number of the strains are not determined.
ascospores of \textit{N. fischeri} survived desiccation and dry heat better than \textit{T. macrosporus}. This suggests that TOS may function in the protection of spores against drought and subsequent heat. Upon drying, the interior of the ascospore forms a biological glass, and the properties of this glass are expected to function in spore survival during prolonged periods of high ambient (between 30°C and 50°C) temperatures. The cytoplasm of ascospores is a matrix of proteins, membranes, nucleic acids, organic and inorganic acids, and sugars with different polymerizations. The stabilizing glass formed in ascospores during drying has properties that differ from glasses composed of mixtures of oligosaccharides in \textit{vitro}. Glass properties in plants correspond more to a glass composed of a sugar/protein mixture than solely a mixture of oligosaccharides (Buitink and Leprince, 2008). Other molecules (e.g. inorganic molecules, organic acids and amino acids) also influence the properties of the glass, as was shown for citrate (Kets et al., 2004). The molecules that contribute to glass formation and its properties collectively determine their protective capacity. Thus, the context of the TOS inside the ascospores impacts their properties and thereby their function in the cell. In addition, the TOS will tend to have more protective activity (including kosmotropic activity) when compared on a molar basis as is observed for polyethylene glycol and other polymers (Cray et al., 2013a) without a drastic reduction of the intracellular water activity that would otherwise induce a self-imposed osmotic stress. This is relevant in case of \textit{N. fischeri} where accumulation of solutes during maturation of the ascospores occurs without obvious external osmotic stress (Wyatt et al., 2014). Physiologically active cells of microbial species that are able to inhabit types of hypersaline, high-sugar or alcohol-containing experience conditions that are highly chaotropic.² Whereas there is not yet any definitive evidence for the existence of chaophilic microbes (Hallsworth \textit{et al.}, 2007; Williams and Hallsworth, 2009; Hallsworth \textit{et al.}, 2007; Leong \textit{et al.}, 2014; Lievens \textit{et al.}, 2014; Oren and Hallsworth, 2014). Whereas there is currently no definitive evidence for the existence of chaophilic microbes, the chaotrope-tolerance mechanisms that have been proposed in such studies (see also Hallsworth, 1998; Cray \textit{et al.}, 2013b; Yakimov \textit{et al.}, 2014) would most likely include accumulation of highly kosmotropic compatible solutes such as TOS. The presence of TOS does correlate in most cases with a thermophilic or thermostolerant nature of fungi. A fungus is regarded as thermophilic when it can grow at or above 50°C, but not below 20°C. Thermotolerant species have a maximum growth temperature of 45–50°C, and a minimum growth temperature below 20°C (Cooney and Emerson, 1964). For instance, Neosartorya, \textit{Thermascus} and \textit{Rasamsonia} are well-known thermostolerant/thermophilic fungi (Mouchacca, 1997; 2007; Houbraken \textit{et al.}, 2012a,b). \textit{Byssoclamys} species are also known to be moderately thermostolerant and are able to grow at temperatures above 40°C. \textit{Hamigera} species can be found in hot climates and several of these species are known to be able to grow above 40°C. \textit{Talaromyces bacillisporus}, which also seem to accumulate TOS, is also moderately thermostolerant (Stolk and Samson, 1972). This indicates the fungal species that form complex mixtures of compatible solutes in their survival structures tend to occur in areas with higher temperatures. In the occurrence of drought, these cells survive a combination of drought and high temperature to a better extent as their counterparts at temperate areas.

FTIR experiments showed that glasses prepared from pure oligosaccharides or mixtures of TOS, trehalose and/or mannitol behave differently after heating during the first scan. \(T_g\) values are invariably lower than the literature \(T_g\) values. Heating in the first scan could remove any residual water molecules and/or rearrange the molecules in the glass, leading to the so-called ‘matured’ glass, which has a higher melting temperature. As expected, \(T_g\) correlates with the DP (Table 3). To our surprise, \(T_g\) seems to be negatively correlated with the DP. One possible explanation for this could be that glass ‘maturation’ occurs faster in glasses composed of lower DP molecules. The \(T_g\) of the TOS was higher than the value corresponding to the plant homologues. Mannitol did not crystallize in a TOS/ trehalose mixture, but did so in a 1:1 mannitol/trehalose and mannitol/sucrose mixture. In these complex mixtures as those occurring in ascospores of \textit{N. fischeri}, the proportion of mannitol is lower than in 1:1 mixtures and we hypothesize that this prevents crystallization of the compound. In addition, the \(T_g\) of mannitol/TOS mixtures was much higher than the mannitol/RFO mixtures. Mannitol serves as an important protectant in water-containing environments. Furthermore, with its small size, it costs less carbon to synthesize mannitol compared with the saccharide molecules. Trehalose seems to be most effective in a dry state or in the phase between hydrated and dehydrated (low humidity). The combination of these compatible solutes might provide protection at strongly fluctuating water availabilities.

It has been suggested that chaotropic environments may potentially harbour chaotrope-tolerant, or even chaophilic, species of microbe (Williams and Hallsworth, 2009; Hallsworth \textit{et al.}, 2007; Leong \textit{et al.}, 2014; Lievens \textit{et al.}, 2014; Oren and Hallsworth, 2014). Whereas there is currently no definitive evidence for the existence of chaophilic microbes, the chaotrope-tolerance mechanisms that have been proposed in such studies (see also Hallsworth, 1998; Cray \textit{et al.}, 2013b; Yakimov \textit{et al.}, 2014) would most likely include accumulation of highly kosmotropic compatible solutes such as TOS. The presence of TOS does correlate in most cases with a thermophilic or thermostolerant nature of fungi. A fungus is regarded as thermophilic when it can grow at or above 50°C, but not below 20°C. Thermotolerant species have a maximum growth temperature of 45–50°C, and a minimum growth temperature below 20°C (Cooney and Emerson, 1964). For instance, Neosartorya, \textit{Thermascus} and \textit{Rasamsonia} are well-known thermostolerant/thermophilic fungi (Mouchacca, 1997; 2007; Houbraken \textit{et al.}, 2012a,b). \textit{Byssoclamys} species are also known to be moderately thermostolerant and are able to grow at temperatures above 40°C. \textit{Hamigera} species can be found in hot climates and several of these species are known to be able to grow above 40°C. \textit{Talaromyces bacillisporus}, which also seem to accumulate TOS, is also moderately thermostolerant (Stolk and Samson, 1972). This indicates the fungal species that form complex mixtures of compatible solutes in their survival structures tend to occur in areas with higher temperatures. In the occurrence of drought, these cells survive a combination of drought and high temperature to a better extent as their counterparts at temperate areas.
Experimental procedures

Strain, growth conditions and culture media

Fungal strains from the order Eurotiales (Table 3) were grown at 25–40°C on oatmeal agar (OA) or malt extract agar supplemented with 40% sucrose (MEA40S) (Samson and Houbraken, 2010). Inoculation was performed using a glycerol stock solution of conidia (10⁶ spores ml⁻¹). Neosartorya fischeri (CBS 317.89) and T. macrosporus (CBS 580.72) cultures were routinely grown at 30°C on OA. Ascospores of these species were heat activated for 2 min at 85°C (Dijksterhuis and Samson, 2002; Dijksterhuis et al., 2002). Agar medium was inoculated by spreading 100 µl of a heat-activated suspension containing 10⁷ ascospores ml⁻¹. After 40 days of growth, ascospores were harvested by collecting fungal material from cultures with a glass spatula. The mixture of hyphae and ascomata was transferred to 9 ml ice-cold 10 mM ACES buffer (pH 6.8) supplemented with 0.02% Tween-80 (Sigma-Aldrich, Zwijndrecht, the Netherlands), after which 1 cm³ of sterile glass beads (1:1 ratio of beads with a diameter of 0.10–0.11 mm and 1.0 mm) was added. Ascospores were released from cleistothecia by vortexing for 1–2 min and sonicating for 5 min using an ultrasonic cleaner 2510E-MT (Branson Ultrasonics Corporation, Danbury, CT, USA). Filtration through sterile glass wool removed the mycelial debris and remnants of the ascomata. The spores were washed three times with ice-cold ACES buffer, and centrifuged (5 min, 1100 g) after each washing step. If not immediately used for experiments, pellets of ascospores were stored in ACES buffer at −80°C.

Monitoring heat resistance of ascospores

Ascospores were heated in solution (wet heat) or vacuum dried (dry heat). After the heat treatment, the germination percentage was measured with one of the following methods. Heat-treated spores were diluted to 10⁶ and 10⁵ spores ml⁻¹. One hundred microlitre was spread on malt extract agar (MEA) plates and incubated for 2–3 days at 30°C. Germination percentage was based on the number of colony-forming units. Alternatively, heat-treated ascospores were inoculated on 1–2 mm thin slices of MEA (10⁶ spores ml⁻¹), placed on an objective glass. The MEA slides were incubated for 14–16 h at 30°C in a water-saturated container, after which the germinated spores were counted by light microscopy (Zeiss Axioskop 2 plus microscope). A spore was considered to be germinated when a germ tube (initial) was visible. At least 100 spores were evaluated in triplicate.

Wet-heat treatment. Ascospores were suspended in hot ACES buffer (85°C). The ascospore suspension (10⁶ spores ml⁻¹) was immediately transferred to an 85°C water bath and shaked at 150 r.p.m. The spore suspension was cooled after 0, 2, 10 or 30 min by adding ice-cold ACES buffer to a final concentration of 10⁴ spores ml⁻¹, after which MEA plates were inoculated. Alternatively, the spore suspension was cooled on ice and 10 µl was used to inoculate an MEA slice positioned on an objective glass. Germination was determined as described above using microscopy.

Dry-heat treatment. Ascospores (10⁶ spores in 10 µl) were vacuum dried for 1 h (Savant SpeedVac DNA 110 Concentrator, Thermo Scientific, Erembodegem-Aalst, Belgium) in a 1.5 ml Eppendorf tube. The dry spores were kept for 7 days at ambient temperature (25°C) and ambient humidity (RH of 45–85%), called the ambient-dry treatment. Alternatively, spores were kept for 7 days at 25°C in a desiccator filled with silica with a RH of 0.5–2%, the so-called extreme dry condition. After incubation, the dried spores were heated at 25°C, 60°C, 70°C or 80°C for 1 h in a heat block. Subsequently, the ascospores were resuspended in ACES buffer (10⁶ spores ml⁻¹) and heated at 85°C for 0–30 min at 150 r.p.m. in a water bath to evaluate heat activation and subsequent thermal inactivation as described above.

Microviscosity determination with ESR spectroscopy

The cytoplasmic microviscosity of spores was determined by ESR spectroscopy as previously described (Dijksterhuis et al., 2007; Van Leeuwen et al., 2010). Perdeuterated TEMPONE (Sigma, St Louis, MO, USA) was used as a spin label. Potassium FC [K₃Fe(CN)₆] was used to quench the extracellular spin label signal. The final concentration of TEMPONE and FC in samples was 1 mM and 120 mM respectively. At these concentrations, the narrow line spectrum of TEMPONE originates exclusively from spin probe molecules in the cytoplasm, and therefore can be used to characterize cytoplasmic viscosity. The ESR spectra were recorded with an X-band 300E ESR spectrometer (Bruker Analytik, Rheinstetten, Germany).

The rotational correlation time (τ₀) of TEMPONE in the cytoplasm of ascospores was calculated from the ESR spectra making use of the equation τ₀ = KΔW₁/(h₀, h₀−1), where K is a constant (Kuznetsov et al., 1971) with a value of 6.5 10⁻¹⁰ s, ΔW₁ is the peak-to-peak width of the low-field (left-hand) line of the spectra (in gauss) and h₀, and h₀−1 are the heights of the low-field (left hand) and high-field (right hand) lines respectively (Kivelson, 1960). The cytoplasmic microviscosity was calculated from the rotational correlation time using the Stokes-Einstein relationship τ₀ = 4πa³η/k₅T, where a is the molecular radius of TEMPONE, η is the effective viscosity, k is the Boltzmann constant and T is the absolute temperature in Kelvin. The molecular radius of TEMPONE is usually defined as 3 Å (Keith and Snipes, 1974).

Cell free extracts of ascospores

Ascospores were frozen in liquid nitrogen and transferred to a stainless steel grinding jar (Qiagen, Venlo, the Netherlands) cooled with liquid nitrogen and homogenized with the Qiagen TissueLyser (2 min at 30 strokes s⁻¹). 0.5–1 ml Milli-Q water was added and grinding was continued for an additional 2 min at 30 strokes s⁻¹. Samples were thawed, transferred to a 2 ml Eppendorf tube and centrifuged at 4°C for 30 min at 10.000 g. The supernatant was heated for 30 min at 95°C to inactivate oligosaccharide-degrading enzymes and centrifuged again for 30 min at 10.000 g. The supernatant was filtered (0.2 µm acrodisc Cr 13 mm Syringe filter, Pall Life Science, Mijdrecht, the Netherlands) and stored at −80°C until used for further analysis.
Trehalose-based oligosaccharides as novel compatible solutes in fungi

HPLC

The amount of glucose, trehalose, isobemisiose, neosartose, fischerose, glycerol and mannitol in cell-free extracts were determined using an HPLC (Waters, Etten-Leur, the Netherlands) equipped with a 2414 refractive index (RI) detector, a 515 HPLC pump, a pump control module II, a 717 plus autosampler and a cation-exchange column Sugar-Pak I. The mobile phase (0.1 mM Ca EDTA in milliQ-water) had a flow of 0.5 ml min⁻¹. Sample volumes of 10 μl were run for 20 min using column and RI detector temperatures of 50°C. Peak integrations and calculations were performed by the Empower software (Waters). Retention time of the peaks was compared with those of 0.01–0.50% w/v trehalose, isobemisiose, neosartose, fischerose, mannitol, glucose and glycerol.

TLC

Ascospore cell-free extracts and partially purified oligosaccharide preparations were spotted (2 μl) on TLC sheets (Merck Kieselgel 60 F254, 20 × 20 cm) and run using 2:1:1 n-butanol : acetic acid : water as the mobile phase. Sugar containing compounds were visualized by orcinol/sulfuric acid staining (100 mg orcinol monohydrate, 95 ml methanol, 5 ml sulfuric acid) using glucose, trehalose, raffinose, verbascose and stachyose as standards.

Compatible solutes

The polyols mannitol and glycerol and the sugars glucose, trehalose, sucrose, verbascose and stachyose were ordered by Sigma-Aldrich. Isobemisiose, neosartose and fischerose were synthesized (Kuestner, Palumbo and Snyder, unpublished results). The first batch of isobemisiose used for nuclear magnetic resonance was acquired from Dr. T. Nishimoto and Dr. H. Watanabe of the Glycoscience Institute of Hayashibara Biochemical Laboratories.

Phylogenetic analysis of ascospore producing species within the family Trichocomaceae

Genomic DNA was extracted from the mycelium of fungal strains (Table 3) that had been grown for 3–5 days on MEA agar plates using the UltraClean Microbial DNA Isolation kit (MO BIO Laboratories, USA). The ITS and LSU fragments were amplified and sequenced as described (Houbraken et al., 2013a). The ITS and LSU fragments that had been grown for 3–5 days on MEA agar plates using the UltraClean Microbial DNA Isolation kit (MO BIO Laboratories, USA). The ITS and LSU fragments were amplified and sequenced as described (Houbraken et al., 2013a). The ITS and LSU fragments that had been grown for 3–5 days on MEA agar plates using the UltraClean Microbial DNA Isolation kit (MO BIO Laboratories, USA). The ITS and LSU fragments were amplified and sequenced as described (Houbraken et al., 2013a).

Notes

1 This said, under some conditions, fungal spores may preferentially accumulate glycerol, erythritol and/or arabitol (Hallsworth and Magan, 1994; 1995; Hallsworth et al., 2003).

2 Examples include Saccharomyces cerevisiae and some extreme, prokaryotic halophiles (see also above): Hallsworth (1998); Hallsworth et al. (2007); Williams and Hallsworth (2009); Cray et al. (2013b); Lievens et al. (2014); Oren and Hallsworth (2014); and Yakimov et al. (2014).

Acknowledgements

We are grateful to T. Nishimoto and H. Watanabe of the Glycoscience Institute of Hayashibara Biochemical Laboratories who provided us with isobemisiose. We thank Luis Lugones, Jos Houbraken, Joost van de Brink, Shu-Hui Tan and Edwin Kets for discussions. Further, we want to thank Professor Dr. P. H. Seeberger (Max Planck Institute of Colloids and Interfaces, Potsdam, Germany) for his help in realizing the synthesis of oligosaccharides. This research was supported by the Dutch Technology Foundation STW, which is part of the Netherlands organization for scientific research.
References

Trehalose-based oligosaccharides as novel compatible solutes in fungi

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1. Diameter and thickness of the cell wall of T. macrosporus (left) and N. fischeri (right) ascospores. The ascospore cell wall of N. fischeri was made visible by staining with 5-(and-6)-carboxyfluorescein. The ascospore cell wall of T. macrosporus is highly auto-fluorescent and no fluorescent dye was needed.