Brønsted acids in ionic liquids: How acidity depends on the liquid structure

Published in:
Physical Chemistry Chemical Physics

Document Version:
Peer reviewed version
Brønsted acids in ionic liquids: how acidity depends on liquid structure

Jade A. McCune, Peizhao He, Marina Petkovic, Fergal Coleman, Julien Estager, John D. Holbrey, Kenneth R. Seddon and Małgorzata Swadźba-Kwaśny**

Gutmann Acceptor Number (AN) values have been determined for Brønsted acid-ionic liquid mixtures, over a wide compositional range. Four systems of general formula \([\text{C}2\text{mim}][\text{A}]\cdot\text{HA} (\text{A} = \text{bistriflamide}, [\text{NTf}_2]; \text{triflate}, [\text{OTf}]; \text{mesylate}, [\text{OMs}]; \text{or acetate}, [\text{OAc}]. [\text{C}2\text{mim}]^+ = 1\text{-ethyl-3-methylimidazolium} \text{cation})\) were studied. A library of Brønsted acidic systems of varying acidity was constructed and the AN parameter was found to be a and convenient approach for quantifying their acidity. \(\text{HOAc, HOMs and HOTf, when dissolved in ionic liquids, were found to associate with the respective anions to form hydrogen-bonded anionic clusters, } [\text{A(HA)}]_2. \) In contrast, \(\text{HNTf}_2\) was solubilised as a discrete, undissociated molecule. AN values were sensitive to the presence of anionic clusters; acidity could be buffered to a particular AN by binding the solubilised acid in the anionic cluster form. Overall, a simple way to manipulate and quantify the Brønsted acidity of acid-ionic liquid mixtures was demonstrated, and measured AN values were related to the liquid speciation.

Table 1. A list of ions abbreviations used in this contribution

<table>
<thead>
<tr>
<th>Cation</th>
<th>Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-ethyl-3-methylimidazolium</td>
<td>[C2mim]⁺</td>
</tr>
<tr>
<td>1-methylpyrrolidinium</td>
<td>[Hmpyr]⁻</td>
</tr>
<tr>
<td>Halide</td>
<td>X (X = Cl or Br)</td>
</tr>
<tr>
<td>Ethanoate (acetate)</td>
<td>[OAc]⁻</td>
</tr>
<tr>
<td>Trifluoroethanoate</td>
<td>[tfa]⁻</td>
</tr>
<tr>
<td>Methanesulfonate</td>
<td>[OMs]⁻</td>
</tr>
<tr>
<td>Trifluoromethanesulfonate</td>
<td>[OTf]⁻</td>
</tr>
<tr>
<td>Bis{[(trifluoromethyl)sulfonyl]} amide</td>
<td>[NTf2]⁻</td>
</tr>
</tbody>
</table>

The acidity of bistriflamidic acid

Hydrogen bis{[(trifluoromethyl)sulfonyl]} amide, \(\text{HNTf}_2\), contains an acidic N-H function, in contrast to the more common O-H function found in many acids. Pure \(\text{HNTf}_2\) is a low-melting solid (49-50 °C),\(15\) which crystallises in a characteristic ribbon-like structure (Figure 1).\(16\) In the crystal structure of \(\text{HNTf}_2\), the NTf₂ unit is in the \(\text{trans}\)-position, which is theoretically favourable by 2.3 kJ mol⁻¹.\(17\) However, in salts, \(\text{[NTf}_2\text{]}^{-}\) can crystallise in either a \(\text{cis}\)- or \(\text{trans}\)-conformation (depending on the cation), and in the liquid phase (solutions or ionic liquids) it tends to assume both \(\text{cis}\)- and \(\text{trans}\)-conformations in a dynamic equilibrium.\(18\)

This document is © The Royal Society of Chemistry 2013
HNTF₂ is generally recognised to be a very strong acid. In the gas phase, HNTF₂ was found to be a stronger acid than HOTF.\(^{21}\) In glacial acetic acid solution, HOTF was measured to be stronger than HNTF₂ \((pK_a = 4.2 \text{ vs. } 7.8),^{21}\) but both acids were classified as very strong. In contrast, when equimolar amounts of water and HNTF₂ were dissolved in a non-coordinating solvent, such as CCl₄ or benzene, HNTF₂ did not protonate water, behaving like a weak acid.\(^{15}\) This was in stark contrast to other acids, such as HOTF or H₂SO₄. Furthermore, HNTF₂ dissolved in anhydrous non-polar solvents did not form H-bonded clusters, \([\text{HNTF}_2]_n\), but was solubilised in a molecular form (again, in contrast to HOTF). Stoyanov et al.\(^{32}\) argued that \([\text{NTF}_2]^+\) is such a very weak base/hydrogen bond acceptor, that it is energetically more favourable for HNTF₂ to be solvated by solvent molecules, than to form the cluster, \([\text{NTF}_2(\text{HNTF}_2)]\).

Acidity in protic ionic liquids

Many techniques have been used to measure the acidity of ionic liquids, and equally, many different scales have been used to express the results. Approach used routinely for aqueous solutions pose technical difficulties in non-aqueous media.\(^{22}\) Establishing pH or \(pK_a\) in ionic liquid media is possible, albeit challenging, as it requires specialised equipment.\(^{23}\) Hammett acidities reported vary widely depending on the measurement procedure used,\(^{24,25}\) and the measurements are extremely sensitive to impurities, as they rely on UV-VIS probes.\(^{26}\) A range of methodologies, associated difficulties, and best recommended practice have been expertly discussed by Johnson and co-workers.\(^{24,25}\) A noteworthy addition to this strand of research is the use of an NMR probe to measure Hammet acidity, very recently introduced in ionic liquids by Welton and co-workers.\(^{27}\)

In this work, a Guttmann Acceptor Number (AN)\(^{28}\) approach has been employed, which benefits from straightforward NMR-based methodology, and in the literature good correlations are found for measurements performed independently by different groups. Finally, the AN scale is a quantitative measure of acidity applicable to both Lewis and Brønsted acids.

AN values are determined by \(^{31}\)P NMR spectroscopy, making use of small quantities of the weakly basic \(^{31}\)P NMR probe molecule, triethylphosphine oxide (tepo), which is dissolved in the medium under investigation. Changes in the \(^{31}\)P NMR chemical shift are induced through formation of acid-base adducts with Lewis acids, or partial protonation by Brønsted acids (Figure 2).

AN measurements were used to study Lewis acidity of chlorometallate ionic liquids,\(^{26,27}\) and to investigate a wide range of ‘typical’ ionic liquids.\(^{30}\)

Acidity, expressed on both Hammett\(^{31}\) and Guttmann\(^{5}\) scales, was demonstrated to be among key factors affecting catalytic performance of Brønsted acidic ionic liquids.

Experimental

Materials

Unless otherwise stated, all materials were purchased from Sigma-Aldrich and used as received. Triethylphosphine oxide was purchased from Sigma-Aldrich, opened and stored in a nitrogen-filled glovebox (MBraun LabMaster dp; <0.1 ppm O₂ and H₂O). Ethyl trifluoromethanesulfonate, 99%, was purchased in glass ampoules packed under argon. [C₂mim]Br was prepared by alkylation of 1-methylimidazole with bromoethane according to a standard literature procedure.

Syntheses

In all cases, these are improved modifications of known synthetic procedures.\(^{3,36}\) HNTF₂\(^{31}\) Li[NTF₂] (1.00 mol eq.) and sulfuric acid, (3.00 mol eq.) were placed in a cylindrical Kugelrohr flask and fixed to a Kugelrohr distillation apparatus. High vacuum was applied and the temperature of the oven was elevated slowly until the first signs of sublimation were observed (~50 °C). After the sublimation, white crystals were gathered in the collector flask, which was cooled with ice throughout the experiment. The hygroscopic, fuming sublimate was melted using a heat-gun and very quickly transferred into a bottle with a sealable, corrosion-resistant cap. The product was obtained as a white, low-melting solid, typically in 75-80% yield. [C₂mim][NTF₂]\(^{31}\) In a typical synthesis, concentrated aqueous solutions of [C₂mim]Br (1.0 mol eq) and LiNTF₂ (1.2 mol eq) were poured into a round-bottomed flask equipped with a stirring bar. The flask was closed with a stopper and the mixture was stirred vigorously (30 min). Subsequently, the top (aqueous) layer was decanted, and the bottom (ionic liquid)
layer was washed three times with an aqueous solution of LiNTf₂ and ten times with deionised water. Remaining solvents were removed using a rotary evaporator (80 °C, 1 h) and then high vacuum (80 °C, overnight, 10⁻² mbar). The purity and structure of the product were confirmed using ¹H, ¹³C, and ¹⁹F NMR spectroscopy. Efficiency of cation exchange was confirmed by elemental analysis (Li < 0.005 wt%; Br = 0.13 wt%).

[C₅min][OTf]₄ 1-Methylimidazole (1.0 mol eq) was poured into a two-necked round-bottomed flask equipped with a stirring bar, an equal volume of dichloromethane was added to the same flask, and the solution was stirred vigorously in an ice bath (0 °C) until cooled. An ampoule of ethyl trifluoromethanesulfonate (1.1 mol eq) was opened in a glovebox and the content was transferred immediately into a pressure-equalising dropping funnel, which was closed with a stopper, taken out of the glovebox, and mounted on the flask containing the cooled solution. The whole setup was connected to a Schlenk line and purged with argon. Ethyl trifluoromethanesulfonate was added dropwise into the vigorously stirred reaction mixture (ca. 20 min). Afterwards, the reaction was carried out overnight, gradually reaching room temperature. The product (room temperature ionic liquid) was washed four times with ethyl acetate, and the remaining solvent was removed using the rotary evaporator (1 h, 40 °C). Finally, the synthesised liquid was dried under high vacuum (70 °C, overnight). The purity and structure of the product were confirmed using ¹H, ¹³C, and ¹⁹F NMR spectroscopy.

[C₅min][OMS]₅ 1-Methylimidazolide (1.0 mol eq) was poured into a two-necked round-bottomed flask equipped with a stirring bar and stirred vigorously in an oil bath (40 °C). Ethyl methanesulfonate (1.2 mol eq) was transferred into a pressure-equalising dropping funnel, which was closed with a stopper and mounted on the round-bottomed flask; the whole setup was connected to a Schlenk line and purged with argon. Ethyl methanesulfonate was added dropwise into the vigorously stirred reaction mixture (ca. 20 min). After the reaction (overnight, 40 °C), the product (room temperature ionic liquid) was washed four times with ethyl acetate, and the remaining solvent was removed using the rotary evaporator (1 h, 40 °C). Finally, the synthesised ionic liquid was dried under high vacuum (70 °C, overnight). The purity and structure of the product were confirmed using ¹H and ¹³C NMR spectroscopy.

[C₅min][OAc]⁻ [C₅min][HSO₄]⁻ (1.0 mol eq) was poured into a round-bottomed flask equipped with a stirring bar and dissolved in hot deionised water (95–100 °C). Strontium hydroxide octahydrate (1.2 mol eq.) was weighed into a conical flask and dissolved in hot deionised water (95–100 °C). The [C₅min][HSO₄]⁻ solution was quantitatively transferred to the same conical flask, and the cloudy mixture was stirred vigorously (27 °C, 30 min) before being allowed to cool. The white precipitate (strontium hydrogen sulfate) was removed via double filtration under reduced pressure (P₃ glass sintered funnel with a 0.5 cm silica gel layer), washed with deionised water (ca. 20 °C) and discarded. The colourless solution of [C₅min][OH]⁻ was neutralised to the expected pH of [C₅min][OAc] aqueous solution, pH = 8.4, by the addition of acetic acid (1.0 mol eq.). Water was removed using a rotary evaporator (40 °C, 1 h). To the crude ionic liquid, an equal volume of dichloromethane/acetonitrile mixture (1:2 vol ratio) was added, resulting in a small amount of fine white precipitate, which was again removed by filtration under reduced pressure. Finally, solvent was removed using the rotary evaporator (1 h, 40 °C), and then the ionic liquid was dried under high vacuum (50 °C, 2 days). The purity and structure of the product were confirmed using ¹H and ¹³C NMR spectroscopy.

[C₅min][A]-HA In a typical experiment, ionic liquid (ca. 3 g) was weighed out into a sample vial equipped with a stirring bar. An appropriate amount of acid was weighed in the fumehood, directly into the sample vial containing the ionic liquid, using a Pasteur pipette (or a spatula for HNTf₂), to achieve the desired ratio of acid to ionic liquid. Actual masses of both reactants were recorded. The vial was closed with a plastic cap and stirred vigorously (ambient temperature, ca. 30 min) to ensure homogeneity. Argon was bubbled through this solution (ambient temperature, ca. 30 min), which was subsequently placed in the glovebox.

Analytical methods

AN MEASUREMENTS. Sample preparation was carried out in a dry, nitrogen-filled glovebox. In a typical experiment, a sample (ca. 1 g) of each composition was weighed into a sample vial (10 cm³) equipped with a PTFE-coated magnetic stirring bar. The vial was left on the balance, and a small, accurately measured, amount of triethylphosphine oxide (tep) and was added (1-5 mol % per mol of the [C₅min]⁻ cation). The sample vial was then closed with a plastic cap and the mixture was stirred overnight to ensure complete dissolution of tep. Subsequently, the liquid was loaded into an NMR tube (5 mm, borosilicate glass), containing a sealed capillary with d₆-dimethylsulfoxide (as an external lock). The tube was closed with a standard cap, sealed with parafilm, and removed from the glovebox immediately prior to measurement. For each ionic liquid-acid mixture studied, three samples with different small quantities of tepo were prepared, to allow extrapolation of the ³¹P NMR chemical shift value to infinite dilution, δinf.

³¹P NMR spectra were acquired at 121.452 MHz using a Bruker DRX 300 spectrometer. Phosphoric acid, 85% solution in water, was used as an external reference. All samples were measured at 27 °C. Moreover, the three solutions of tepo in hexane (ca. 5, 10, and 15 mol %) were prepared, and then measured at 27 °C. For each ionic liquid, the ³¹P NMR chemical shift for the infinite dilution of tepo, δinf, was determined by extrapolation from the ³¹P NMR chemical shifts measured at different tepo concentrations. The chemical shift of tepo in hexane, extrapolated to infinite dilution, δinf_ hex was used as a reference (δHex_ hex = 0 ppm). The AN values for all samples were calculated from the following formula: AN = 2.348×δinf/δHex⁻⁸.

¹H AND ¹³C NMR SPECTROSCOPY In the glovebox, neat ionic liquids were loaded into NMR tubes (5 mm, borosilicate glass) containing sealed capillaries with d₆-dimethylsulfoxide (as an external lock). The tubes were closed with a standard cap, sealed with parafilm, and removed from the glovebox immediately prior to measurement. All spectra were measured at 27 °C, using a Bruker DRX 300 spectrometer.

Results and Discussion

Experimental plan

CHOICE OF ACIDS Four ionic liquid-acid systems of a general formula [C₅min][A]-HA (A = NTf₂, OTf, OMS, or OAc) were prepared, with varying molar ratios of acids, ZHA. All samples were mobile liquids, from colourless to pale yellow. For the [C₅min][NTf₂]-HNTf₂ system, homogenous solutions were formed for ZHNTf₂ ≤ 0.80; for higher acid concentrations, the mixture was a biphasic liquid at elevated temperatures (fine
droplets suspended in bulk liquid), and the whole sample solidified over several minutes upon cooling, starting from the suspended phase.

The acids were chosen to represent a wide acidity spectrum. Acetic acid is a weak carboxylic acid, known to form strong anionic clusters. HOMs and HTOF are very strong sulfonic acids, commonly used in catalysis. The only structural difference between them is perfluorination of the methyl group in the latter case, which increases the acidity of HTOF with respect to HOMs. The interesting character of the HNTf system has been discussed above; furthermore, [NTf2]-based ionic liquids are hydrophobic, hence may be of particular interest for catalytic applications.

Each system shared the same anion and conjugate base of the acid; for two different bases in the system, the proton would associate with the stronger base, as already reported in the literature. The same publication demonstrated that cations have negligible influence on the acidity.

DEFINITION OF MOLAR RATIO OF ACID, ζH₂A. Previous studies on H-bonded clusters in ionic liquids have focussed on proton transfer systems, where their composition was expressed as a molar ratio of acid, ζH₂A (Eqn 1).

\[
\frac{1}{2}HA + B \leftrightarrow \frac{1}{2}[HB][A] \quad \zeta_{H₂A} = 0.33 \quad (1a)
\]

\[
HA + B \leftrightarrow [HB][A] \quad \zeta_{H₂A} = 0.50 \quad (1b)
\]

\[
2HA + B \leftrightarrow [HB][A(HA)] \quad \zeta_{H₂A} = 0.67 \quad (1c)
\]

\[
3HA + B \leftrightarrow [HB][A(HA)₂] \quad \zeta_{H₂A} = 0.75 \quad (1d)
\]

In this work, the starting point is an ionic liquid, [C₂mim][A], which is reacted with an acid, HA. To facilitate comparison with previous contributions, we perform a Gedanken experiment assuming that the ionic liquid was prepared by addition of an acid to a carbene (pKₐ(H₂O) = ca. 27), as shown in Eqn 2.

\[
\text{[C₂mim][A] + HA} \quad \zeta_{H₂A} = 0.50 \quad (2a)
\]

\[
\text{[C₂mim][A] + 2HA} \quad \zeta_{H₂A} = 0.67 \quad (2b)
\]

Following this logic, the composition of neat liquid, [C₂mim][A], is described by \(\zeta_{H₂A} = 0.50 \), solutions of acids are characterised by \(0.50 < \zeta_{H₂A} < 1.00 \), and neat acid as \(\zeta_{H₂A} = 1.00 \).

The acidity of acid-ionic liquid mixtures

MEASUREMENTS AND OBSERVED TRENDS The spectroscopic probe, tepo, was used in very low concentrations to minimise the interference with equilibria in studied systems. Recorded ³¹P NMR signals of the protonated probe were found to be slightly concentration-dependent, as exemplified in Figure 3. To eliminate this factor, the ³¹P NMR shifts were extrapolated to infinite dilution of tepo, \(\delta_{inf} \), using linear regression. The \(\delta_{inf} \) values were then used to calculate AN (Table 2).

To facilitate meaningful analysis of the data, AN values for the four investigated systems were plotted against the composition, \(\zeta_{H₂A} \) (Figure 4).
Neat ionic liquids all have low acidity; measured values are in close agreement with those reported in the literature.\(^{30}\) As anticipated, in all cases AN values increase with increasing acid concentration. In no case is the increase in AN value directly proportional to \(\chi_{HA}\).

In the acetate system (Figure 4, ●), upon the addition of acid to the neat ionic liquid, there is a slow, linear increase in AN up to \(\chi_{OAc} = 0.67\); the acidity is buffered to a nearly constant AN value by the formation of the \([\text{OAc}(\text{HOAc})]\) complex, which is held together by strong hydrogen bonds. Moving towards higher acid content, AN values increase more rapidly up to \(\chi_{OAc} = 0.75\), as dimers are gradually replaced by \([\text{OAc}(\text{HOAc})]\). Finally, between \(\chi_{OAc} = 0.75\) and 1.00, AN increases linearly; it can be envisaged that the ‘ionic’ structure prevails longer: up to \(\chi_{\text{HOMs}} = 0.78\) in the mesylate system, and up to \(\chi_{\text{HOTT}} = 0.85\) in the triflate system. Past these \(\chi_{HA}\) values, Eqn 5 is shifted to the left.

In the bistriflamide system (Figure 4, ▲), as in the triflate one, the addition of a small amount of acid leads to a spike in acidity, up to a very high level of AN = 124.3±0.8. However, in contrast to other systems, this value remains constant throughout the measurable composition range 0.5 ≤ \(\chi_{\text{NTf}}\) ≤ 0.80. This suggests that there are no clusters formed in this range, and that HNTF\(_2\) is dissolved in its molecular form, as found in the work on acid solutions in non-polar solvents by Stoyanov et al.\(^{15}\) For 0.80 ≤ \(\chi_{\text{NTf}}\) ≤ 1.00, the mixtures formed biphasic liquids at elevated temperature and solidified readily (forming solid with small amount of encapsulated liquid) when cooled to ambient.

IMPLICATIONS. Solutions of HOTf or HN\(_2\)F\(_2\) in analogous ionic liquids are both extremely acidic, with the HN\(_2\)F\(_2\) system being slightly more so. This is in agreement with the suggestion of Johnson and co-workers, that gas-phase acidities of neat acids might be more indicative of acidities of ionic liquid solutions than the \(pK_a\) values of the corresponding acids in water.\(^{24}\)

Solutions of acetic acid in the corresponding ionic liquid had extremely low acidity, much lower than even the acetic acid itself. This explains why, typically, this system is not catalytically active.\(^{38}\)

From a practical viewpoint, when handling solutions of HOTf and HN\(_2\)F\(_2\) in ionic liquids, there is a safety benefit as the solutions do not fume like the corresponding neat acids, and are consequentially easier to handle.

Acidity vs. cluster structure
To aid understanding of the structure of liquid-phase clusters, the crystal structures of salts where the \([A(\text{HA})]\) clusters were observed, were analysed.\(^{30}\)
Distances between hydrogen and oxygen atoms partaking in H-bonding in [A·H·A] dimeric clusters were averaged for acetate clusters (8 structures), mesylate clusters (3 structures, proton detected for 2) and triflate clusters (5 structures, proton detected for 3). No clusters with [NTf₂] anions have been deposited to date. Results of this exercise are shown in Table 3.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>O-H / Å</th>
<th>H-O / Å</th>
<th>O-O / Å</th>
<th>Z_{O-H} / Å^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AcO^−·H-OAc]</td>
<td>1.23±0.01</td>
<td>1.23±0.01</td>
<td>2.46±0.01</td>
<td>178±3</td>
</tr>
<tr>
<td>[MsO^−·H-OMs]</td>
<td>1.03±0.10</td>
<td>1.45±0.10</td>
<td>2.50±0.03</td>
<td>172±2</td>
</tr>
<tr>
<td>[Tfo^−·H-OTf]</td>
<td>0.78±0.12</td>
<td>1.73±0.07</td>
<td>2.49±0.05</td>
<td>171±7</td>
</tr>
</tbody>
</table>

Data averaged only for detected protons

In examining these clusters, the more symmetrical is the O-H-O unit, the stronger are the internal H-bonds, and the more stable is the cluster. Thus, binuclear acetate clusters, where the two O-H bonds have identical length (1.23±0.01 Å; very strong H-bond), are very stable. Low acidity of the proton in [OAc(HOAc)]− derives directly from these strong H-bonds. In mesylate complexes, [OMs(HOMs)]− is asymmetric (r_{O-A} = 1.03 Å and r_{O-H} = 1.45 Å). HOMs is a much stronger acid, and mesylate is a poorer H-bond acceptor, and so the acid retains more of its identity as a molecular species. This trend is continued with the [OTf(HOTf)]− cluster. Triflate is a weak base and an extremely poor H-bond acceptor; therefore O-H bond in [OTf(HOTf)]− is very short, shorter than in water (0.957 Å in the gas phase), and O…H is of medium strength. Schematic structures of the three dimers are shown in Figure 5. The AN studies indicated that there is no association of HNTf₂ with anions in the [C₅mim][NTf₂]-HNTf₂ system. This is supported by the absence of [NTf₂(HNTf₂)] clusters in the CSD database, and by studies on HNTf₂ solutions in non-polar solvents. [NTf₂] is the poorest H-bond acceptor studied here; in addition, there is a steric hindrance, as well as fluorine-fluorine and oxygen-oxygen repulsion, hindering the formation of N-H−N bonds, as shown in Figure 5.

This analysis ties in the empirical basicity of the anions with their structural consequences and resulting acidity of their solutions.

Figure 5. Proposed structures of anionic dimers, [A(HA)], in systems of a general formula [C₅mim][A(HA)], where A = OAc, OMs and OTf, compared with discrete nature of HNTf₂ and [NTf₂] in the [C₅mim][NTf₂]-HNTf₂ system

1H NMR spectroscopy

1H NMR spectra were measured for four liquid systems at ambient temperature, each over a range of χ_{HA} values. As expected, chemical shifts of the acidic protons in the [C₅mim][OAc]-HOAc system were the most sensitive to compositional changes (Figure 6), and those in the [C₅mim][NTf₂]-HNTf₂ system was the least affected (Figure 9). The most deshielded protons were found in the [C₅mim][OTf]-HOTf system (Figure 8). Spectra for [C₅mim][OMs]-HOMs are shown in Figure 7.

Interactions of imidazolium cations with anions in ionic liquids are well discussed elsewhere. The chemical shifts of protons in the imidazolium ring depend on the anion (downfield shift due to H-bonding) and on the concentration (upfield shift due to ring stacking). The proton in the C2 position is the most acidic, hence it is the most sensitive to changes in H-bond accepting ability of the anion. The 1H NMR chemical shifts for the C2 protons in the four systems are plotted as a function of composition, χ_{HA}, in Figure 10.
Figure 6. 1H NMR spectra (400.112 MHz, 27 °C, neat, external d$_6$-DMSO lock) of the [C$_2$ mim][OAc]-HOAc system; the χ_{HOAc} values are marked in the Figure.

Figure 7. 1H NMR spectra (400.112 MHz, 27 °C, neat, external d$_6$-DMSO lock) of the [C$_2$ mim][OMs]-HOMs system; the χ_{HOMs} values are marked in the Figure.
Figure 8. 1H NMR spectra (400.112 MHz, 27 °C, neat, external d_6-DMSO lock) of the [C$_2$ mim][OTf]-HOTf system; the χ values are marked in the Figure. Magnification of a downfield part of a spectrum, showing low-intensity signals for compositions of lower acid content.

Figure 9. 1H NMR spectra (400.112 MHz, 27 °C, neat, external d_6-DMSO lock) of the [C$_2$ mim][NTf$_2$]-HNTf$_2$ system; the χ values are marked in the Figure.
This journal is exemplified for the [C2H3]+ anion, and the δC2-H signal is strongly shifted downfield. In other words, complex [A(HA)3] anions are weaker bases than corresponding [A] due to charge distribution of a single negative charge over a greater number of electronegative centres. The [NTf2] anion is essentially unable to associate with HNTf2, so the δC2-H signal is constant up to xNTf ≅ 0.70 (two moles of acid per one mol of ionic liquid). Above this concentration, it is possible that the acid and anions begin to agglomerate via weak N-H...O bonding (Figure 3), which leads to further weakening of cation-anion interaction.

For both triflate and bistriflimide systems, at high acid concentrations, the δC2-H signals achieve identical values, which may be assumed to be the chemical shift for an effectively non-H-bonded C2 proton in a neat [C2mmim]+ ionic liquid.

1H NMR chemical shifts for the acidic protons in [A(HA)] complexes, δA…H…A, are plotted as a function of composition, xHA, in Figure 12.

As the composition changes, the observed signal is an average from several acidic proton signals, derived from H-bonded clusters in dynamic equilibria (Eqn 5). This has been demonstrated experimentally in low-temperature NMR studies on the pyridine-acetic acid system by Golubev et al., where signals corresponding to [OAc(HOAc)]2, [OAc(2HOAc)]2, and to acid dimers [(HOAc)2], were observed.

The most basic anions form the strongest H-bonds. Therefore, in the neat acetate ionic liquid, the δC2-H signal is strongly shifted downfield (10.165 ppm), and it is found more upfield for the other ionic liquids, in the order of decreasing basicity of the anion: [OMs] (9.015 ppm), [OTf] (8.370 ppm) and [NTf2] (8.053 ppm). Upon addition of an acid, when H-bonded clusters are formed, the strength of the cation-anion interactions decreases in favour of acid-anion interactions (Figure 11).

As the composition changes, the observed signal is an average from several acidic proton signals, derived from H-bonded clusters in dynamic equilibria (Eqn 5). This has been demonstrated experimentally in low-temperature NMR studies on the pyridine-acetic acid system by Golubev et al., where signals corresponding to [OAc(2HOAc)]2, [OAc(3HOAc)]2, and to acid dimers [(3HOAc)2], were observed.

This journal is © The Royal Society of Chemistry 2013

J. Name., 2013, 00, 1-3 | 9
Analogous behaviour was observed for acetate, mesylate and triflate systems. With increasing acid content, the δ_{A-H-A} signals shift downfield, to plateau around $\delta_{HA} = 0.67$. This corresponds to a maximum in the concentration of [A(HA)]. It is known that, amongst H-bonded complexes, [A(HA)]$^-$ dimers have the strongest H–O, therefore the weakest O–H bonds, and in consequence such protons are the most deshielded.\(^{38}\) Moving towards higher δ_{HA} values, δ_{A-H-A} signals shift upfield. The gradual decrease in δ_{A-H-A} in the acetate system corresponds to the formation of discrete trinuclear clusters. Further addition of acid leads to a solution of ionic liquid in acid. Although the existence of higher-order clusters was postulated also in triflate systems,\(^{33}\) data in Figure 12 show no evidence for larger clusters in either mesylate or triflate system. It appears that, as the acid content increases beyond $\delta_{HA} = 0.67$, the equilibrium shown in Eqn 5 shifts to the left, liberating free acid. This behaviour lies on the opposite spectrum to known behaviour of [cation]-[OTf$^-$] system, where polynuclear clusters were recorded.\(^{32}\)

The δ_{A-H-A} values recorded for the [C$_2$ mim][NTf$_2$]-HNTf$_2$ system ($0.51 < \delta_{HA} < 0.80$) remain constant, and are shifted relatively far upfield when compared to the other studied systems. This corresponds to molecular HNTf$_2$ solvated in the ionic liquid.

It is extremely noteworthy that, as clearly evidenced by presented data, the chemical shift of the acidic proton does not correspond to its actual ability to protonate a base.

Conclusions

It has been demonstrated that Acceptor Number is a valid and reliable measure of the Brønsted acidity in ionic liquids, from very weak to very strong acids. A library of ionic liquid-acid solutions, characterised by a wide spectrum of acidity, has been developed.

Bronsted acids dissolved in ionic liquids typically form anionic H-bonded clusters, [A(HA)]$^-$, and AN measurements are sensitive to the structure of the liquids, and reflect how acidity changes with changing liquid structure. The value of χ depends on the basicity of A^- in the system; for acetate $x = 1$ or 2, for mesylate or triflate $x = 1$, and for bistriflamide $x = 0$ (the clusters do not form).

Unlike acids with stronger conjugate bases, HNTf$_2$ does aggregate with the anions in [NTf$_2$$^-$]-based ionic liquids, but is solubilised in a molecular form. At low concentrations, [C$_2$ mim][NTf$_2$]-HNTf$_2$ system is more acidic than [C$_2$ mim][OTf$^-$]-HOTf system, but at very high HOTf concentration the order is reversed (see Figure 4).

1H NMR chemical shifts of the acidic protons, δ_{A-H-A}, do not correspond to the strength of Bronsted acidity in the system, but rather inform on the relative strength of H-bonding between acid and anions in the anionic clusters.

In summary, a simple way to manipulate and quantify Bronsted acidity of acid-ionic liquid mixtures was demonstrated, and measured AN values were related to the liquid speciation, which in turn provided structural and quantitative underpin for the selection of Bronsted acidic ionic liquid system for a catalytic application.

Acknowledgements

The authors acknowledge QUILL and its Industrial Advisory Board, as well as the EPSRC (Portfolio Partnership Scheme, Grant EP/D029538/1), for support. Dr P. Nockemann is acknowledged for useful discussion about crystallography, and Mr R. W. Murphy for help with NMR studies.

Notes and references

\(^1\) QUILL, The Queen’s University of Belfast, Belfast, BT9 5AG, United Kingdom, E-mail: m.swadzba.kwasny@quib.ac.uk

\(^2\) CERTECH asbl, Rue Jules Bordet, Zone Industrielle C, B-7180 Seneffe, Belgium

† Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000xc
