Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

Published in:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/, which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

A. Alejoa, A. Greena, H. Ahmeda, A.P.L. Robinsonb, M. Cerchezc, R. Clarkeb, D. Doriaa, S. Dorkingsb, J. Fernandezb, P. McKennaa, S.R. Mirfayzia, K. Naughtona, D. Neelyb, P. Norreysb,1, C. Pethc, H. Powelld, J.A. Ruize, J. Swainf, O. Willic, M. Borghesia, S. Kara,∗

aCentre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, UK
bCentral Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
cInstitut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf, 40225, Germany
dDepartment of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
eColegio Los Naranjos, Fuenlabrada, Madrid, 28941, Spain
fRudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK

Abstract

The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic number ions in fusion reactions. In addition to benefiting from the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in the neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in the neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70° full width at half maximum) neutron beam recently obtained from an experiment employing multi-MeV deuteron beams of narrow divergence (upto 30° FWHM depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from the interactions with higher power lasers at upcoming facilities.

Keywords: laser, neutron, beam fusion

1. Introduction

Fast neutron sources driven by high-power lasers have gained substantial interest over the last decades for a range of potential applications in medicine [1], security [2, 3], material science [4] and high energy density physics research [5]. Furthermore, deploying compact moderators closely coupled to laser-driven fast neutrons sources would allow the development of intense sources of thermal and epithermal neutrons, which would extend the range of applicability of laser-based sources. With the rapid progress in laser technology, aiming towards developing higher repetition rate lasers of higher powers, laser-driven neutron sources can, in principle, complement the research activities currently pursued at conventional accelerator-driven spallation sources. Although these large scale facilities produce substantially higher fast neutron fluxes, a key interest for laser-driven neutron sources lies in the neutron burst duration, which is substantially shorter than that produced at spallation facilities.

With the current laser systems, neutron yields up to of the order of 10^{10} neutrons/shot have been shown experimentally ([6, 7] and references therein), by employing laser driven ions to generate neutrons from secondary catcher targets via beam-fusion reactions. In addition to the advantage of the ultra-short pulse duration, directionality/anisotropcity in the neutron emission is another important characteristic resulting from the beam-fusion reactions. The total neutron yield from a fusion reaction scales with the product of fusing ion densities and cross-section σ, which, for the most common reactions, reaches high values for centre-of-

∗Corresponding author.
Email address: s.kar@qub.ac.uk

Preprint submitted to Elsevier

May 12, 2016
mass energy in the MeV-10s of MeV range [8]. In a
pitcher-catcher scenario, where neutrons are produced
by bombarding the laser-driven ions on a suitable con-
verter target, anisotropy arises from the nuclear reac-
tion kinematics, which strongly depends on the atomic
mass of the fusing nuclei and velocity of the projectile
ions [6]. In addition, the strong angular dependence
of the differential cross-section for light nuclei reac-
tions helps producing neutron fluxes strongly peaked
along the incident ion-beam direction, even while us-
ing moderate energy (10s of MeV) ions as acceler-
atated at currently available laser intensities [9]. In this
context, fusion reactions based on low atomic mass
nuclei, such as $^7\text{Li}(\text{p,n})^4\text{He}$, $^9\text{Be}(\text{p,n})^6\text{Li}$, $^{12}\text{C}(\text{p,n})^9\text{He}$,$^{13}\text{Li}(\text{d,xn})$, 7Be(d,xn), are partic-
ularly relevant, which would not only allow obtaining
higher neutron yield, but higher peak flux by producing
a narrow cone beam of neutrons. A highly beamed neu-
tron flux would be extremely helpful towards improving
transport capabilities as well as efficient moderation of
the neutrons to thermal and epithermal energies by us-
ing compact, closely-coupled, directional moderators.

Anisotropic emission of the neutron beam is start-
ing to be realized in experiments. In addition to
the anisotropy intrinsic to the beam-fusion, as dis-
cussed above, the neutron beam divergence from a typ-
ical laser-driven pitcher-catcher source also depends
strongly on the divergence of the projectile ions - the fi-
nal neutron beam divergence from the catcher will be a
convolution of the divergence of the input ion beam and
the neutron beam divergence expected for a collimated
beam of ions.

In this paper we show a simple model for simu-
larating the neutron production from light nuclei reac-
tions in a pitcher-catcher scenario, and to study the
effect of ion beam parameters (divergence and spec-
trum) on the neutron generation. The neutron beam
divergence estimated by our model from d(d,n)^3He re-
action in a beam-fusion scenario, while using laser-
driven deuterium beam produced via the Target Normal
Sheath Acceleration (TNSA) mechanism [9], com-
parres well with the data obtained from a recent experiment
[6]. A systematic study show that the neutron beam di-
vergence can be reduced significantly (to a few tens of
degrees) by increasing the input ion beam temperature,
which, according to the current understanding of the
TNSA mechanism, is achievable using the intense lasers
that will be available at the upcoming facilities [10, 11].

2. Simulation design and method

Alternative to the usual Monte-Carlo approach [12,
13] to simulate neutron generation in a beam-fusion sce-
nario, the model described in this paper (as discussed
below) takes advantage of the tabulated angularly-
resolved neutron yield, that can be found in the liter-
arture, obtained for a mono-energetic, pencil beam of
ions impinging onto a catcher at normal incidence. The
main interaction that is taken into account in our simple
model is the effect of a multi-energy, divergent beam of
ions, as typically produced by the TNSA mecha-
nism, towards the angular distribution of emitted neu-
trons from a secondary catcher target. The schematic of
the setup used in our model is shown in Fig. 1.

![Figure 1: (a) Schematic of the neutron generation process in the pitcher-catcher scheme. An ion beam is generated by the interaction of the laser with the target (pitcher), which then reaches the secondary converter (catcher), leading to the neutron emission. (b) and (c) depict the grids representing the target and the detector, respectively.](image-url)

The input for the projectile ion beam in our model is
the angularly-resolved ion spectra. This informa-
tion can either be obtained numerically, by performing
multi-dimensional PIC simulations of the laser-foil in-
teraction, or experimentally, by using for example an-
gularly distributed high-resolution Thomson Parabola
Spectrometers (TPS) [14]. The angularly resolved ion
spectra can be represented by a function $\frac{d^2N}{d\Omega dE}$(E, θ, ϕ), where E is the ion energy, (θ, ϕ) are the angles defining
the direction of a given beamlet of ion, and Ω stands
for solid angle. For simplicity, one may assume the ion
beam produced by the laser-foil interaction to be cylin-
drically symmetrical about θ.

The catcher in the model was designed as a two di-
ensional matrix ($n_{x,y} \times n_{x,y}$ cells), where the grid size
(dx, dy) can be chosen depending on the desired res-
olution and accuracy, being $dx = dy = 200 \mu$m the res-
solution for the simulations here shown. The spec-
trum of ions arriving at each grid point on the catcher
$(dN_{\text{ion}}(x,y)/dE)$ is calculated from the input ion spectrum
to the code (as mentioned above) for a given pitcher-to-catcher distance (l). In order to obtain the neutron flux distribution across a plane parallel to the catcher, the detector in the code was modelled as a two dimensional array of $n_{d.x} \times n_{d.y}$ cells of size $dx_d \times dy_d$. This detector configuration mimics the response of CR39 nuclear track detectors typically used in neutron generation experiments [6, 15], allowing for a direct comparison between the simulations and the experimental data.

Neutron generation from each grid point of the catcher was calculated by using the tabulated data for the angularly-resolved neutron yield, that can either be found in the literature, or be obtained by running Monte Carlo simulations [12, 13] for different ion energies. In this paper we used the tabulated data for d(d,n)3He reaction provided by Davis et al. [12], which was one of the main reactions producing neutron in the experiment reported in [6]. The d(d,n)3He reaction is also an efficient fusion reaction for moderate-energy deuterons, which is suitable for studying the effect of the input ion beam spectrum and divergence on the neutron beam divergence. The tabulated neutron yield per incident ion, given in Ref. [12], along different angles of neutron emission and for different projectile ion energies were interpolated to obtain a function $Y_d(E, \theta')$, where θ' is the neutron emission angle with respect to the incident ion beam. Using this function, the neutron flux at a given pixel of the detector ($F_{n(x,y)} = N_n(x,y)/dx_d dy_d$) is calculated as the sum of the fluxes reaching that pixel, generated at each point on the catcher. This can be expressed mathematically as

$$N_n(x,y) = \sum_{(x',y')} \sum_{\theta''} Y_d(E, \theta'') \cdot N_{ion}(x', y')(E)$$

where, $\theta' = \tan^{-1}\left(\frac{\sqrt{(x_d - x_c)^2 + (y_d - y_c)^2}}{L}\right)$ and L is the catcher-to-detector distance.

3. Results

In order to study the beamed neutron emission observed in our experiment [6] employing the petawatt arm of the VULCAN laser at Rutherford Appleton Laboratory (RAL), STFC, UK[16], we used the experimentally measured deuteron spectrum as the input to our model. The ion beams in the experiment were produced by irradiating 10 µm-thick deuterated plastic foils with a p-polarised laser pulse of ~ 200 J energy and ~ 750 fs duration, focused down to a spot of ~ 6 µm (FWHM) on the target, reaching a peak intensity in excess of 10^{20} W cm$^{-2}$. The ion beam spectrum was diagnosed along different emission angles (-8°, 0°, 21° and 32°) with respect to the target normal by employing Thomson Parabola Spectrometers (TPS)[14]. Due to the limitation of TPS in retrieving the spectrum of overlapping species, a differential filtering technique [17] was implemented to discriminate the deuterium ions from the overlapping species with equal charge-to-mass ratio, such as 16O$^+$ and O^{18+} originated from the target and hydrocarbon contaminant layers. A typical raw data obtained along the target normal direction is shown in Fig. 2(a). A comparison between on-axis proton and deuteron spectra obtained from the TPS data is shown in Fig. 2(b), while assuming an axis-symmetrical beam profile. The data shows a divergent ($\sim 30^\circ$ FWHM, $\sim 60^\circ$ full cone) beam of deuterons with an exponential spectrum, with the highest energies produced along the target normal direction with a narrow ($\sim 15^\circ$ full cone) beam divergence, as expected from the TNSA mechanism for such laser and target parameters [18].

The angularly-resolved deuteron spectra shown in Fig. 2(c) was used in our code to simulate the neutron generation in the catcher placed at a distance of $l = 5$ mm from the ion source (which represents the point of laser interaction with the pitcher target). The flux distribution of the deuterons of different energies at the front surface of the catcher are shown in Fig. 2(c), which was obtained by using the beam profile shown in Fig. 2(b).

Despite of the moderate energies of the ions and the broad emission angle produced in the experiment, the simulation shows a directional beam-like emission of neutrons from the catcher target, as shown in Fig. 3 (showing neutron flux distribution across the detector.
plane placed at a distance $L = 15$ mm from the catcher), with a Full Width at Half Maximum (FWHM) divergence of $\sim 62^\circ$ and maximum flux along the ion beam axis. The simulated neutron beam profile is similar to that obtained from the experiment (FWHM of $(70 \pm 10)^\circ$ [6]). Since the simulated neutron beam profile was obtained by considering only the d(d,n)3He reaction, the residual difference between the simulated and experimental neutron beam profile is most likely due to a range of additional nuclear reactions taking place in the catcher in the latter case. As discussed in Ref. [6], due to the higher flux and higher energy protons produced from the pitcher target (as can be seen in Fig. 2(a)), the proton-induced deuteron breakup reaction (d(p,n)3H) contributes significantly towards the total neutron yield. Due to the reaction kinematics, this nuclear reaction is expected to produce a narrow neutron beam divergence, similar to that obtained for the d(d,n)3He reaction. However, a detailed simulation for the d(p,n+p)3H case could not be carried out due to the insufficient reaction cross-section available in the literature.

In order to study the effect of the projectile ion beam parameters on the neutron beam divergence, we carried out a set of simulations by varying the input spectrum of the ions, as expected to be produced by TNSA mechanism at different laser intensities. The ion temperature and the cut-off ion energy in the TNSA mechanism scale with the temperature of the hot electrons produced by the interaction, which broadly scales as $\sqrt{I/\lambda^2}$ [9, 19, 20, 21], where I_L and λ stand, respectively, for the intensity and the wavelength of the incident laser. The divergence of the ions produced by the TNSA mechanism also varies within the beam depending on its energy [18] - ions with higher energy are emitted with a lower divergence. Assuming a flat-top flux profile within the ion beam divergence, and the following divergence profile as a function of ion energy (as reported for ~ps lasers in Ref. [18], which closely matches with the observed divergence shown in Fig. 2(b)),

$$\theta_D(E, E_{max}) = \begin{cases} 62^\circ & E < E_{max}/2 \\ 107.4^\circ - 90.9^\circ \frac{E}{E_{max}} & E \geq E_{max}/2 \end{cases}$$

(1)

we modelled an input TNSA beam profile for our simulations as a function of laser intensity, as given by

$$\frac{d^2 N_{ion}}{dE d\Omega} = \frac{dN_{ion}}{dE} \bigg|_{E = E_{max}} \propto \exp \left(-\frac{E}{k_B T(I_L)}\right)$$

(2)

A set of simulations were carried out by varying the ion beam temperature $k_B T(I_L)$. The cut-off energy for the deuterons as a function of laser intensities was assumed as $E_{max}(I_L) \propto I_L ^{-9/2} \sqrt{I_L}$ MeV, where the proportionality constant was calculated using the maximum deuteron energy obtained in our experiment, shown in Fig. 2(b).

The FWHM divergence of the neutron beam obtained from the simulations is shown in Fig. 4. One can see how the neutron beam divergence reduces significantly with an increase in the ion beam temperature. While a nearly isotropic emission for low ion temperatures is produced, the neutron beam divergence can be reduced below 50° using higher power lasers than that used in our experiment. Intense lasers will produce ions at higher energies, which will provide two-fold enhancement to the on-axis neutron flux - (1) neutron yield per incident ion will increase significantly due to their deeper penetration into the catcher, (2) higher anisotropy due to differential cross-section and kinematics (see Eq. 2 in Ref. [6]). An alternative approach for increasing the flux and energy of ions other than protons, which are preferentially accelerated by the TNSA mechanism, would be to use some special technique to eliminate the hydrogen contamination layer at the rear side of the pitcher target, such as depositing a layer of heavy water contamination for enhancing the deuteron acceleration [22].

The rate of decrease in the neutron beam divergence slows down towards the higher temperatures, as visible in Fig. 4. The nearly constant divergence of $\sim 30^\circ$ obtained for the high ion temperatures is due to the, albeit

![Figure 3: Simulated neutron beam reaching a flat detector in front of the catcher. Inset shows the lineout of the neutron beam profile across the detector, which also represents the emission angle of neutrons with respect to the ion beam axis. The divergence of the neutron beam (FWHM) is $\sim 62^\circ$.](image)
We presented results obtained from a numerical model simulating the neutron beam generation by laser-driven ions in a pitcher-catcher scenario. Simulation results are broadly consistent with the neutron beam profile observed in the experiment while using the experimentally measured ion beam profile in the simulation. By varying the ion beam parameters, simulations predict improvement in the neutron beam divergence with an increase in the ion beam temperature and cut-off energy, as expected from the TNSA mechanism at higher laser intensities. Further experimental measurements with improved ion beam parameters would be required to benchmark the simulated trend for neutron beam divergence.

4. Conclusions

We presented results obtained from a numerical model simulating the neutron beam generation by laser-driven ions in a pitcher-catcher scenario. Simulation results are broadly consistent with the neutron beam profile observed in the experiment while using the experimentally measured ion beam profile in the simulation. By varying the ion beam parameters, simulations predict improvement in the neutron beam divergence with an increase in the ion beam temperature and cut-off energy, as expected from the TNSA mechanism at higher laser intensities. Further experimental measurements with improved ion beam parameters would be required to benchmark the simulated trend for neutron beam divergence.

5. Acknowledgements

The authors acknowledge funding from EPSRC [EP/J002550/1] Career Acceleration Fellowship held by S. K., EP/L002221/1, EP/K022415/1, EP/J500094/1. Authors acknowledge support of engineering, target fabrication and experimental science groups of Central Laser Facility of STFC, UK.

