Monoenergetic Ion Beam Generation by Driving Ion Solitary Waves with Circularly Polarized Laser Light

Published in:
Physical Review Letters

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
2011 American Physical Society

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Monoenergetic Ion Beam Generation by Driving Ion Solitary Waves with Circularly Polarized Laser Light

1Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany
3Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany

(Received 21 March 2011; published 8 September 2011)

Experimental data from the Trident Laser facility is presented showing quasimonoenergetic carbon ions from nm-scaled foil targets with an energy spread of as low as ~15% at 35 MeV. These results and high-resolution kinetic simulations show laser acceleration of quasimonoenergetic ion beams by the generation of ion solitons with circularly polarized laser pulses (500 fs, λ = 1054 nm). The conversion efficiency into monoenergetic ions is increased by an order of magnitude compared with previous experimental results, representing an important step towards applications such as ion fast ignition.

DOI: 10.1103/PhysRevLett.107.115002 PACS numbers: 52.38.Kd, 41.75.Jv, 52.50.Jm, 52.65.Rr

Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences [1–3]. Remarkable progress has been made in producing laser-driven proton and ion accelerators [4–6] that are very compact compared with conventional RF accelerators. These beams have been produced with particle energies of several MeV per nucleon and outstanding properties in terms of transverse emittance and current, but they typically exhibit an exponential energy distribution. Almost all prospective applications for these ion beams, including oncology [7], proton imaging [8] and inertial confinement fusion [9,10], require quasimonoenergetic beams with a low energy spread. Up to now, the majority of high intensity laser experiments aiming for ion-acceleration have used comparatively thick targets in the μm range. In these target normal sheath acceleration (TNSA) experiments [11–13], hot thermal electrons are generated normal to the front and rear surfaces of the solid target that accelerate protons over a very short distance to energies of up to 67 MeV [2,14]. Here, the accelerated ions usually exhibit broad exponential energy spectra; by using in situ engineered targets, quasimonoenergetic spectra can be generated, but with low ion flux [15,16]. Recently, ion acceleration by radiation pressure acceleration (RPA) [17–20] has drawn a lot of attention. Here, the light pressure of a linearly polarized (LP) fs-laser pulse exceeding 1023 W/cm² drives an overcritical (n_e/γ_e n_c, > 1, the relativistically corrected ratio of the electron to the critical electron density) nm-scaled target in the laser piston regime [21]; at lower intensity RPA can occur with circularly polarized (CP) laser. Simulations have shown that for a single species target, the laser can drive the plasma as a single block to a monoenergetic ion spectrum; in a multi-species target, lighter ions with higher charge to mass ratio “snowplow” ahead of the heavier species [22,23].

Experimental evidence of RPA has proven to be difficult; first experimental data indicating signatures of RPA has been reported by Henig et al. [24]; however, monoenergetic ion spectra have not been generated.

Here we report on the experimental generation of quasimonoenergetic carbon ion beams by driving ion solitons with CP laser pulses of 500 fs length and exceptionally high laser contrast in the relativistically transparent matter regime. First indications suggest that the ion energies and particle fluxes scale favorably with laser intensity. High-resolution 2D-VPIC [25] simulations matching the experiment’s laser and target parameters reproduce the experimental data. In the simulations we observe the generation of an ion soliton and its propagation within the target and facilitating the ion acceleration. The experiments conducted at the Trident Laser facility [26,27] yielded quasimonoenergetic carbon ions with energies of 35 MeV and an energy spread as low as ±15%, in good agreement with the simulations. This proof-of-principle experiment demonstrates that laser-based particle sources are now capable of delivering the necessary ion energies for ion injectors and medical applications such as hadron therapy of skin or eye tumors.

In particular, we employ ultrathin nm-scaled foil targets, in contrast to [2,15], and combine these with CP laser pulses and ultrahigh contrast (OPAPE technique [27]) to reduce premature ionization and expansion of the target prior to the arrival of the pulse peak. Still, the long pulse duration of 500 fs (FWHM) and its shoulders of ~10^-5@5 ps (i.e., >10^15 W/cm²) lead to preexpansion and a qualitative difference in the interaction compared with pure RPA acceleration as seen in PIC simulations (e.g., Klimo et al. [17]): the combination of a longer laser pulse and increased J × B heating of the electrons in the plasma will lead to relativistic transparency of the target.
In the experiments, the laser is focused by an $F/3$ off-axis parabolic mirror to a spot diameter of $6 \, \mu m$ delivering an on-target intensity of $2 \times 10^{20} \, W/cm^2$ in ~ 500 fs (160 TW, $\lambda = 1054$ nm) under normal incidence to a free standing diamondlike carbon (DLC) target. Targets with thicknesses from 5 to 60 nm were employed and the laser polarization was controlled via a quarter wave plate. Ion spectra were recorded using a Thomson parabola spectrometer [34] positioned 1.2 m behind the rear of the target (see Fig. 1) that was capable of clearly separating the different charge states at the measured energies of about 5 to 10 MeV/Nucleon to ensure measurement of uncorrupted ion spectra [32]. Isolated monoenergetic C^{6+} spectra were observed experimentally for very thin targets of 5 to 10 nm thickness and CP laser (in 2/3 of the shots), whereas LP light always resulted in exponentially decaying energy spectra. Figure 2(a) shows C^{6+} spectra obtained from 5 nm thin DLC foil targets with CP and LP. In the CP case, an isolated quasimonoenergetic spectrum peaked at 35 ± 5 MeV (2.9 ± 0.4 MeV/nucleon) with an energy spread of $\pm 15\%$, whereas the LP case resulted in an exponentially decaying energy spectrum [see Fig. 2(a)]. However, for these very thin targets it can be difficult to determine whether the measured spectra are truly exponential, as common in TNSA, or influenced by other phenomena [35]. The particle numbers within the monoenergetic feature and conversion efficiency of laser light into ion energy exceed those obtained with TNSA by Hegelich et al. [15] by an order of magnitude. The conversion efficiency of laser energy into the monoenergetic feature has been estimated to 0.06\% (assuming a particle beam with a divergence half angle of 10°). In Fig. 2(b) C^{6+} spectra from shots on 10 nm foil targets and CP laser light are shown; here, the monoenergetic character of the spectra is broadened and less distinct, which agrees with the theory and simulation explained later. With further increase in target thickness, fully exponentially decaying energy spectra are obtained (not shown) regardless of laser polarization.

To understand the experiments, ion acceleration is simulated in the transparency regime using the VPIC code. The 2D simulation domain is $20 \times 25 \, \mu m$ in the (x, z) plane, where the laser propagates along x and has time-varying intensity $I(t) = I_0 \sin^2(\pi t / \tau)$ with $I_0 = 2.0 \times 10^{20} \, W/cm^2$ and $\tau/2$ is the FWHM (500 fs, $\lambda = 1054$ nm). A Gaussian-shaped pulse in z is used with best focus at the target surface, where $E_x, E_z \sim \exp(-z^2/w^2)$ with $w = 6.8 \, \mu m$. The targets (C^{6+} with 5\% protons in number density) are of solid density $n_{e}/n_{cr} = 821$ ($2.8 \, g/cm^3$) with thickness of 5 nm and a step-function profile at the beginning of the simulation. The cell size is $\Delta x = 0.3 \lambda_D^0$ (0.3 nm) and $\Delta z = 1.7 \lambda_D^0$ ($\lambda_D^0 = \omega_{pe}/\sqrt{T_e/m_e}$ is the initial electron Debye length); 500 electrons per cell are used ($T_e = 18 \, keV$ and $T_i = 10 \, eV$ for C^{6+} and protons). Absorbing boundary conditions are employed for particles and fields. In Fig. 3(a) carbon energy spectra are compared for CP (solid curves) and LP (dashed curves) laser pulses. The LP case has a broad (exponential) spectrum, whereas the CP case yields a quasimonoenergetic peak at 50 MeV, slightly higher than observed in the experiment. In the
simulations, the energy spread is $\pm 10\%$ which agrees well with the $\pm 15\%$ energy spread in spectra measured 120 cm behind the target (while in transit, these C^{6+} beams would expand from self-Coulomb forces not modeled in the simulation). A conversion efficiency of 0.35% of the laser energy into carbon ions of all energies, with 0.11% of the laser energy into ions with energy exceeding 40 MeV has been measured. Detailed analysis of the CP case reveals ion-acceleration based on the generation of a carbon ion soliton before and its stable propagation during the relativistic transparency of the target. It should be noted here, that the simulations of this paper were run at conditions designed to match (as close as possible) the actual experiment, which did result in weaker solitons than other conditions we have modeled (see Ref. [36]). This mechanism has two distinct stages. The first is a transient RPA phase, where the ponderomotive force of the CP laser compresses the target (a process similar to that described in previous studies of the RPA mechanism [19,37]) and a pronounced carbon ion density spike forms, as shown in Fig. 3(b) at 204 fs. During this first stage, the target distorts and the laser heats the electrons at the front surface of the target. This stage ends at $t = 204$ fs when the target turns relativistically transparent $[n_e/(\gamma n_e) \sim 1]$. Prior to transparency, the ion energy gain is modest, about ~ 6 MeV. After transparency, dramatic ion acceleration occurs, as shown by the squares in Fig. 3(d) where monoenergetic ion energy vs time after transparency is displayed. Associated with transparency is a persistent, sharp ion density structure that propagates and accelerates forward in x as shown in Fig. 3(b). A bipolar electric field structure in E_x, shown in Fig. 3(c) (green curve) comoves with the carbon density spike (red); the electrons, by virtue of their orbits in the intense laser field, are insufficiently mobile in x to short out E_x and their charge (black curve) and current densities vary smoothly across the soliton. Dramatic ion energy is gained starting from the onset of transparency at 204 fs and continuing to 305 fs, when the ion soliton reaches the back of the expanding target layer. The presence of ion solitons coincides with the dominant epoch of ion acceleration in the simulations. However, we do not rule out at this time that simultaneous, nonoptimized RPA-like dynamics may, in fact, also be present, but not as the dominant contributor to the acceleration. In our simulations, the most dramatic period of acceleration takes place after the onset of transparency, not before; RPA dynamics would predict a decrease in efficiency at the point of transparency. This points to an ion acceleration different from RPA being dominant. In addition, protons are here not affected by this acceleration mechanism, as they are mostly evacuated from the target by the time the acceleration phase starts due to the very low atomic content of protons in the target (about 5%) and their high charge to mass ratio, i.e., their fast response to electric fields. In fact, the measured proton energies are about an order of magnitude higher (20 MeV to 40 MeV, not shown here) than the carbon energies per nucleon. This is in contrast to an RPA-dominated acceleration and to the mechanism proposed by Qiao et al. [23], where the carbon ions suffer from rapid Coulomb explosion induced by the protons that are “snowplowed” ahead.

The nonlinear structures observed in the simulation appear to be ion solitons whose properties can be obtained from a generalization of the Akhiezer-Polovin (AK) problem [38,39] describing the nonlinear propagation of an intense electromagnetic wave in cold plasma. We have extended the AK theory to include ion as well as electron dynamics. A derivation of the solitary wave dynamics will be presented elsewhere [36], however we highlight parts of the derivation here. From a two-fluid relativistic description of ions and electrons (neglecting pressure) and Maxwell’s equations, the local charge density is found to obey $Z_i n_i - n_e = n_e [(v_{ix} - v_{ee})/(v_p - v_{ix})]$, where n is density (subscripts i and e indicate ion and electron quantities, respectively), Z_i is ion core charge, v_e is longitudinal speed, and v_p is the speed of the soliton. A stable, localized ion density spike, as seen in Fig. 3(b), requires the ion speed across the soliton to be slightly less than the soliton speed, as seen in VPIC simulations in Fig. 3(d), where monoenergetic ion energy obtained from ion spectrum is compared to the soliton “energy” $\frac{1}{2} m_i v_i^2$. For propagation of solitons, an intense laser field must be present across the...
indeed, the experimental spectra for the 10 nm target cases hence cannot generate a sharp monoenergetic ion beam;erate the necessary density spike in the ion distribution and

presented high-resolution 2D-VPIC simulations consistent

in conjunction with circularly polarized laser pulses. We
time laser-driven monoenergetic ions from nanotargets in

Deutsche Forschungsgemeinschaft (DFG) Transregio

mental as well as applied sciences.

We are grateful for the support of the Trident laser team and J. Szeryp and P. Hiltz from the LMU target group. The VPIC simulations were run on the LANL Roadrunner supercomputer. Work was supported by: DOE OFES, Deutsche Forschungsgemeinschaft (DFG) Transregio SFB TR18, Cluster of Excellence (MAP) and LMU-Excellence (M. Hegelich).

* daniel.jung@physik.uni-muenchen.de

