Episodic Future Thinking in 4-Year-Olds, Poster Symposium: The who, what, where and when of episodic foresight development


Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2013 The Authors
This document is available through an e-mail request only

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:08. Dec. 2018
Three and Four-year olds’ episodic future thinking skills

Miss Tsvyata Donova, Prof Teresa McCormack & Dr Aidan Feeney
Queen’s University Belfast

BACKGROUND

What is episodic future thinking?
It is estimated that people spend about a third of their daily lives mentally simulating future scenarios. This ability to project oneself into the future to pre-experience an event is termed *episodic future thinking* (Atance & O’Neill, 2001).

Key components of episodic future thinking
Research with adults has found that the construction of a novel, complex and coherent scene involves the retrieval and integration of information from the semantic and episodic memory systems (Levine & Spreng, 2006). Context has also been shown to play a key part here as people imagine future scenarios using previously stored visuo-spatial dimensions of places (Szpunar, Watson & McDermott, 2007; Arzy et al, 2009).

However, there are only a few studies have investigated this ability in young children (Atance & Meltzoff, 2005; Busby & Suddendorf, 2005ab; Russell, Alexis, & Clayton, 2010; Suddendorf, Nielsen and von Gehlen’s, 2011). A confirmed this ability emerges in the 3-5 age range. Perhaps the most refined method so far is utilised by Russell et al (2010). In this task, 3-, 4- and 5-year olds played a game of blow football on one end of a table (see Figure 1). At the end of the game the children were asked to select 2 out of 6 items (see Figure 2) that would enable them to play this game tomorrow from the opposite, unreachable, side of the table (in blue). They conducted four experiments asking 3-5 year olds children the question in three conditions: present-self (control condition), future-self and future-other.

METHOD AND MATERIALS

Aim of Current Research:
The current series of studies aimed at replicating Russell et al (2010) study by using: a) three novel games with similar design; b) include more children for each study (N=24) and c) use higher chance cut-off point - 0.5/0.66. The studies aimed to discover at what age exactly episodic future thinking emerges in pre-school aged children.

Results:

1. In present-self condition all age groups (3, 4 and 5) selected the right 2 items for the next day above chance level
2. In future-self condition only children aged 5 selected the right 2 items for the next day above chance level
3. In future-other condition, where children were asked what another child would select, both 4- and 5-year olds selected the 2 items above chance

Limitations:
1. However, the cut-off point chance level’s was too low (2/30)
2. The number of children in each test group was only 12
3. It is also possible that having to select 2 out of 6 items may place more cognitive demands on children’s executive functions

Figure 1. Russell and Colleagues’ Blow Football Task

Figure 2. Children choose 2 out of 6 items to use tomorrow

RESULTS:

Four-year-olds’ pass rates (%) for each study at each task - future self condition

<table>
<thead>
<tr>
<th>Study</th>
<th>Game 1</th>
<th>Game 2</th>
<th>Game 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>97</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

The fact that Study 3 which involved the use of 3 items (incl. distractor) did not yield significant results suggests that children may not be necessarily choosing the right item by projecting themselves in the future. They may well select it as it is simply new or different. Yet, in Study 3 two children, aged 55 and 56 months did select the right toy irrespective of the presence of the distractor.

Table 1. Number of mean correct answers across the three games in Experiments 1 and 2

<table>
<thead>
<tr>
<th>Experimental Conditions</th>
<th>Mean Correct</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. 1 (future-self, task) – 2 choices</td>
<td>2.79</td>
<td>0.42</td>
</tr>
<tr>
<td>Exp. 2 (future-self, away) – 2 choices</td>
<td>2.31</td>
<td>0.64</td>
</tr>
<tr>
<td>Exp. 3 (future-self away) – 3 choices</td>
<td>1.21</td>
<td>0.98</td>
</tr>
</tbody>
</table>

There is a significantly higher mean number of correct answers for Studies 3 & 2 only

FUTURE DIRECTIONS:

1. The current results appear to suggest that episodic future thinking may be appearing at the later stages of age 4. This is an earlier age to what Russell et al (2010) originally found in their sample.
2. Nevertheless, there remains the possibility that children are selecting the items for tomorrow’s use on the basis of semantic reasoning, perhaps, combined with episodic future thinking.
3. The next step would be to consider a bit more sensitive type of design for all three games so that each game is solely (or mostly) solvable on the basis of mentally projecting the self in the future (the next day)

REFERENCES: