Suppression of Hydrogen Emission in a White-light Solar Flare


Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2016 The Authors

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Suppression of Hydrogen Emission in a White-light Solar Flare
Ondřej Procházka1, Ryan Milligan2, Joel Allred2, Adam Kowalski2, Mihalis Mathioudakis1
1Queen’s University Belfast
2NASA Goddard Space Flight Center
oprochzaka@qub.ac.uk

Abstract
We present an analysis of an X-class flare that occurred on 11 June 2014 in active region NOAA 12087 using a newly developed high cadence Image Selectors operated at the Astronomical Institute in Ondřejov, Czech Republic. This instrument provides spectra in the 350 – 440 nm wavelength range, which covers the higher order Balmer lines as well as the Balmer jump at 364 nm. However, no detectable increase in these emissions were detected during the flare, and support observations from SDO/EVE MEGS-B also show that the Lyman line series and recombination continuum were also suppressed, particularly when compared to other X-class flares that occurred on the same day and earlier, and to other X-class flares from the preceding day. The X-class flare under investigation also showed strong white light emission in SDO/HMI data, as well as an extremely hard electron spectrum (5 ≈ 3.6), and γ-ray emission, from RHESSI data. This unique combination of datasets allows us to conclude that the white light emission from this flare corresponds to a black body heated by high-energy electrons (and/or ions), as opposed to optical chromospheric emission of hydrogen.

Introduction
About 40 years ago Machado & Rust (1974) observed a white-light flare using a slit spectrograph working in wavelength 350 – 440 nm and detected strong emission in higher order Balmer lines, calcium lines, and increased continuum of up to 12% around Balmer jump. Machado et al. (1986) then concluded that two types of white-light flares (WLF) are distinguished and each one can be a mixture of both types. Type 1 was described as flares with strong and broad Balmer lines caused by f-b transitions and originating in chromosphere at a temperature about 10^5 K, in contrast with type II with much weaker Balmer lines and flat wavelength dependence originating deeper in photosphere with density higher than 10^12 cm^-3 and strong Hα contribution. An observation close to the limb was reported by Boyer et al. (1985). The measured contrast around Balmer jump reached up to 19% and emission in CaK, CaII and Hα lines were detected. Authors concluded that Paschen or Hα continuum were unlikely responsible for the detected emission. Instead they proposed a presence of a slightly (≈ 150 K) warmer layer in the photosphere while speculating about an existence of this phenomena in the absence of a flare just due to an evolution of magnetic structures with time. Kowalski et al. (2015) studied a response of SDO/EVE class stars’ atmosphere on high energy electron fluxes using RHESSI code and compared it with observations. They concluded that high flux (0.1 erg cm^-2 s^-1) of non-thermal electrons produce a heated, high-density chromospheric condensation layer with a high hydrogen b-f and c-f opacity. In their simulations this atmosphere then produce black-body radiation with a temperature around 10^4 K and a relatively small Balmer jump ratio.

Main Findings
1. Absence of higher order Balmer and Lyman lines.
2. White-light emission.
3. Two sudden brightenings in Balmer continuum channel (351 – 360 nm) of up to 20%.
4. Very hard particle beams, including ions.

Analysis
Spectroscopic observations
To explain an origin of white-light flares their spectrum is crucial to obtain. However due to a strong background radiation in visible range, contrast of the flare on the solar disk is too low to measure an irradiance from the whole disc.

Satellite data
SDO/HMI observations show WL emissions during all studied flares. M3 event shows several bright points, of some it lasted several dozens of minutes, X1 event produced a ribbon-like structure during the impulsive phase and a long lasting bright point in the decay phase. Yellow light curve in the bottom panel of Figure 5 shows a decay phase of a bright spot lasting about one hour, the green light curve shows gradual increase exceeding the investigated time range. These lifespans are significantly larger than that of non-thermal electron beams. X1.5 flares emit a very bright spot persisting for several hours, which is consistent with the expected signature of non-thermal electron beams. However, the absence of a flare just due to an evolution of magnetic structures with time. This project was supported by NASA and the National Science Foundation.

Conclusions
A suppression of hydrogen lines along with increased flux in wavelengths > 400 nm during a white-light emission might suggest that this emission is coming from a hot black-body component as proposed by Kowalski et al. (2015). Forthcoming Research
To explain the origin of WL flares shown in this poster, analysis of optical depth might be performed. HIMI data are suitable for a technique proposed by Potts et al. (2010), who studied photographic variations and their visibility through the ribbon. Also lots of theoretical work has to be done, such as hydrodynamics modeling using RADYN or RH code.

References
Kotrˇc, P., Procházka, O., & Heinzel, P. 2016, Astrophys. J.

Acknowledgements
This project was supported by Solar Physics Division of the American Astronomical Society and NASA/GSFC Data Analysis Team NMODAGRC.