Development of a Temperature-Recording Vaginal Ring for Monitoring User Adherence

A TEMPERATURE-RECORDING VAGINAL RING FOR MONITORING USER ADHERENCE

Peter Boyd 1, Delphine Desjardins 2,3, Sandeep Kumar 1, Susan Fetherston 1, Roger Le Grand 2,3, Nathalie Dereuddre-Bosquet 2,3, Berglind Helgardóttir 4, Ásgeir Bjarnason 4, Manjula Lusi-Narasimhan 5, Karl Malcolm 1

1 Queen’s University Belfast, UK, 2 CEA, France, 3 UMR-E1, France, 4 Star-Oddi Ltd., Iceland, 5 World Health Organization (WHO), Switzerland.

One of the major challenges for late-stage clinical trials in the HIV microbicide field is the accurate (and preferably quantitative) measurement of adherence. Methods for measuring adherence can be divided into two categories. Direct measures of adherence, also known as ‘biomarkers’, are substances or effects whose absence/presence indicates that a biological or pharmacological process has occurred. Indirect measures of adherence include ‘objective measures’ and ‘self-report measures’, both reliant on the observations or reports of clinicians, trial participants, or others.

The relatively large size of vaginal rings (particularly silicone elastomer rings, Fig. 1B) compared with more conventional vaginal dosage forms, their method of manufacture, and their non-degradable properties permit the incorporation of a miniature temperature-recording device into the ring body. Assuming (i) the embedded temperature-recording device can accurately and periodically record environmental temperature, (ii) internal vaginal temperature is significantly different from external ambient temperature, and (iii) the vaginal ring is returned to the clinic after use, it may be possible to use such a ring to accurately monitor user adherence. Here, we report that DST nano-T temperature loggers (Fig. 1A, Star-Oddi) embedded within model silicone elastomer vaginal rings (Fig. 1C) can accurately and continuously record environmental temperature and determine insertion and removal events, both in vitro (Figs. 2 & 3) and when administered vaginally to cynomolgus macaques (Fig. 4).

Temperature loggers (as supplied, encapsulated in silicone tubing, or encapsulated and placed in simulated vaginal fluid) were responsive to changes in temperature resulting from removal from and re-insertion into a laboratory incubator (Fig. 2). The 8 min sampling interval more accurately defined the removal and re-insertion events compared with 60 min intervals. An evaporative cooling effect was observed in the simulated vaginal fluid experiment (Fig. 2D). The thickness of the silicone elastomer sheath surrounding the temperature logger also affected the responsiveness to temperature changes (Fig. 3), although removal and re-insertion times were still readily determined.

In macaques, a regular diurnal temperature pattern was observed for both vaginal and subcutaneous loggers (Fig. 4), although vaginal temperatures were consistently 1-2 °C higher than subcutaneous temperatures. Vaginal device removal and re-insertion events were clearly detected by the silicone elastomer encapsulated loggers (Fig. 4B and 4C). A Phase I human clinical study is now planned.

Temperature loggers (as supplied, encapsulated in silicone tubing, or encapsulated and placed in simulated vaginal fluid) were responsive to changes in temperature resulting from removal from and re-insertion into a laboratory incubator (Fig. 2). The 8 min sampling interval more accurately defined the removal and re-insertion events compared with 60 min intervals. An evaporative cooling effect was observed in the simulated vaginal fluid experiment (Fig. 2D). The thickness of the silicone elastomer sheath surrounding the temperature logger also affected the responsiveness to temperature changes (Fig. 3), although removal and re-insertion times were still readily determined.

In macaques, a regular diurnal temperature pattern was observed for both vaginal and subcutaneous loggers (Fig. 4), although vaginal temperatures were consistently 1-2 °C higher than subcutaneous temperatures. Vaginal device removal and re-insertion events were clearly detected by the silicone elastomer encapsulated loggers (Fig. 4B and 4C). A Phase I human clinical study is now planned.