A Quick and Easy Eye Test for Identifying Those at Most Risk of Developing Early Age-Related Macular Degeneration


Published in:
Investigative Ophthalmology and Visual Science

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016, The Author
This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:07. Dec. 2018
A Quick and Easy Eye Test for Identifying Those at Most Risk of Developing Early Age-Related Macular Degeneration

Ruth E. Hogg

Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom; r.e.hogg@qub.ac.uk

Deciding who is at risk for development of age-related macular degeneration (AMD) is a significant challenge. Important progress has been made with respect to the development of late stage disease. Combining demographic, lifestyle, retinal markers, and genotype allows risk scores to be computed with good sensitivity and specificity. Prognostic markers for the development of AMD in those with normal macular health are not as widely studied, yet this may be a group in which prophylactic treatments are most effective. Owsley et al. recently have reported delayed rod-mediated dark adaptation as a functional biomarker for incident early AMD, though with a sensitivity and specificity of 33.3% and 82.8%, respectively, this could not be used alone as a screening test for those at most risk for early AMD. Therefore, the study by Owsley et al., which examined the association between cone-mediated visual function and incident AMD, provides important clinical findings, as these techniques tend to be quicker and more easily applicable in a standard clinical setting and also are known to be useful in studying AMD at later stages. The finding that impaired mesopic visual acuity in older eyes in normal macular health is a risk factor for incident early AMD is notable, in that it confirms the use of functional tests beyond acuity to identify those at most risk. Glazing a trial lens with a 1.5 log unit neutral density filter is relatively straightforward and inexpensive, while repeating a visual acuity measurement with the filter in place just takes minutes, making this test easily applicable. Although the authors acknowledge it may not be a good candidate for tracking change within a trial, its use for revealing retinal dysfunction and disease risk not evident on fundus photography should be considered by those providing primary ophthalmic care to older populations.

References

