The role of the seed bank in recovery of temperate heath and blanket bog following wildfires

Published in:
Applied Vegetation Science

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen’s University Belfast Research Portal

Publisher rights
© 2016 International Association for Vegetation Science
This is the peer reviewed version of the following article: Kelly, R., Boston, E., Montgomery, W. I., Reid, N. (2016), The role of the seed bank in recovery of temperate heath and blanket bog following wildfires. Applied Vegetation Science, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/avsc.12242/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

General rights
Copyright for the publications made accessible via the Queen’s University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
The role of the seed-bank in the recovery of temperate heath and blanket bog following wildfires

Ruth Kelly¹, Emma Boston¹, W. Ian Montgomery ¹,², Neil Reid ¹,²

¹ Quercus, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland (UK)
² Institute for Global Food Security (IGFS), Queen’s University Belfast, Belfast, Northern Ireland (UK)

Running title: Impact of wildfires on seed-banks

Correspondence author: Dr Ruth Kelly
Quercus,
School of Biological Sciences
Queen’s University Belfast
97 Lisburn Road
Belfast BT9 7BL
Email: ruth.kelly@qub.ac.uk
Tel: +44 77 07627488

Email addresses of other authors: Boston, E. (emma.boston@qub.ac.uk);
Montgomery, W.I. (i.montgomery@qub.ac.uk);
Reid, N. (neil.reid@qub.ac.uk)

Printed journal page estimate: Text 6,870 words (8.5 pages), references 1,728 (2 pages), 3 tables (0.8 pages), 3 figures (0.7 page), total (12 pages)

Key words: burning, germination, mire, moorland, peatlands, seedbank, recovery, RDA, upland

Abbreviations: Akaike Information Criterion adjusted for small sample size (AICc); Area of Special Scientific Interest (ASSI); European Forest Fire Information System (EFFIS); Generalised Linear Mixed Model (GLMM); partial Redundancy Analysis (pRDA); Northern Ireland Environment Agency (NIEA)
Abstract

Questions: Are the germinable seed-banks of upland heath and blanket bog reduced following wildfires? Are some species at particular risk? Do the impacts of wildfires on seed-banks differ between heathlands and blanket bog?

Location: Northern Ireland, United Kingdom

Methods: Vegetation surveys and seed-bank sampling were conducted in 2012 at burnt and unburnt areas within six upland sites where large wildfires had occurred during spring 2011. Differences in seedling abundance, species richness and Jaccard Similarity Indices between burnt and unburnt areas were compared using Generalised Linear Mixed Models (GLMMs). Differences in the community composition were examined using partial Redundancy Analysis (pRDA).

Results: 24 of the 51 species in the vegetation were detected in the germinable seed-bank. Species richness and the abundance of seedlings other than *Calluna vulgaris* were lower in areas where wildfires had occurred. Species composition of both germinable seed-banks and vegetation differed between burnt and unburnt areas within sites; with negative associations between burnt areas and some key indicator species including *Drosera rotundifolia*, *Eriophorum vaginatum* and *Empetrum nigrum*, *Narthecium ossifragum* and *Trichophorum germanicum*. We did not find any evidence of significant interactions between burning and habitat, suggesting that wildfires had similar impacts on each species regardless of the habitat in which they occurred.

Conclusions: This study differs from other UK studies in that it examines the impacts of wildfires at sites which have not been previously intensively managed by burning. In particular, we highlight potential impacts on *Narthecium ossifragum* and *Drosera rotundifolia* which are key components of the upland flora which to our knowledge were not present in previous UK studies.
Wildfires play a major role in shaping ecosystems globally and are likely to become increasingly common in temperate regions less accustomed to this source of environmental stress as a result of climate change and increasing anthropogenic pressures (Krawchuk et al. 2009). Whilst climate change is predicted to increase precipitation and humidity overall in North-western Europe, seasonal variation in temperature and precipitation is likely to increase (Alcamo 2007). In particular, increased temperatures and decreased precipitation in summer months in the UK and Ireland (Blenkinsop & Fowler 2007; Murphy & Fealy 2010) may contribute to a greater frequency and intensity of uncontrolled fires (Albertson et al. 2011). European and UK wildfires are predominantly anthropogenic in origin with more than 95% of wildfires started by people (Birot et al. 2009; McMorrow et al. 2009). Thus, wildfires in the UK and Ireland represent an interaction between people, landscape and climate which may be mitigated by management actions.

Peatlands may be particularly vulnerable to changes in wildfire regimes, especially where management practices such as drainage, agriculture and peat-cutting have changed them from naturally fire resistant to fire prone ecosystems (Turetsky et al. 2014). Heathland and blanket bog are key upland habitats in northern Europe and support a unique flora and fauna of conservation interest (Thompson et al. 1995). Prescribed burning has been used to maintain open heathland habitats in Europe since Neolithic times, and has become increasingly common in the UK over the last 150-200 years where it is used to improve grazing for Ovis aries, Cervus elaphus and Lagopus lagopus scoticus (Thompson et al. 1995). Despite this, burning for conservation purposes remains controversial (Bradshaw et al. 2011), particularly on blanket bog where there is not enough evidence to predict its impacts on species of conservation concern (Stewart et al. 2005; Worrall et al. 2010). Specifically, some authors suggest that burning is likely to shift peatland habitats towards a drier state, and lead to the
decline of peat forming species such as *Sphagnum* and *Eriophorum* spp., whilst favouring the establishment of *Calluna vulgaris* (Stewart et al. 2005; Littlewood et al. 2010; Bain et al. 2011). Contrary to these predictions, recent studies of prescribed burning have shown that a 10 year burning rotation favours peat-forming species when compared to reference plots which had not been burnt for >87 years (Lee et al. 2013a) and that prescribed burning can reduce the dominance of *C. vulgaris* and maximise species diversity on managed moorlands (Harris et al. 2011).

Seed-banks play a key role in secondary succession and represent an important refuge for plant species and source of future vegetation (Vandvik et al. 2016). However, some authors suggest that seed-banks usually contain only a subset of the species present in vegetation, and may be biased towards early successional species. Therefore, there is debate about the degree to which seed-banks can be useful in the restoration of plant communities following disturbance (Måren & Vandvik 2009). The similarity between seed-banks and vegetation depends on the frequency of disturbance events, with plants in disturbed habitats (e.g. anthropogenic heathland) investing more in sexual reproduction than in clonal growth, resulting in a higher similarity between seed-banks and vegetation. Conversely, plants in less disturbed habitats invest more in clonal growth and have greater disparity between vegetation and seed-bank composition (Bossuyt & Honnay 2008; Klimešová & Herben 2015). Previous studies of managed northern European heathlands have conformed to this expectation and shown a strong correspondence between species in the vegetation and the seed-bank, with 65% of species in the vegetation detected in the seed-bank (Måren & Vandvik 2009). However, studies of montane vegetation in Scotland found that, on average, only between 14 and 29% of species from the vegetation were detected in the seed-bank suggesting that the seed-bank particularly in high altitude sites may be less suitable for habitat restoration (Miller & Cummins 2003). However, similarity between seed-banks and vegetation in terms of
species overlap is highly dependent on seed-bank sampling area, with overlap increasing as sampling effort increases making it difficult to compare results from different studies (see Vandvik et al. 2016).

Studies of the response of seed-banks and vegetation to prescribed burning in north-western European uplands have focused mainly on heathland rather than blanket bog sites (e.g. Måren & Vandvik 2009), while others have been conducted on highly disturbed sites with a previously reduced plant community (e.g. Lee et al. 2013a, b; Harris et al. 2011). Whilst these studies provide useful information for the management of these sites, further studies which examine a wider range of plant species are still needed (Bargmann et al. 2014). This is particularly relevant in ecosystems which have not been subjected to frequent burning in the past and where fire frequency may increase in the future through a combination of climate change and anthropogenic influences.

Wildfires differ from prescribed burns in terms of their intensity and size, and few studies have examined their impacts on temperate seed-banks. Experimental studies have found minimal changes in temperature at depths of more than 1-2 cm below the soil surface in prescribed fires (Davies et al. 2010; Ruprecht et al. 2013) but temperature changes during wildfires may be greater (Turetsky et al. 2014). The aim of a prescribed burn is to remove shrub vegetation whilst leaving moss, litter and soil layers intact and causing little change to soil chemistry (Rosenburgh et al. 2013); although in practice loss varies from ca. 30-100% vegetation, depending on a variety of factors including weather, topography and management practice (Worrall et al. 2010). Conversely, uncontrolled wildfires frequently remove almost all surface vegetation and alter soil structure and topography. Hence, they may cause greater damage to both vegetation and seed-banks, particularly on blanket bog sites where smouldering fires penetrate deeper into the soil (Turetsky et al. 2014).
In this study we focused on the impact of wildfires on the viability of seed-banks sampled at six upland sites which have a broad plant flora representative of wet and dry heathlands and blanket bog sites. Standing vegetation and seed-bank data were collected from burnt and unburnt areas within each site, in order to examine the impacts of wildfires on germinable seed-banks and the role of seed-banks in the recovery of vegetation. Specifically, we hypothesised that: i) abundance and richness of the germinable seed-bank would be significantly lower 1.0 - 1.5 years post-wildfire; ii) that wildfires would have different effects on different species leading to changes in community composition of both the vegetation and germinable seed-bank; iii) that the community composition of vegetation and the germinable seed-bank would be more similar post-wildfire due to the germination of gap dependent and fire adapted species from the seed-bank; and, iv) that impacts on blanket bog seed-banks would be more severe than on the seed-banks of either dry or wet heath habitats.
Methods

Study sites

Samples were collected from burnt and unburnt areas within six upland sites in Northern Ireland where large wildfires occurred in April 2011 (Fig. 1). The location and size of these fires was derived from satellite data using the European Forest Fire Information System (EFFIS, http://effis.jrc.ec.europa.eu). GIS mapping was used to identify six Areas of Special Scientific Interest (ASSIs) within which large wildfires had occurred for inclusion in this study. Information from pre-fire condition assessments, conducted by the Northern Ireland Environment Agency (NIEA), Department of Environment (DOE) was used to classify quadrats into three EU Annex I habitat classes using the Joint Nature Conservation Committee (JNCC) National Vegetation Classification (NVC) system for UK habitats (following Averis et al. 2004). Annex I habitats included were “blanket bog” \((n=75) \), “Northern Atlantic wet heaths with Erica tetralix” \((n=25) \) and “European dry heaths” \((n=22) \).

A total of 122 quadrats (2 x 2 m) were selected randomly from the quadrats which had been previously surveyed by the NIEA for inclusion in this study. 71 quadrats were in areas burnt during 2011 and 51 in nearby unburnt areas, such that burnt and unburnt areas were sampled within each site. The unequal number of burnt and unburnt sites resulted from a discrepancy between satellite images of burnt areas and actual field conditions. However, this sampling design is adequate for the Generalised Linear Mixed Modelling approach taken in our statistical analyses. The number of quadrats within each habitat was determined in proportion to the occurrence of that habitat at each site. The mean distance between quadrats within sites was 1.77 km (min = 0.07 km, max = 6.07 km). Details of site locations, habitats, fire size and dates of burning are shown in supplementary material, Appendix 1.
Vegetation surveys and seed-bank sampling were conducted between 23rd June 2012 and 12th October 2012 (i.e. 14-18 months post-fire). The percentage cover of all vascular plant species was assessed in each quadrat. All quadrats were surveyed by the same botanist for consistency of evaluation. Seed-bank samples were taken using a cylindrical soil sampler (5 cm in depth and 6 cm in diameter) at three locations 1 m apart within each quadrat. This sampling regime accounted for potential aggregation of seeds on small spatial scales by taking multiple samples within quadrats and optimised efficiency by only sampling the top 5 cm of soil where most viable seeds occur (Putwain & Gillham 1990; Pywell et al. 1997). Soil samples were refrigerated between (2-5 °C) over-winter until the following April. Individual soil samples for seed-bank germination were not aggregated within quadrats.

To maximise germination, seed-bank samples were concentrated by passing soil through 4 mm and 0.250 mm mesh width sieves to remove large material and fine particulate matter (following Ter Heerdt et al. 1996). Seedling germination trials were initiated between the 8th and 16th of April 2013 by spreading individual soil samples on top of ericaceous compost (70% peat). An additional 60 control samples of pure compost were potted making a total of 426 samples (i.e. 60 control samples + 366 experimental samples; 3 samples from each of 122 quadrats). Sample pots were 7.5 cm in depth and sufficient compost was used such that the soil samples were level with the top of the pots. Pots were placed in trays with 1 cm depth of water to maintain adequate water supply, these were checked daily and manually watered from above as required. The positions of burnt, unburnt and control samples was randomly mixed, and changed twice weekly to reduce potentially confounding position effects on germination. Seed-bank samples were germinated and grown under ambient light conditions in an unheated greenhouse for a period of 15 weeks after which all seedlings were identified, enumerated and removed. Soil samples were then vernalized by freezing at -20 °C.
for 7 days and returned to the greenhouse for germination. Seedlings which emerged
following vernalisation were identified and enumerated after a further 10 week growing
period. A total of three seeds germinated in the 60 control pots (horticultural compost only)
indicating that contamination of the seed-bank samples was likely to be very low. Therefore,
data from the control pots were excluded from further analysis and no further adjustments
were made to the dataset to control for contamination. Nomenclature follows Rose &
O’Reilly (2006) for non-graminoid species; Poland & Clement (2009) for rushes and grasses;
and Jermy et al. (2007) for sedges. Hence *Trichophorum germanicum* is used for the common
species “deergrass” which is often referred to by earlier authors as *Trichophorum cespitosum*.

Soil chemistry

Five soil samples were taken at a minimum distance of 1 m apart for soil chemistry analysis
within the same quadrats sampled for vegetation and the seed-bank between 3rd October 2012
and 5th November 2012. Soil samples for chemical analysis were combined to provide one
soil sample for each quadrat which was analysed for pH, total nitrogen (%) and available
phosphorus (mg/l) by the Agri-Food and Biosciences Institute (AFBI), Northern Ireland. pH
was measured using a Skalar SP10 Robotic Analyser, total nitrogen using a TruMac® CN
analyser and available phosphorus using a Skalar San Plus Auto Analyser.

Statistical analysis

Seed-banks

Differences in total seedling abundance, abundance of seedlings other than *C. vulgaris* and
seedling species richness between samples from burnt and unburnt plots were assessed using
Generalised Linear Mixed Models (GLMMs). This approach was chosen as most appropriate due to the non-normal distribution of the data and the spatially nested survey design (Bolker et al. 2009; Grueber et al. 2011). An Information Theoretic modelling approach was used to compare competing models. All possible variable subsets of the global model were fitted and compared based on Akaike Information Criterion adjusted for small sample size (AICc). Model averaging was used to estimate the relative importance and estimated effect size of predictor variables from models within 2 ΔAICc of the model with the lowest AICc value (hereafter, referred to as the ‘best model’). Model-averaging was used as it is more reliable than model selection procedures which rely on a single best model (e.g. stepwise selection and minimum adequate model approaches) in cases where models have similar levels of support as indicated by model Akaike weights (Burnham & Anderson, 2004; Johnson & Omland, 2004). Specifically, model averaging is strongly advocated in cases where support for the best model is <0.90, which was the case for all of our best models (Grueber et al. 2011). This situation can arise as a result of inherent collinearity between environmental variables as is common in ecological field studies. Model averaging approaches are robust to moderate levels of collinearity in explanatory variables and reduce the likelihood of overestimating the effect of individual variables when compared to other model selection procedures (Freckleton et al. 2011). Effect sizes of averaged models were estimated using the zero method of model averaging; meaning that effect sizes were averaged across all models with a value of zero in models in which they did not occur. This provides a conservative estimate of the effect sizes of variables which occur in only a small proportion of models within the best model set (Burnham & Anderson 2002).

Explanatory variables were chosen for inclusion in the initial global model based on their importance in determining upland vegetation patterns, and therefore, their expected usefulness in explaining the abundance and richness of germinable seed-bank species in this
study (Thompson et al. 1995; De Graaf et al. 2009). Topographical variables (i.e. Altitude and Slope) were extracted from GIS raster files at a 25m resolution. Heat Load was a measure of local temperature resulting from solar radiation, slope and aspect specifically designed for use in vegetation science (McCune & Dylan, 2002). Here, the Heat Load Index was calculated according to Equation 3 in McCune & Dylan (2002) based on raster data at a 25 m resolution. This equation was chosen as it was most suitable for areas with slopes of less than 60º and latitudes of between 30-60º. Whilst this metric does not account for small-scale variation in temperature caused by, for example, local shading or surface reflectance, it provides a useful measure of differences in thermal environments at a landscape scale (e.g. between north and south facing, or shallow and steep slopes). Soil variables (i.e. available phosphorous, pH and total nitrogen) were checked for multicollinearity prior to inclusion in models. These three soil variables showed low levels of correlation (Spearman’s Rho > -0.5 and < 0.5 in all cases), and, therefore, all 3 were included in the analysis. Grazing intensity levels were assessed at each quadrat based on the quantity of dung present in each quadrat and was ranked on a five-level ordinal factor scale of None < Rare < Occasional < Frequent < Abundant. Specifically, Rare = 1-2 droppings, Occasional = 3-10, Frequent = 11-20, Abundant > 20.

Initially, a global model was constructed including the explanatory variables “Burning” (burnt or unburnt), “Habitat” (blanket bog, dry heath or wet heath), “Altitude” (m), “Slope” (º from horizontal), “Heat load Index”, “Julian day”, “pH”, “Available phosphorous” (mg⁻¹), “Total Nitrogen” (mg⁻¹) and “Grazing”. The interactions between “Burning*Grazing”, “Burning*Habitat” and “Burning*Slope” were also fitted to account for potentially different impacts of burning in different contexts. Three level interactions were not included, due to the insufficient sample sizes within some three-way interaction groupings. All explanatory variables were rescaled to units of standard deviation prior to model fitting. “Quadrat” nested
within “Site” were fitted as random factors to account for variation explained by replication
within quadrats and of quadrats within sites. Models were initially fitted using a Gaussian
response distribution. Where model residuals were not normally distributed (based on a
Shapiro-Wilk test), models were refitted by Laplace estimation with a Poisson and a negative
binomial distribution (both with log link functions) and the optimal distribution was chosen
based on the lowest AICc.

Similarity between germinable seed-banks and vegetation

Jaccard’s Similarity Index was used to assess the similarity between seed-banks and
vegetation in burnt and unburnt plots. The Jaccard Similarity represents the proportion of
shared species relative to the total number of species, and ranges from 0 (no shared species)
to 1 (all species shared). It was chosen because it is based only on the presence/absence of
species and not species abundances, hence, avoiding the conceptual issues which arise from
comparing percentage cover in the vegetation and frequency in the germinable seed-bank.

Prior to the calculation of Jaccard Similarity Indices between vegetation and the germinable
seed-bank, seed-bank samples within each quadrat were combined so that they were on the
same spatial scale as the vegetation. However, it should be noted that due to the different
sample sizes within each quadrat (i.e. 4 m² for vegetation vs. 0.01 m² for the seed-bank)
species present in the seed-bank at low abundances may not have been sampled.

Nevertheless, the total volume of soil sampled for seed-bank analysis across sites
(51,170 cm³) should have been sufficient to estimate the relative frequency of most taxa in
the seed-bank based on previous estimates of minimum sample volume for seed-bank studies
which has varied from *ca.* 500 cm³ in transient grasslands to *ca.* 50,000 cm³ in late
successional forests (Csontos 2007). Factors affecting the Jaccard Similarity between the
vegetation and the seed-bank were assessed using the same fixed factors, variables, GLMM approach and model averaging as described above. “Site” was fitted as a random factor.

Species composition of seed-banks and vegetation

Differences in plant community composition of seed-banks and vegetation were each assessed separately using partial Redundancy Analysis (pRDA). The species matrices were transformed using a Hellinger transformation prior to analysis. This transformation is appropriate for both percentage cover (i.e. vegetation data) and frequency data (i.e. seed-bank) (Legendre & Gallagher, 2001). Pre-transformation of species data followed by Euclidean-based RDA is a powerful statistical method for testing the relationship between environmental variables and species community data, which is robust to the presence of rare species and long environment gradients (Legendre & Gallagher, 2001). Partial RDA analysis was used to account for differences between sites, hence allowing for the interpretation of other environmental influences whilst the effect of “Site” was held constant (Bocard et al. 2011). Species matrices for seed-bank species were the number of seedlings of each species per quadrat. Species matrices for vegetation were the % cover of each species per quadrat and % other representing space not occupied by vascular plants (i.e. cover of non-vascular plants and bare ground). Explanatory variables in the global model pRDAs were the same as those described above in GLMM modelling. Explanatory variables were rescaled to units of standard deviation prior to model fitting. Model selection was conducted by forward step-wise selection from a null model containing only “Site” as a conditional variable. In each step, the variable from the global model which most significantly improved the model fit was added to the model based on pseudo-F statistics resulting from Monte Carlo permutations of the dataset (n permutations = 999). This process continued until no further variables improved the model fit significantly at a cut-off of $p = 0.05$. This is the most commonly used
method of model selection in RDA analyses (Bocard et al. 2011). Significance of pRDA models and explanatory variables were calculated by Monte Carlo permutation with residuals of the species matrix permuted after accounting for variation within sites by pRDA (i.e. “reduced” method). This was computed using the function “anova.cca” in the package “vegan” in R where n permutations = 999 (Legendre et al. 2011). Significance of individual variables is given as marginal terms (i.e. each term was evaluated as the last term added to the model).

Mean values and confidence intervals in results and figures were calculated by non-parametric bootstrapping of the raw data values, 95% confidence intervals are calculated by the bias corrected accelerated percentile method (BCa) suitable for non-parametric data (Crawley, 2013). All analyses were conducted using R 3.1.1. GLMMs were fitted using the packages “glmmabmb” (Fournier et al. 2012, vr. 0.7.7) and “MuMIn” (Barton 2013, vr. 1.9.11). Bootstrapping was conducted using the package “boot” (Canty & Ripley 2014, vr. 1.3-11). Jaccard’s Similarity and pRDA were calculated in the package “vegan” (Oksanen et al. 2013, vr. 2.0-9).
Results

A total of 53 vascular plant species were present in the vegetation and 26 germinated from the seed-bank. Only two species in the germinable seed-bank were not present in the vegetation, *Juncus bufonius* and *Sagina procumbens*. Twenty-four species were common to both the germinable seed-bank and vegetation.

All 26 plant species that emerged from seed-bank soil samples, germinated prior to vernalisation by freezing. In total, 6,369 seeds germinated. The most commonly occurring species in the seed-bank were *C. vulgaris* (present in 98% of quadrats), *Erica tetralix* (62.3%) and *Erica cinerea* (34%). The most common species in vegetation were *C. vulgaris* (94% of quadrats), *E. tetralix* (61%) and *Eriophorum vaginatum* (57%). Species richness and most commonly occurring species in the vegetation and germinable seed-bank in each habitat type are shown in Table 1. For full list of species occurrences in vegetation and seed-bank (see supplementary material, appendix 3).

Seed-banks

Germinable seed abundance in the seed-bank was not significantly affected by burning, median seedling density in unburnt areas was 5,423 m\(^2\) (mean = 6,994 m\(^2\), 95% confidence = 5,889 – 8,710 m\(^2\)) compared to burnt areas with 5,069 m\(^2\) (mean = 5,662 m\(^2\), 95% confidence = 4,981 – 6,714 m\(^2\); Fig. 2). The most important variable associated with total germinable seed abundance was slope, with which it was significantly negatively associated (Table 2a).

Seedling abundance of species other than *C. vulgaris* was negatively associated with burning with a median seedling density in unburnt areas of 1,297 m\(^2\) (mean = 3,567 m\(^2\), 95% confidence = 2,598 - 5466 m\(^2\)) and substantially reduced densities in burnt areas of 1,178m\(^2\).
(mean = 1,802 m⁻², 95% confidence = 1,490 – 2,168 m⁻²; Fig. 2). Non- *C. vulgaris* seedling abundance was significantly negatively associated with altitude (Table 2b).

Burning and slope were the most important variables associated with the species richness of the germinable seed-bank (as indicated by their inclusion in all models within 2 ΔAICc units of the best model). However, this result should be interpreted with caution as *p*-values were borderline for the effect of burning (\(\beta = -0.163 \pm 0.080, p = 0.042\)). Burning was negatively associated with mean species richness, with a median richness of 2 species/sample in unburnt areas (mean = 2.4, 95% confidence = 2.2 – 2.6) compared to 2 species/sample in burnt areas (mean = 2.1, 95% confidence = 1.9 – 2.3; Fig 2.). Seedling species richness was significantly positively associated with slope (Table 2c).

Similarity between germinable seed-banks and vegetation

In total, 24 of 51 (47%) species present in the vegetation were detected in the germinable seed-bank. Notably some species characteristic of wet heath or blanket bog which were common in the vegetation were absent or rare in the germinable seed-bank e.g. *Eriophorum angustifolium*, *E. nigrum*, *Narthecium ossifragum*, *T. germanicum* and *Vaccinium myrtillus*. Whilst *Juncus bulbosus* and *Juncus effusus* were much more common in the germinable seed-bank than vegetation (Appendix 3).

The Jaccard Similarity between germinable species in the seed-bank and vegetation differed between habitat types and was significantly higher in dry heath (mean = 0.33, 95% confidence = 0.27 – 0.39) and blanket bog (mean = 0.33, 95% confidence = 0.30 – 0.36) than in wet heath (mean = 0.23, 95% confidence = 0.19 – 0.27) where \(\beta = 0.117 \pm 0.038, p = 0.002\) and \(\beta = 0.114 \pm 0.037, p = 0.002\) respectively. Dry heath and blanket bog did not differ in terms of Jaccard Similarity (\(\beta = 0.003 \pm 0.038, p = 0.938\)). Areas with steeper slopes had a greater similarity between vegetation and germinable seed-banks although this
association was marginal ($\beta = 0.054 \pm 0.027$, $p = 0.046$). A marginal interaction between
burning and slope was also evident such that germinable seed-banks were less similar on
steeper burnt plots ($\beta = -0.059 \pm 0.029$, $p = 0.044$; Table 2d).

Species composition of germinable seed-banks and vegetation

The community composition of both the germinable seed-bank and vegetation differed
significantly between burnt and unburnt areas (pseudo-$F = 2.004$, $p = 0.010$ and pseudo-$F =
3.485$, $p = 0.005$ respectively) based on pRDA analyses. The best model for germinable seed-
bank composition included burning, habitat, soil pH and available phosphorus and explained
explained 10.6% of the variation in seed-bank community composition after accounting for
variance between sites (pseudo-$F_{df = 5,111} = 3.057$, $p = 0.001$; Table 3a and Fig 3a). The best
model for vegetation cover included altitude, burning, habitat, heat load, soil pH and
available phosphorus and explained 16.2% of the variation in the vegetation community after
accounting for variance between sites (pseudo-$F_{df = 7,109} = 3.485$, $p = 0.005$, Table 3b, Fig 3b).

In the germinable seed-bank only *E. tetralix* and *C. vulgaris* showed increased
germination in soil samples from burnt areas, whilst the majority of other species present in
the germinable seed-bank including sedge, rush and grass species showed a negative
association with burnt areas (Fig. 3a).

In the vegetation, many species showed a positive association with burnt areas, including
many sedges, rushes, grasses, herbs e.g. *Galium saxatile* and *Polygala serpyllifolia* and shrub
species (*E. cinerea* and *V. myrtillus*), suggesting that the decline of these species in the
ergerninable seed-bank may correspond with *in-situ* germination post-fire prior to our
sampling. Only 3 species which were negatively associated with burning in the seed-bank did
not show a positive association with burning in the vegetation surveys, namely: *J. bulbosus,*
J. effusus and *E. vaginatum.* Conversely, some species were reduced in the vegetation post-
burning, namely: *C. vulgaris*, *Drosera rotundifolia*, *T. germanicum*, *N. ossifragum*, *E. tetralix*, *E. nigrum* and *Molinia caerulea* (Fig. 3b). Four of these seven species (*D. rotundifolia*, *E. nigrum*, *N. ossifragum* and *T. germanicum*) were rare in the germinable seed-bank (i.e. detected in <1% of quadrats; Appendix 3).

Discussion

Our findings suggest that seed-banks in these sites of conservation concern had a lower abundance of non-*Calluna vulgaris* species and species richness following wildfires. Similar to previous studies, we found that the total abundance of germinating seed was not reduced following recent burning, probably due to the increased germination of the most common species, *C. vulgaris* and *E. tetralix*, which have been previously shown to increase in germination post-fire (Bargmann et al. 2014; Vandvik et al. 2014). The majority of species which declined in the germinable seed-bank increased in the post-fire vegetation, suggesting that these germinated from the seed-bank post-fire and prior to our sampling as would be expected in secondary successional dynamics. Notably, some species did not show this pattern including *E. vaginatum* (which declined in the seed-bank and did not increase in the vegetation) and *D. rotundifolia*, *E. nigrum*, *N. ossifragum* and *T. germanicum* (which declined in the vegetation and were very rare in the seed-bank). These five species are indicators of “favourable condition” in blanket bog and wet heath habitats in the UK (JNCC, 2006) and, therefore, important in maintaining the status of these habitats under the EU Habitats Directive (Council of the European Commission, 1992).

As expected, other environmental factors were also very important in determining germinable seed-bank abundance, richness and composition. In particular, steeper slopes had a lower abundance and higher richness of germinable seeds, whilst the abundance of non-*Calluna* species was lower at higher altitudes. Acidity and nutrient levels strongly influence
the species composition of Northern European moorlands (De Graaf et al. 2009) and these associations were reflected in our dataset with pH and phosphorus availability being associated with differences in species composition of both the germinable seed-bank and vegetation. As expected, altitude and heat load were also associated with differences in community composition of the vegetation, although these were less important than pH and phosphorus. The total amount of variance in plant communities accounted for by environmental variables, after accounting for differences between sites (10.6% in germinable seed-banks and 16.2% in vegetation) were similar to those explained by environmental variables in similar habitat types using multivariate techniques (e.g. Vandvik et al. 2005; Harris et al. 2011) and to that which can be explained by many other ecological studies (Møller & Jennions 2002). High levels of unexplained residual variance in these species communities may indicate a strong role of stochasticity in species assembly and/or the effects of environmental variables not accounted for here.

We hypothesised that impacts on blanket-bog would be more severe than those in heathland habitats due to the potential for smouldering burns of longer duration. However, we found no evidence of significant interactions between burning and habitat in any of our models suggesting that wildfires had similar impacts on each species regardless of the habitat in which the species occurred. Despite this, pRDA analysis highlighted declines in key indicator species of blanket-bog and wet heath (D. rotundifolia, E. nigrum, N. ossifragum and T. germanicum) suggesting that some species in those habitats may be at higher risk.

These results indicate some support for the suggestion by Littlewood et al. 2010 that burning (in this case by wildfires) may reduce the prevalence of peatland specialist species and should be avoided if “favourable condition” is to be maintained (Stewart et al. 2005). However, our results need to be put in the context of successional dynamics and previous studies. Two of the aforementioned species, E. vaginatum and T. germanicum, have been
suggested to have positive associations with burning management (Preston et al. 2002) and in particular *E. vaginatum* has been shown to have higher abundance in areas with a 10 year management burning rotation than in areas which have been unburnt for >87 years. Both species have low occurrence in persistent seed-banks (Miller and Cummins 2003; Måren & Vandvik 2009) and are capable of clonal regeneration by rhizomes both above and below ground (Klimešová & de Bello 2009). The observed contrast between the negative associations shown here and previous studies may be due to the higher temperatures and durations of wildfires relative to prescribed burning and/or to differences in the time-frame between studies.

N. ossifragum, E. nigrum and *D. rotundifolia* are less common in upland vegetation than *E. vaginatum* and *T. germanicum* (present in 21%, 10%, 4%, 57% and 43% of vegetation quadrats respectively in this study). Reproduction of *N. ossifragum* is primarily clonal from both above and below ground rhizomes and bud-banks (Summerfield 1974; Klimešová & de Bello 2009; Tsaliki & Diekmann 2009). Sensitivity to fires has been previously suggested in *N. ossifragum* at UK sites (Summerfield, 1974), although to our knowledge this has not been shown empirically. *N. ossifragum* is associated with late successional vegetation, ca. 20 years after prescribed fires, in Scandinavian heathlands indicating the potential for recovery in the later stages of succession (Måren & Vandvik, 2009). Populations of this species in the UK appear stable over last 20 years but the species is of concern as it shows high habitat specificity and is likely to require stable habitat conditions for population stability (Tsaliki & Diekmann, 2009).

E. nigrum is a low growing shrub species which was similarly rare in other studies of upland seed-banks (eg. Miller & Cummins 2003; Måren & Vandvik 2009). This may be due in part to poor germination, as this species shows deep dormancy and may require multiple cold stratifications and/or higher germination temperatures (Bell & Tallis 1973; Graae et al.
Vegetative reproduction by *E. nigrum* is by rhizomes and resprouting at or above soil level rather than below-ground (Klimešová & de Bello, 2009) making it more likely for these to be damaged by severe fires. Results from previous UK studies on prescribed burning of blanket bog in the UK have been equivocal with *E. nigrum* showing complex responses to combinations of grazing and burning (e.g. Lee et al. 2013a). However, two previous studies of shrubland and forest fires found no recovery of *E. nigrum* over periods of 4-5 years post-burning (Penney et al. 2007; Hekkala et al. 2014).

D. rotundifolia may be under-detected in the seed-bank in this study due to its low frequency in the vegetation, and, therefore, results should be treated with particular caution. *D. rotundifolia* is capable of sexual and asexual reproduction in peatland habitats (Hoyo & Tsuyuzaki 2015), and similarly to *E. nigrum* asexual reproduction is mostly at or above soil level, although in *D. rotundifolia* below-ground bud-banks may also be present (Klimešová & de Bello 2009). *Drosera* sp. are particularly dependent on mature rosettes for the maintanence of population sizes due to high mortality rates of seedlings (Nordbakken et al. 2004), and, therefore, may be particularly vulnerable to disturbances such as fire which can destroy large numbers of adult plants. However, given the low occurrence of this species in this study (present in 4% of quadrats) further species-specific research to quantify the effects of fire on its seed-banks and secondary succession are required.

In total, 47% of the species in the vegetation were detected in the seed-bank (24 of 51), suggesting that many species do not have large persistent seed-banks in these habitats. Due to the disparity between the sampling area of seed-banks and vegetation in this study (i.e. 4m² quadrats in vegetation and 0.01m² per quadrat in the seed-bank) it is likely that the estimated Jaccard Similarity Indices of germinable seed-banks and vegetation would be higher if larger seed-bank areas were sampled, since some species with a lower frequency of seeds would probably be detected (see Vandvik et al. 2016). Furthermore, as these Jaccard Similarity...
Indices are calculated per quadrat for the purposes of GLMM analyses; they are lower than would be expected when calculated across all quadrats within each habitat type. For comparison with previous studies, similarity at this broader habitat scale was calculated as the proportion of species in the vegetation which are also present in the seed-bank (Table 1). Despite this, as sampling regimes were constant across areas within this study, relative differences in Jaccard Similarity (e.g. between habitats) are reliable.

Rapid germination of many species post-fire is likely, due to increased light and nutrient availability, reduced competition and/or fire-related cues such as smoke and temperature (Bargmann et al. 2014; Snyman 2015). Therefore, we expected that in areas where wildfires occurred, vegetation and seed-banks would be more similar; however, we did not find any evidence to support this hypothesis. Furthermore, we found species such as *V. myrtillus* and *Carex pilulifera* which were uncommon in the seed-bank became more common in the vegetation post-fire. These species have clonal traits including below-ground bud-banks and rhizomes (Klimešová & de Bello, 2009), which may also be important in post-fire recovery.

Germinable seed-banks and vegetation in steep areas were marginally less similar in burnt areas. This may be due to a loss of germinable seed and/or seedlings on steep slopes after wildfires due to altered abiotic conditions, such as increased erosion and extreme weather conditions (Maltby et al. 1990).

All seed-bank studies are dependent on the sampling and germination methods employed. Here, mean seed abundances per m² were at the lower end of the range of abundances found in similar upland communities (Miller & Cummins 2003; Måren & Vandvik 2009), but were similar to those found in upland bog habitats and European heaths (Lee et al. 2013b; Bossuyt and Honnay 2008). Community composition detected in this study was similar to that found by previous authors, with a dominance of *C. vulgaris* and *E. tetralix*, and an over-representation of *Juncus* species in the germinable seed-bank relative to the vegetation.
(Miller & Cummins 2003; Bossuyt & Honnay 2008; Måren & Vandvik 2009). Species which were not detected in germinable seed-banks here include those with transient seed-banks which would not be expected due to the timing of the sampling, and species which have shown similarly low seedling abundances in previous studies such as Vaccinium sp. (Miller & Cummins 2003; Måren & Vandvik 2009). Hence, the relative frequencies of species found in this study are comparable with those of other studies in similar habitats and are, therefore, considered by the authors to be suitable for comparing the relative frequencies of major species in germinable seed-banks between burnt and unburnt areas. However, inevitably some species with low germinable seed abundances and/or clumped distributions may have been overlooked by the sampling regime employed.

Here, we focused on differences between sites over a short timeframe (14-18 months post-fire) and, therefore, it was not possible to determine the long-term impacts of wildfires on species communities. Further research is required to ascertain whether the differences in the germinable seed-bank observed here are due to damage to the seed-bank or early post-fire succession. This will have important implications for whether management interventions such as reseeding or alterations to the abiotic environment are necessary for the re-establishment of some key species post-wildfire.

The impact of fire on key peatland species may have been overlooked in previous studies due to the overwhelming dominance of C. vulgaris in the seed bank, because of a focus on sites with a history of regular burning for management, or on sites where species richness was already low. In particular, we highlight the potential negative impacts on key indicator species such as N. ossifragum and D. rotundifolia which are characteristic of wetter sites, and which, to our knowledge, were not present in previous studies of moorland burning in the UK. The absence of a focus on these species in previous studies may relate to shifting baselines, where species composition post-disturbance is being compared to an already
reduced or altered species community. In addition, we found negative associations between these wildfires and some key indicator species (T. germanicum, E. vaginatum and E. nigrum), which have been found to be positively associated with prescribed burning in previous UK studies. This may relate to the variable influence of burning at different sites, differences between wildfires and prescribed burning and/or differences in timescales between studies. In conclusion, this study provides evidence of the potential negative impacts of wildfires on key indicator taxa and highlights the need for further studies on a more diverse range of sites in order to quantify potential impacts on key species.
Acknowledgements

This project was commissioned and funded by the Natural Heritage Research Partnership (NHRP) between the Northern Ireland Environment Agency (NIEA) and *Quercus*, Queen’s University Belfast (QUB). The NIEA Client Officer was Martin Bradley and input was gratefully received from Richard Wyle. Thanks to land-owners including Forest Service, Northern Ireland Water and the Beltrim Charitable Trust for facilitating site access. Thanks to John Brazil, Lauren Daly, Emma Murphy and Ledicia Santos for assistance with germination trials. Thanks also to Prof. Jim McAdam and Dr. Mel Flexen Agri-Food and Biosciences Institute (AFBI), Northern Ireland for assistance with seedling identification and greenhouse logistics. Thanks also to Tancredi Caruso for his advice on statistical analyses and to our anonymous reviewers for their helpful comments.

Author contributions:

Research was designed by RK, WIM & NR. Data collection, greenhouse experiments and data analyses were conducted by RK. Manuscript was written by RK and edited by EB, WIM and NR.
References

Supplementary material

Appendix 1. Table S1. Details of study site locations, characteristics and management (pdf format).
Appendix 2. Table S1. Details of study site locations, characteristics and management (csv format).
Appendix 3. Table S2. Relative frequency of species in vegetation and germinable seed-bank (pdf format).
Appendix 4. Table S2. Relative frequency of species in vegetation and germinable seed-bank (csv format).
Appendix 5. Germinable seed-bank dataset summarised at quadrat level (csv format).
Table 1. Comparison of seed-banks and vegetation in each habitat type, showing species richness, percentage of seed-bank species found in vegetation and the most commonly occurring species in each habitat type.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Species richness</th>
<th>% of vegetation species in seed-bank</th>
<th>Most common species (% of quadrats in which species is detected)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vegetation</td>
<td>Seed-bank</td>
<td>Vegetation</td>
</tr>
<tr>
<td>Blanket bog</td>
<td>33</td>
<td>21</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry heath</td>
<td>35</td>
<td>19</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet heath</td>
<td>25</td>
<td>17</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Model averaged results of Generalised Linear Mixed Models (GLMMs) for a) germinable seed abundance, b) Non-*Calluna vulgaris* germinable seed abundance, c) germinable seed-bank richness and d) Jaccard Similarity of germinable seed-banks and vegetation. Explanatory variables are listed in descending order of importance based on their model averaged Akaike (AICc) weights ($\sum \omega_i$). Factorial comparisons of habitat types were given as “Habitat1/Habitat2” where the habitat after the “/” was the reference condition.

<table>
<thead>
<tr>
<th>Model (response distribution)</th>
<th>$\sum \omega_i$</th>
<th>$\beta \pm$ s.e.</th>
<th>Z value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanatory variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Total germinable seed abundance (negative binomial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>-0.253 ± 0.100</td>
<td>2.522</td>
<td>0.012</td>
</tr>
<tr>
<td>Altitude</td>
<td>0.94</td>
<td>-0.200 ± 0.109</td>
<td>1.838</td>
<td>0.066</td>
</tr>
<tr>
<td>Burning</td>
<td>0.49</td>
<td>-0.099 ± 0.145</td>
<td>0.685</td>
<td>0.493</td>
</tr>
<tr>
<td>Julian Date</td>
<td>0.37</td>
<td>-0.052 ± 0.091</td>
<td>0.564</td>
<td>0.573</td>
</tr>
<tr>
<td>Heat load</td>
<td>0.27</td>
<td>-0.020 ± 0.053</td>
<td>0.371</td>
<td>0.711</td>
</tr>
<tr>
<td>Grazing</td>
<td>0.11</td>
<td>-0.015 ± 0.069</td>
<td>0.219</td>
<td>0.827</td>
</tr>
<tr>
<td>Soil Nitrogen</td>
<td>0.06</td>
<td>-0.003 ± 0.023</td>
<td>0.125</td>
<td>0.901</td>
</tr>
<tr>
<td>Burning*Grazing</td>
<td>0.06</td>
<td>0.015 ± 0.074</td>
<td>0.201</td>
<td>0.841</td>
</tr>
<tr>
<td>b) Non-Calluna vulgaris germinable seed abundance (negative binomial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>1.00</td>
<td>-0.547 ± 0.131</td>
<td>4.158</td>
<td><0.001</td>
</tr>
<tr>
<td>Burning</td>
<td>1.00</td>
<td>-0.523 ± 0.196</td>
<td>2.653</td>
<td>0.008</td>
</tr>
<tr>
<td>pH</td>
<td>0.94</td>
<td>0.217 ± 0.123</td>
<td>1.767</td>
<td>0.077</td>
</tr>
<tr>
<td>Slope</td>
<td>0.77</td>
<td>0.250 ± 0.223</td>
<td>1.118</td>
<td>0.264</td>
</tr>
<tr>
<td>Heat load</td>
<td>0.76</td>
<td>-0.142 ± 0.122</td>
<td>1.166</td>
<td>0.243</td>
</tr>
<tr>
<td>Julian date</td>
<td>0.39</td>
<td>0.070 ± 0.123</td>
<td>0.571</td>
<td>0.568</td>
</tr>
<tr>
<td>Burning*Slope</td>
<td>0.29</td>
<td>-0.081 ± 0.166</td>
<td>0.166</td>
<td>0.622</td>
</tr>
<tr>
<td>Soil phosphorus</td>
<td>0.18</td>
<td>0.017 ± 0.061</td>
<td>0.274</td>
<td>0.784</td>
</tr>
<tr>
<td>Soil nitrogen</td>
<td>0.12</td>
<td>0.012 ± 0.051</td>
<td>0.230</td>
<td>0.818</td>
</tr>
<tr>
<td>Grazing</td>
<td>0.12</td>
<td>-0.009 ± 0.047</td>
<td>0.196</td>
<td>0.845</td>
</tr>
<tr>
<td>c) Germinable seed-bank species richness (negative binomial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burning</td>
<td>1.00</td>
<td>-0.163 ± 0.080</td>
<td>2.036</td>
<td>0.042</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>0.199 ± 0.078</td>
<td>2.535</td>
<td>0.011</td>
</tr>
<tr>
<td>Burning*Slope</td>
<td>0.91</td>
<td>-0.127 ± 0.081</td>
<td>1.568</td>
<td>0.117</td>
</tr>
<tr>
<td>Heat load</td>
<td>0.86</td>
<td>-0.060 ± 0.042</td>
<td>1.406</td>
<td>0.159</td>
</tr>
<tr>
<td>Habitat – Bog/Dry Heath</td>
<td>0.71</td>
<td>-0.196 ± 0.161</td>
<td>1.217</td>
<td>0.224</td>
</tr>
<tr>
<td>Habitat – Bog/Wet Heath</td>
<td>0.71</td>
<td>-0.186 ± 0.152</td>
<td>1.219</td>
<td>0.223</td>
</tr>
<tr>
<td>Habitat – Dry Heath/Wet Heath</td>
<td>0.71</td>
<td>0.011 ± 0.104</td>
<td>0.104</td>
<td>0.917</td>
</tr>
<tr>
<td>Altitude</td>
<td>0.65</td>
<td>-0.066 ± 0.067</td>
<td>0.988</td>
<td>0.323</td>
</tr>
<tr>
<td>Julian Date</td>
<td>0.39</td>
<td>0.028 ± 0.045</td>
<td>0.616</td>
<td>0.538</td>
</tr>
<tr>
<td>Soil nitrogen</td>
<td>0.29</td>
<td>-0.016 ± 0.035</td>
<td>0.457</td>
<td>0.648</td>
</tr>
<tr>
<td>Soil phosphorus</td>
<td>0.29</td>
<td>0.019 ± 0.039</td>
<td>0.481</td>
<td>0.631</td>
</tr>
<tr>
<td>Soil pH</td>
<td>0.11</td>
<td>0.004 ± 0.019</td>
<td>0.234</td>
<td>0.815</td>
</tr>
<tr>
<td>Grazing</td>
<td>0.06</td>
<td>-0.001 ± 0.011</td>
<td>0.112</td>
<td>0.911</td>
</tr>
<tr>
<td>d) Jaccard Similarity of germinable seed-banks and vegetation (Gaussian)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat – Bog/Dry Heath</td>
<td>1.00</td>
<td>-0.003 ± 0.038</td>
<td>0.077</td>
<td>0.938</td>
</tr>
<tr>
<td>Habitat – Bog/Wet Heath</td>
<td>1.00</td>
<td>0.114 ± 0.037</td>
<td>3.035</td>
<td>0.002</td>
</tr>
<tr>
<td>Habitat – Dry Heath/Wet Heath</td>
<td>1.00</td>
<td>0.117 ± 0.038</td>
<td>3.097</td>
<td>0.002</td>
</tr>
<tr>
<td>Julian Date</td>
<td>0.91</td>
<td>-0.025 ± 0.014</td>
<td>1.699</td>
<td>0.089</td>
</tr>
<tr>
<td>Burning</td>
<td>0.90</td>
<td>0.002 ± 0.021</td>
<td>0.100</td>
<td>0.921</td>
</tr>
<tr>
<td>Slope</td>
<td>0.90</td>
<td>0.054 ± 0.027</td>
<td>1.987</td>
<td>0.047</td>
</tr>
<tr>
<td>Burning*Slope</td>
<td>0.90</td>
<td>-0.059 ± 0.029</td>
<td>2.014</td>
<td>0.044</td>
</tr>
<tr>
<td>Soil pH</td>
<td>0.89</td>
<td>-0.023 ± 0.015</td>
<td>0.015</td>
<td>0.113</td>
</tr>
<tr>
<td>Altitude</td>
<td>0.44</td>
<td>-0.010 ± 0.015</td>
<td>0.692</td>
<td>0.489</td>
</tr>
<tr>
<td>Soil Phosphorus</td>
<td>0.27</td>
<td>-0.004 ± 0.009</td>
<td>0.448</td>
<td>0.654</td>
</tr>
</tbody>
</table>
Table 3. Partial Redundancy Analysis (pRDA) permutation test results of variables in best fitting model for a) species composition of germinable seed-bank and b) species composition of vegetation. Site was fitted as a conditional factor in all models. Constrained and conditional variances are given as the proportion of the total variance in each species community. ‘Variance explained’ is shown as the proportion of the total variance in the species community explained when a variable is fitted as the last term in the model (i.e. marginal terms). Explanatory variables are listed in descending order of importance based on the variance explained.

<table>
<thead>
<tr>
<th>Model</th>
<th>Explanatory variables</th>
<th>DF</th>
<th>Explained variance (%)</th>
<th>Pseudo-F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Germinable seed-bank (Constrained variance = 10.6 %, Conditional variance (Site) = 12.1%, residual df = 111, pseudo-(F) = 3.057, (p = 0.001))</td>
<td>Soil pH</td>
<td>1</td>
<td>5.1</td>
<td>7.350</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Soil phosphorus</td>
<td>1</td>
<td>1.9</td>
<td>2.723</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>Burning</td>
<td>1</td>
<td>1.4</td>
<td>2.004</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>Habitat</td>
<td>2</td>
<td>2.1</td>
<td>1.510</td>
<td>0.060</td>
</tr>
<tr>
<td>b) Vegetation cover (Constrained variance = 16.2 %, Conditional variance (Site) = 11.3%, residual df = 109, pseudo-(F) = 3.485, (p = 0.005))</td>
<td>Soil pH</td>
<td>1</td>
<td>5.5</td>
<td>8.341</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Habitat</td>
<td>2</td>
<td>3.6</td>
<td>2.684</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Burning</td>
<td>1</td>
<td>2.5</td>
<td>3.687</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Soil phosphorus</td>
<td>1</td>
<td>1.4</td>
<td>2.057</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
<td>1</td>
<td>1.1</td>
<td>1.713</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>Heat load</td>
<td>1</td>
<td>1.1</td>
<td>1.586</td>
<td>0.033</td>
</tr>
</tbody>
</table>
Fig. 1 Locations of field sites.
Fig. 2 Mean seed abundance per m2 and mean species richness per sample in burnt and unburnt areas. Error bars show bootstrapped 95% confidence intervals on the mean. *’s indicate a significant difference between burnt and unburnt areas based on Generalised Linear Mixed Model outputs.
Fig. 3 Biplots showing the association between environmental variables and plant species composition. Species are plotted where they occur in more than 1 quadrat and more than 5% percent of the variation in their abundance is explained by the RDA model after differences between sites are accounted for.
Table S1. Details of study site locations, characteristics and management. Habitats were classified into into classes using the JNCC National Vegetation Classification system for UK habitats. Annex I habitats included were “blanket bog” \((n=75)\), “Northern Atlantic wet heaths with Erica tetralix” \((n=25)\) and “European dry heaths” \((n=22)\). Data on area and dates of wildfires were supplied by the European Forest Fire Information System – EFFIS\(^{1}\) (http://effis.jrc.ec.europa.eu) of the European Commission Joint Research Centre and are derived from MODIS satellite data.

<table>
<thead>
<tr>
<th>Site/Area of Special Interest (ASSI’s)</th>
<th>No. of quadrats</th>
<th>Latitude (WGS 1984)</th>
<th>Longitude (WGS 1984)</th>
<th>Altitude range (m)</th>
<th>pH range</th>
<th>EU Annex I Habitats</th>
<th>Management</th>
<th>Total area of wildfire (km(^2))</th>
<th>Dates of fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuilcagh</td>
<td>18</td>
<td>54.2354</td>
<td>-7.7498</td>
<td>198 - 396</td>
<td>3.9 – 5.8</td>
<td>Blanket bog, Dry Heath, Wet Heath</td>
<td>Low intensity cattle and sheep grazing</td>
<td>1.4</td>
<td>02/05/2011</td>
</tr>
<tr>
<td>Eastern Mournes</td>
<td>34</td>
<td>54.1655</td>
<td>-5.9620</td>
<td>202 - 554</td>
<td>4.0 – 4.8</td>
<td>Blanket bog, Dry Heath, Wet Heath</td>
<td>Low intensity sheep grazing/recreational use (hill-walking)</td>
<td>9.9</td>
<td>10/04/2011 01/05/2011</td>
</tr>
<tr>
<td>Glennasheevar</td>
<td>11</td>
<td>54.4342</td>
<td>-7.9590</td>
<td>184 - 245</td>
<td>4.1 – 4.3</td>
<td>Blanket bog, Wet Heath</td>
<td>Low intensity sheep grazing</td>
<td>3.7</td>
<td>02/05/2011</td>
</tr>
<tr>
<td>Mullaghcarn</td>
<td>20</td>
<td>54.6783</td>
<td>-7.2176</td>
<td>218 - 505</td>
<td>3.9 – 4.2</td>
<td>Blanket bog, Dry Heath</td>
<td>Low intensity sheep grazing at 70% of site</td>
<td>12.0</td>
<td>23/04/2011 02/05/2011</td>
</tr>
<tr>
<td>Slieve Beagh</td>
<td>19</td>
<td>54.3411</td>
<td>-7.1926</td>
<td>241 - 352</td>
<td>3.9 – 4.2</td>
<td>Blanket bog</td>
<td>Low intensity sheep grazing at 66% of site</td>
<td>23.7</td>
<td>01/05/2011</td>
</tr>
<tr>
<td>Slieveanorra</td>
<td>20</td>
<td>55.1072</td>
<td>-6.2510</td>
<td>232 - 345</td>
<td>3.9 – 4.2</td>
<td>Blanket bog</td>
<td>Low intensity cattle grazing at 33% of site</td>
<td>1.1</td>
<td>22/04/2011</td>
</tr>
</tbody>
</table>
Supporting information to the paper

Table S2. Relative frequency of species in vegetation and germinable seed-bank, showing percentage of quadrats in which species were detected. Species are ranked in order of frequency in the vegetation. Species recorded in 0% of quadrats are given as “not detected” to indicate that they may be present in low numbers but undetected.

<table>
<thead>
<tr>
<th>Species</th>
<th>Percentage of quadrats (%)</th>
<th>Vegetation</th>
<th>Germinable seed-bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calluna vulgaris</td>
<td>94.3</td>
<td>97.5</td>
<td></td>
</tr>
<tr>
<td>Erica tetralix</td>
<td>61.5</td>
<td>62.3</td>
<td></td>
</tr>
<tr>
<td>Eriophorum vaginatum</td>
<td>57.4</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Trichophorum germanicum</td>
<td>43.4</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Eriophorum angustifolium</td>
<td>41.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Potentilla erecta</td>
<td>40.2</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>Molinia caerulea</td>
<td>39.3</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Vaccinium myrtillus</td>
<td>39.3</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Erica cinerea</td>
<td>28.7</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>Narthecium ossifragum</td>
<td>21.3</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Deschampsia flexuosa</td>
<td>18.0</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>Carex pilulifera</td>
<td>16.4</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Polygala serpyllifolia</td>
<td>13.9</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Agrostis canina</td>
<td>13.1</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>Nardus stricta</td>
<td>11.5</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Empertrum nigrum</td>
<td>10.7</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Galium saxatile</td>
<td>10.7</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Agrostis capillaris</td>
<td>8.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Carex panicea</td>
<td>8.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Luzula multiflora</td>
<td>6.6</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Carex binervis</td>
<td>5.7</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>Ulex gallii</td>
<td>5.7</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Carex echinata</td>
<td>4.9</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Drosera rotundifolia</td>
<td>4.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Juncus squarrosum</td>
<td>3.3</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Juncus effusus</td>
<td>3.3</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>Carex viridula</td>
<td>2.5</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Carex nigra</td>
<td>2.5</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Juncus acutiflorus</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Danthonia decumbens</td>
<td>1.6</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Festuca vivipara</td>
<td>1.6</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Holcus lanatus</td>
<td>1.6</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Holcus mollis</td>
<td>1.6</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Myrica gale</td>
<td>1.6</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Epilobium palustre</td>
<td>0.8</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Juncus squarrosum</td>
<td>0.8</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>Anthoxanthum odoratum</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Betula pubescens</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Carex rostrata</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Cirsium dissectum</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Drosera intermedia</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Juncus conglomeratus</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Listera cordata</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Oxalis acetosella</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Salix repens</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Schoenus nigricans</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Sorbus aucuparia</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Rumex acetosella</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Vaccinium oxyzococcus</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Viola riviana</td>
<td>0.8</td>
<td>Not detected</td>
<td></td>
</tr>
<tr>
<td>Sagina procumbens</td>
<td>Not detected</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Juncus bufonius</td>
<td>Not detected</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>