A 2.2 GHz High-Efficiency Third-Harmonic-Peaking Class-EF Power Amplifier

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
A 2.2 GHz High Efficiency Third-Harmonic-Peaking Class-EF Power Amplifier

Ayman Barakat, Mury Thian and Vincent Fusco

Queen’s University Belfast, ECIT Institute, Queen’s Road, Queen’s Island, Belfast, BT3 9DT, U.K

Abstract—This paper presents the design and implementation of a low-voltage-stress Class-EF power amplifier (PA) with extended maximum operating frequency, named as ‘third-harmonic-peaking Class-EF PA’. A novel transmission-line load network is proposed to meet the Class-EF impedance requirements at the fundamental, all even harmonics, and third harmonic components. It also provides an impedance matching to a 50 Ω load. A more effective λ/8 open- and shorted-stub network is deployed at the drain of the transistor replacing the traditional λ/4 transmission line. Implemented using GaN HEMTs, the PA delivered 39.2 dBm output power with 80.5% drain efficiency and 71% PAE at 2.22 GHz.

Index Terms—Class-EF, high efficiency, low voltage stress, power amplifiers, switched mode amplifiers, harmonic termination.

I. INTRODUCTION

The Class-EF power amplifier (PA) combines the advantages of both Class-E and Class-F PAs. It offers a soft-switching operation inherited from Class-E as well as a low peak switch voltage (i.e. twice the supply voltage) inherited from Class-F, [1].

The maximum operating frequency \(f_{\text{MAX}}\) of the Class-EF PA for a prescribed output power and supply voltage is strictly constrained by the transistor output capacitance \(C_{\text{OUT}}\). At high frequencies, this output capacitance is typically larger than the shunt capacitance \(C\) required for optimum Class-EF mode operation. To overcome this problem, a new Class-EF topology, Fig. 1, is proposed where an extra capacitance \(C_X = C_{\text{OUT}} - C\) is incorporated in the circuit.

II. PRINCIPLES OF OPERATION

The transmission lines TL\(_1\)-TL\(_4\) combined with \(C_X\) in Fig. 1 are designed to provide a short-circuit termination for all even harmonics, an open-circuit termination for the third harmonic and an optimum load impedance \((R + j\omega L)\) at the fundamental frequency. It also simultaneously provides an impedance matching to a 50 Ω load.

At the third harmonic frequency, the λ/4-open stub TL\(_{2A}\) would short the series transmission line TL\(_1\). This shorted line will act as an inductance, which resonates with \(C_X\) at \(3f_0\). The open and shorted λ/8 stubs (TL\(_3\) and TL\(_4\)) make the drain shorted at \((4m-2)\)\(^{th}\) and \((4m)\)\(^{th}\) harmonics, respectively, where \(m = 1, 2, 3, \ldots\). They both should resonate at the fundamental frequency and odd harmonics. At the fundamental frequency \(f_0\), the load network elements are designed, based on the theory and mathematical approach given in [1], such that the optimum load is seen at \(f_0\). A wave trap (TL\(_{2B}\)) is added to suppress the fifth harmonic component.
III. FABRICATION AND MEASUREMENT

We have designed the amplifier on a ROGERS RO4003C printed circuit board with squared dimensions of 4.2 cm using 10-W CREE CGH40010F GaN HEMTs, Fig. 2. The amplifier was fed by a continuous-wave signal from Agilent Technologies E8257D signal generator, and the output power was measured by Agilent Technologies N9320A spectrum analyser. Gate and drain biasing was applied using a Thurlby 32-V DC supply. Since the maximum output power of the signal generator is limited to 16 dBm, an identical replica of the amplifier is inserted as a driver.

![Fig. 2. The fabricated third-harmonic peaking Class-EF PA.](image)

Fig. 3 shows measured output power, gain, drain efficiency and PAE when sweeping the input power at 2.22 GHz, gate-source voltage $V_{GS} = -2.7$ V, and drain-source voltage $V_{DC} = 28$ V. Best efficiency performance was realized at output power of 39.2 dBm and gain $G = 9.3$ dB when both drain efficiency and PAE peaked at 80.5% and 71% respectively. The dc voltage was swept at input power $= 29.9$ dBm and 2.22-GHz frequency, as shown in Fig. 4. Results show that drain efficiency and PAE remained above 77.4% and 63.2% respectively when the voltage varied from 21 to 32 V. Table 1 shows a comparison with previous relevant works.

![Fig. 4. Measurement results: output power, gain, drain efficiency and PAE versus dc voltage ($V_{GS} = -2.7$ V, $Pin = 29.9$ dBm, $f_0 = 2.22$ GHz).](image)

Table 1. Comparison with previous relevant works.

<table>
<thead>
<tr>
<th>Class</th>
<th>Freq (GHz)</th>
<th>P_{OUT} (dBm)</th>
<th>η_D (%)</th>
<th>V_{DC} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] E</td>
<td>2.5</td>
<td>38.3</td>
<td>79</td>
<td>28</td>
</tr>
<tr>
<td>[3] E/F</td>
<td>2.14</td>
<td>40</td>
<td>76</td>
<td>30</td>
</tr>
<tr>
<td>[4] F-1</td>
<td>2.45</td>
<td>39.4</td>
<td>73.9</td>
<td>28</td>
</tr>
<tr>
<td>This work</td>
<td>EF</td>
<td>2.22</td>
<td>39.2</td>
<td>80.5</td>
</tr>
</tbody>
</table>

REFERENCES

